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Abstract

Understanding complex systems often requires a bottom-up analysis towards a systems
biology approach. The need to investigate a system, not only as individual components
but as a whole, emerges. This can be done by examining the elementary constituents
individually and then how these are connected. The myriad components of a system
and their interactions are best characterized as networks and they are mainly
represented as graphs where thousands of nodes are connected with thousands of
vertices. In this article we demonstrate approaches, models and methods from the
graph theory universe and we discuss ways in which they can be used to reveal hidden
properties and features of a network. This network profiling combined with knowledge
extraction will help us to better understand the biological significance of the system.
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Introduction
The theory of complex networks plays an important role in a wide variety of disci-

plines, ranging from computer science, sociology, engineering and physics, to molecu-

lar and population biology. Within the fields of biology and medicine, potential

applications of network analysis include for example drug target identification, deter-

mining a protein’s or gene’s function, designing effective strategies for treating various

diseases or providing early diagnosis of disorders. Protein-protein interaction (PPI) net-

works, biochemical networks, transcriptional regulation networks, signal transduction

or metabolic networks are the highlighted network categories in systems biology often

sharing characteristics and properties.

Protein-protein interaction (PPI) networks [1] mainly hold information of how dif-

ferent proteins operate in coordination with others to enable the biological processes

within the cell. Despite the fact that for the majority of proteins the complete sequence

is already known, their molecular function is not yet fully determined. Predicting pro-

tein function is still a bottleneck in computational biology research and many experi-

mental and computational techniques have been developed in order to infer protein

function from interactions with other biomolecules. Large-scale and high-throughput

techniques can detect proteins that interact within an organism. Among them, the

most well-known are the pull down assays [2], tandem affinity purification (TAP) [3],

yeast two-hybrid (Y2H) [4], mass spectrometry [5], microarrays [6] and phage display

[7]. Some very well-known datasets that have been recently produced by employing

Pavlopoulos et al. BioData Mining 2011, 4:10
http://www.biodatamining.org/content/4/1/10 BioData Mining

© 2011 Pavlopoulos et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

mailto:pavlopou@embl.de
http://creativecommons.org/licenses/by/2.0


the aforementioned techniques and that are widely used are the Tong [8], Krogan [9],

DIP [10], MIPS [11], Gavin 2002 [5] and Gavin 2006 [12] datasets. Besides the various

experimental methods, a variety of large biological databases that contain information

concerning PPI data is already available and most of them are organism specific. Some

well-known databases are the Yeast Proteome Database (YPD) [13], the Munich Infor-

mation Center for Protein Sequences (MIPS) [14], the Molecular Interactions (MINT)

database [15], the IntAct database [16], the Database of Interacting Proteins (DIP) [10],

the Biomolecular Interaction Network Database (BIND) [17], the BioGRID database

[18], the Human Protein Reference Database (HPRD) [19], the HPID [20] or the

DroID [21] for Drosophila. Two additional well-documented services based on text

mining analysis are the Stitch [22] and String [23] databases.

Regulatory networks (GRNs) contain information concerning the control of gene

expression in cells. This process is modulated by many variables, such as transcription

factors [24], their post-translational modifications or association with other biomole-

cules [25]. Usually, these networks use a directed graph representation in an effort to

model the way that proteins and other biological molecules are involved in gene

expression and try to imitate the series of events that take place in different stages of

the process. They often exhibit specific motifs and patterns concerning their topology.

Data collection, data integration and analysis techniques give now the possibility to

study gene regulatory networks in a larger scale [26]. Protein-DNA interaction data is

collected in databases like JASPAR [27], TRANSFAC [28,29] or B-cell interactome

(BCI) [30], while post-translational modification can be found in databases like Phos-

pho.ELM [31], NetPhorest [32] or PHOSIDA [33].

Signal transduction networks often use multi-edged directed graphs to represent a

series of interactions between different bioentities such as proteins, chemicals or

macromolecules and to investigate how signal transmission is performed either from

the outside to the inside of the cell, or within the cell. Environmental parameters

change the homeostasis of the cell and, depending on the circumstances, different

responses can be triggered. Similarly to GRNs, these networks also exhibit common

patterns and motifs concerning their topology [34]. Databases that store information

about signal transduction pathways are MiST [35], TRANSPATH [36], etc.

Metabolic and biochemical networks [37] are powerful tools for studying and mod-

elling metabolism in various organisms. As metabolic pathways, we consider a series of

chemical reactions occurring within a cell at different time points. The main role

within a metabolic network is played by the enzymes, since they are the main determi-

nants in catalyzing biochemical reactions. Often, enzymes are dependent on other

cofactors such as vitamins for proper functioning. The collection of pathways, holding

information about a series of biochemical events and the way they are correlated, is

called a metabolic network. Modern sequencing techniques allow the reconstruction of

the network of biochemical reactions in many organisms, from bacteria to human

[38,39]. Among the several databases holding information about biochemical networks

some of the most popular are the Kyoto Encyclopedia of Genes and Genomes (KEGG)

[40], EcoCyc [41], BioCyc [42] and metaTIGER [43]. Several methods have also been

discovered to analyze the pathway structure of metabolic networks [44-48].

Many computer readable formats are available to describe biological networks. The Sys-

tems Biology Markup Language (SBML) [49] is an XML-like machine-readable language,
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that is able to represent models to be analyzed by a computer. SBML can represent meta-

bolic networks, cell signaling pathways, regulatory networks, and many other kinds of sys-

tems [50]. Other file formats that can represent biological networks are the Proteomics

Standards Initiative Interaction (PSI-MI) [51], Chemical Markup Language (CML) [52,53]

for chemicals or BioPAX [54] for pathways. Secondary formats that can also be used in

similar ways are the Cell Markup Language [55] which is an XML-like machine-readable

language mainly developed for the exchange of computer-based mathematical models or

the Resource Description Framework, RDF which is a language for the representation of

information about resources on the World Wide Web [56,57].

After having given a short overview of how data can be produced either experimen-

tally or retrieved from various databases and which formats are available for each type

of network, we further emphasize on the computational analysis as defined in graph

theory. We finally conclude by describing which properties of the ones discussed

below characterize the various networks.

Graph Theory and Definitions
To introduce the basic concepts of graph theory, we give both the empirical and the

mathematical description of graphs that represent networks as they are originally

defined in the literature [58,59].

Undirected single graph

A graph G can be defined as a pair (V, E) where V is a set of vertices representing the

nodes and E is a set of edges representing the connections between the nodes. We

define as E = {(i, j)| i, j Î V} the single connection between nodes i and j. In this case,

we say that i and j are neighbors. A multi-edge connection consists of two or more

edges that have the same endpoints. Such multi-edges are especially important for net-

works in which two elements can be linked by more than one connection. In such

cases, each connection indicates a different type of information. This is an important

feature since there are networks such as protein-protein interaction networks in which

two proteins might be evolutionary related, co-occur in the literature or co-express in

some experiments, resulting by this way in three different connections, each one with

a different meaning. An example of PPI database that takes into account the different

types of interactions between proteins is String [23].

Directed graph

A directed graph is defined as an ordered triple G = (V, E, f), where f is a function that

maps each element in E to an ordered pair of vertices in V. The ordered pairs of ver-

tices are called directed edges, arcs or arrows. An edge E = (i, j) is considered to have

direction from i to j. Directed graphs are mostly suitable for the representation of

schemas describing biological pathways or procedures which show the sequential inter-

action of elements at one or multiple time points and the flow of information through-

out the network. These are mainly metabolic, signal transduction or regulatory

networks [34].

Weighted graph

A weighted graph is defined as a graph G = (V, E) where V is a set of vertices and E is

a set of edges between the vertices E = {(u, v) | u, v Î V} associated with it a weight
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function w: E®R, where R denotes the set of all real numbers. Most of the times, the

weight wij of the edge between nodes i and j represents the relevance of the connec-

tion. Usually, a larger weight corresponds to higher reliability of a connection.

Weighted graphs are currently the most widely used networks throughout the field of

bioinformatics. As an example, relations whose importance varies are frequently

assigned to biological data to capture the relevance of co-occurrences identified by text

mining, sequence or structural similarities between proteins or co-expression of genes

[23,60].

Bipartite graph is an undirected graph G = (V, E) in which V can be partitioned

into 2 sets V1 and V2 such that (u,v) Î E implies either u Î V1 and v Î V2 OR v Î V1

and u Î V2. Applications of this type of graph to visualization or modeling of biologi-

cal networks range from representation of enzyme-reaction links in metabolic path-

ways to ontologies or ecological connections, as discussed in [61] or [62].

If G = (V, E) is a graph, then G1 = (V1, E1) is called a subgraph or if V1 ⊆ V and E1
⊆ E, where each edge in E1 is incident with vertices in V1.

Examples and shapes describing the aforementioned graph types can be found in

Figure 1. The most common data structures that are used to make these networks

computer readable are adjacency matrices or adjacency lists. The following section pro-

vides a short mathematical description of these data structures.

Figure 1 Undirected, Directed, Weighted, Bipartite graphs. A. Undirected Graph: V = {V1, V2, V3, V4}, |V|
= 4, E = {(V1, V2), (V2, V3), (V2, V4), (V4, V1)}, |E| = 4. B. Directed Graph: V = {V1, V2, V3, V4}, |V| = 4, E = {(V1, V2),
(V2, V3), (V2, V4), (V4, V1), (V4, V2)}, |E| = 5. C. Weighted Graph: V = {V1, V2, V3, V4}, |V| = 4, E = {(V1, V2, V4), (V2,
V3, V2), (V2, V4, V9), (V4, V1, V8), (V4, V2, V6)}, |E| = 5. D. Bipartite graph: V = {U1, U2, U3, U4, V1, V2, V3}, |V| = 7, E
= {(U1, V1), (U2, V1), (U2, V2), (U2, V3), (U3, V2), (U4, V2)}, |E| = 6.
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The degree of a node in an undirected graph is the number of connections or edges

the node has to other nodes and is defined as deg(i) = k(i) = |N(i)| where N(i) is the

number of the neighbors of node i. If a network is directed, then each node has two

different degrees, the in-degree degin (i) which is the number of incoming edges to

node i, and the out-degree degout(i) which is the number of outgoing edges from node

i. The total connectivity of a network is defined as C =
E

N(N − 1)
where E is the

number of edges and N the total number of nodes. The connectivity structure of biolo-

gical networks is often informative with respect to reaction interplay and reversibility,

compounds that structure the network, like in metabolism, or trophic relationships,

like in food-web networks. Such connectivity profiles can be detected based on mixture

models using software like MixNet [63].

Data Structures
The two main data structures used to store network graph representations are

described below.

Adjacency matrix

Given a graph G = (V, E) the adjacency matrix representation consists of a |V|x|V| =

nxn matrix A = (aij) such that aij = 1 if (i, j)ÎV or aij = 0 or otherwise

A =

⎛
⎜⎝
a11 . . . a1n
...

. . .
...

an1 · · · ann

⎞
⎟⎠ , n = |V|. In the case where we have weighted graphs aij = wij if (i,

j)ÎV or aij = 0 otherwise. For undirected graphs the matrix is symmetric because aij
= aji. The aforementioned rule does not apply to directed graphs, because in that case

the upper and the lower triangle parts of the matrix reveal the direction of the edges.

Adjacency matrices require space of Θ(|V|2) and are best suited for dense and not for

sparse graphs. For an all-against-all symmetric data set, only the upper or the lower

triangular part of the matrix is necessary, which requires Θ(|V|) amount of memory to

be allocated. This data structure is more efficient for cluttered networks, where the

density of the connections between elements is relatively high. In the case of a fully

connected graph where all nodes are connected with each other, adjacency matrices

are highly suggested. To reduce memory allocation to half for larger scale data, a sym-

metric 2D matrix A can be stored as a 1D matrix B, where A[i, j] = B[
i(i − 1)

2
+ j] if

the first element is a11 like for example in Matlab platform or A[i, j] = B[
i(i + 1)

2
+ j] if

the first element is a00 like in most programing languages. Matrix B currently hosts

the lower part of matrix A. If for example A is a 3 × 3 matrix starting from element

a11, A =

⎛
⎝ a11 a12 a13
a21 a22 a23
a31 a32 a33

⎞
⎠ then matrix B is defined as B = {a11,a21,a22,a31,a32,a33}. The

1D array will be of size
n(n + 1)

2
including the diagonal.
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Adjacency list

Given a graph G = (V, E) the adjacency list representation consists of an array Adj of |

E| elements where for each eÎE Adj(0, e) = i ÎV. Adjacency lists require space Θ (|V|

+|E|) and are preferable for sparse graphs with a low density of connections. An exam-

ple of how these data structures represent a graph is given in Figure 2.

Network Properties
Looking at different network properties can provide valuable insight into the internal

organization of a biological network, the repartition of molecules among cellular pro-

cesses, as well as the evolutionary constraints that have shaped an organism’s protein,

metabolic or regulatory network into a functional, feasible structure. In the following,

we give a short description of the main properties that are commonly analyzed in

networks.

The graph density shows how sparse or dense a graph is according to the number of

connections per node set and is defined as density =
2|E|

|V|(|V| − 1)
. A sparse graph is a

graph where |E| = O(|V|k) and 2 > k > 1 or otherwise when |E| “ |V|. Dense is a graph

where |E| “ |V|2. It has been argued that biological networks are generally sparsely con-

nected, as this confers an evolutionary advantage for preserving robustness. This has

been observed for a series of organisms: the transcriptional regulatory networks of S.

cerevisiae, E. coli, D. melanogaster all have connectivity densities lower than 0.1 [64].

In the mathematical field of graph theory, a complete graph is a simple graph in

which every pair of distinct vertices is connected by a unique edge. The complete

graph on n vertices has
n(n − 1)

2
, n = |V| number of edges and it is a regular graph of

degree |V| - 1.

Graph Isomorphism

Let G1= (V1, E1) and G2= (V2, E2) be two undirected graphs. A function f: V1 ->V2 is

called isomorphism if f is an edge-preserving bisection, such that for all a, bÎV1, (a, b)

ÎE1 if and only if (f(a), f(b)) Î E2. When such function exists, then G1 and G2 are

called isomorphic. An example is shown in Figure 3.

Figure 2 Data structures. A. A Directed Graph: A random graph consisting of five nodes and six directed
edges. B. Adjacency List: The data structure which represents the directed graph using lists. C. Adjacency
Matrix: The data structure which represents the directed graph using a 2D matrix. The zeros represent the
absence of the connection whereas the ones represent the existence of the connection between two
nodes. The matrix is not symmetric since the graph is directed.
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A walk is a pass through a specific sequence of nodes (v1, v2,..., vL) such that {(v1, v2),

(v2, v3),..., (vL-1, vL)} ⊆ E. A simple path is a walk with no repeated nodes. A cycle is a

walk (v1, v2,..., vL) where v1 = vL with no other nodes repeated and L >3, such that the

last node is the same with the first one. A trail is a path where no edge can be

repeated. A graph is called cyclic if it contains a cycle. In any other case it is called

acyclic. All of the aforementioned can be found as an example in Figure 4. A complete

graph is a graph in which every pair of nodes is adjacent. If (i, j) is an edge in a graph

G between nodes i and j, we say that the vertex i is adjacent to the vertex j. An undir-

ected graph is connected if one can get from any node to any other node by following

a sequence of edges. A directed graph is strongly connected if there is a directed path

from any node to any other node. This does not require an all-against combination.

The distance δ(i, j) from i to j is the length of the shortest path from i to j in G. If no

such path exists, then we set δ(i, j) = ∞ assuming that the nodes are so far between

each other so they are not connected. Practically, for the distance δ(i, j) = ∞ we can

Figure 3 Graph Isomorphism. V = {V1, V2, V3, V4}, |V| = 4, E = {(V1, V2), (V1, V3), (V1, V4), (V2, V3), (V2, V4), (V3,
V4)}, |E| = 6. Graphs A and B have different topology but they are isomorphs. The graph is fully connected
and every node is connected to any other so that it forms a fully connected clique.

Figure 4 Walks, simple paths trails and cycles in graphs. A walk is a sequence of nodes e.g. (V2, V3, V6,
V5, V3). A simple path is a walk with no repeated nodes, e.g. (V1, V4, V5, V2, V3). A trail is a walk where no
edges are repeated e.g. (V1, V2, V3 V6). A cycle is a walk (V1, V2,..., VL) where V1 = VL with no other nodes
repeated and L>3, e.g. (V1, V2, V5, V4, V1).
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use the maximum weight of the graph by adding one. Thus δ(i, j) = ∞ = (maxd(i, j)+1).

To define the shortest path problem we can briefly say that it is the methodology of

finding a path between two nodes such that the sum of the weights of its constituent

edges is minimized. The average path length and the diameter of a graph G are

defined to be the average and maximum value of δ(i, j) taken over all pairs of distinct

nodes, i, j ÎV(G) which are connected by at least one path. More specifically, the aver-

age path length of a network is the average number of edges or connections between

nodes, which must be crossed in the shortest path between any two nodes. It is calcu-

lated as δ =
2

N(N − 1)

N∑
i=1

N∑
j=1

δmin(i, j) where δmin(i, j) is the minimum distance between

nodes i and j. The diameter of a network is the longest shortest path within a network.

The diameter is defined as D = max
i,j

δmin(i, j). The most common algorithms for calcu-

lating the shortest paths are Dijkstra’s greedy algorithm [65] and Floyd’s dynamic

algorithm [66]. Dijkstra’s algorithm has running time complexity O(N2) where N is the

number of vertices and returns the shortest path between a source vertex i and all

other vertices in the network. Floyd’s algorithm has running time complexity O(N3)

and requires an all-against-all matrix that contains the distances of every node in the

network to every other node in the network.

A clique in an undirected graph G is a subgraph G’ which is complete. An indepen-

dent set in a graph is a subset of the vertices such that no pair of vertices is an edge in

the graph. The size of a clique comes from the number of vertices it contains. A maxi-

mal clique is a clique that cannot be extended by including one more adjacent vertex,

i.e. a clique which does not exist exclusively within the vertex set of a larger clique. A

maximum clique is a clique of the largest possible size in a given graph. The clique

problem refers to the problem of finding the largest clique in any graph G. This pro-

blem is NP-complete, and as such, many consider that it is unlikely that an efficient

algorithm for finding the largest clique of a graph exists. Figure 3b shows a clique. A

very famous method to find maximal cliques in a graph is the so-called Bron-Kerbosch

algorithm [67]. Detection and analysis of these structures has found many biological

applications: identifying groups of consistently co-expressed genes in microarray data-

sets, finding cis regulatory motifs or matching three-dimensional structures of mole-

cules [68,69]. Several tools have been developed for clique identification, like Clique

Finder within the Arabidopsis Co-expression Tool server [70] or MIClique [68]. Bio-

conductor [71] provides a large collection of software for clique analysis.

Clustering Coefficient is the measurement that shows the tendency of a graph to be

divided into clusters. A cluster is a subset of vertices that contains lots of edges con-

necting these vertices to each other. Assuming that i is a vertex with degree deg(i) = k

in an undirected graph G and that there are e edges between the k neighbors of i in G,

then the Local Clustering Coefficient of i in G is given by Ci =
2e

k(k − 1)
. Thus, Ci mea-

sures the ratio of the number of edges between the neighbors of i to the total possible

number of such edges, which is k(k-1)/2. It takes values as 0 ≤ Ci ≤ 1. The average

Clustering Coefficient of the whole network Caverage is given by

Caverage =
1
N

N∑
i=1

Ei
ki(ki − 1)

where N=|V| is the number of vertices. The closer the local

clustering coefficient is to 1, the more likely it is for the network to form clusters.
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Obviously, a clique would come with local clustering coefficient equal to 1. An exam-

ple showing how local clustering coefficient is calculated is shown in Figure 5.

Biological networks have a significantly higher average clustering coefficient com-

pared to random networks, which proves their modular nature. Indeed, many cellular

processes are governed by subsets of biomolecules that form an interaction module.

Since cellular processes are linked, the modules tend to be linked as well, but the link-

ing molecules are often few, such that the module overlap is quite low [72,73].

Centralization is the measurement that shows whether a network has a star-like

topology or whether the nodes of the network have on average the same connectivity.

The closer the centralization is to 1, the more likely is the network to have a star-like

topology. The closer to 0, the more likely it is that the nodes of the network have on

average the same connectivity (for example a square, where every node is connected

with 2 neighbors). It is calculated as

Centralization =
n

n − 2

(
max(k)
n − 1

− Density
)
,

Centralization ≈ max(k)
n − 1

− Density

Network Motifs represent patterns in complex networks occurring significantly more

often than in randomized networks [74]. They consist of subgraphs of local intercon-

nections between network elements. A motif is a small connected graph G’. A match

G’ of a motif in graph G is a graph G’’ which is isomorphic to G’ and a subgraph of G.

Signal transduction and gene regulatory networks tend to be described by various

motifs [72,75]. Although motif determination gives lots of information concerning the

properties and the characteristics of a network, it does not necessarily reveal evidence

about its function and the function of its components [76]. However, some motifs have

been found to be associated with optimized biological functions, like in the case of

positive and negative feedback loops, oscillators or bifans [73]. Figure 6 shows the

most common motifs that are found in various networks.

Figure 5 Clustering Coefficient. A) Node V behaves like a hub but it has clustering coefficient C = 0. B)
Node V comes with a high clustering coefficient. The maximum number of potential connection is given
by Emax=|V|(|V|-1)/2 where |V| = 5 is the number of the neighbors of node V, thus Emax = 10. The neighbors
of node V are connected with 7 edges between each other, E = {(V1, V2), (V2, V3), (V3, V4), (V4, V5), (V5, V1),
(V1, V3), (V1, V4)}. The clustering coefficient of node V is C = EV/Emax = 7/10 = 0.7.
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Network Centralities and Node Ranking
This section shows how nodes can be ranked or sorted according to their properties,

depending on the question asked. In biological networks, it is important for example

to detect central nodes or intermediate nodes that affect the topology of the network,

depending of course on the biological question. Such a question would be to find the

molecules in a biological pathway that are not necessarily central but have a crucial

biological role in signal transduction or in PPI networks, to detect such nodes that

interact with many other proteins or find molecules that are crucial for stimulating the

expression of genes.

Degree Centrality shows that an important node is involved in a large number of

interactions. For a node i, the degree centrality is calculated as Cd(i) = deg(i). For direc-

ted graphs, each node is obviously characterized by two degree centralities. These are

Cd in(i) = degin(i) and Cd out(i) = degout(i). Nodes with very high degree centrality are

called hubs since they are connected to many neighbors (see Figure 5). Scale-free net-

works tend to contain hubs. The removal of such central nodes has great impact on

the topology of the network. It has been shown that biological networks tend to be

robust against random perturbations, but disruption of hubs often leads to system fail-

ure [77,78].

Closeness Centrality indicates important nodes that can communicate quickly with

other nodes of the network. Let G = (V, E) be an undirected graph. Then, the central-

ity is defined as
Cclo(i) =

1
|V|∑
t∈V

dist(i, j)
where dist(i, j) denotes the distance or else the

shortest path p between the nodes i and j. An example is shown in Figure 7. Closeness

centrality has been used to identify the top central metabolites in genome-based large-

scale metabolic networks [79], to compare unicellular and multicellular eukarya, to

rank pathways and obtain a perspective on the evolution of metabolic organization

[80]. A decrease in closeness centrality of components has been observed as a conse-

quence of increased distance between pathways throughout evolution [80]. It has been

Figure 6 Network Motifs. Some common network motifs. A) Feed-forward loop. Type of networks: protein,
neuron, electronic. B) Three chain. Type of network: food webs. C) Four node feedback. Type of network:
gene regulatory, electronic. D) Three node feedback. Type of network: gene regulatory, electronic. E) Bi-
parallel. Type of network: gene regulatory, biochemical. F) Bi-Fan. Type of networks: protein, neuron,
electronic [74].
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chosen as the best centrality measure that can be used extract the metabolic core of a

network [81].

Betweenness Centrality shows that nodes which are intermediate between neighbors

rank higher. Without these nodes, there would be no way for two neighbors to com-

municate with each other. Thus, betweenness centrality shows important nodes that lie

on a high proportion of paths between other nodes in the network. For distinct nodes

i, j, w Î V(G), let sij be the total number of shortest paths between i and j and sij(w)

be the number of shortest paths from i to j that pass through w. Moreover, for w Î V

(G), let V (i) denote the set of all ordered pairs, (i, j) in V(G) × V(G) such that i, j, w

are all distinct. Then, the Betweenness Centrality is calculated as

Cb(w) =
∑

(i,j)∈V(w)

σij(w)

σij
. An example is shown in Figure 7. Proteins with high between-

ness centralities have been termed “bottlenecks”, for their role as key connector pro-

teins with essential functional and dynamic properties [73], for example metabolites

that control the flux between two big metabolic modules. Calculation of this centrality

measure is discussed in [82] and [83] and their properties within the PPI network of

yeast are detailed in [84].

Eigenvector Centrality ranks higher the nodes that are connected to important

neighbors. Let G = (V, E) be an undirected graph and A the adjacency matrix of net-

work G. The eigenvector centrality is the eigenvector Ceiv- of the largest eigenvalue

lmax in absolute value such that lCeiv = ACeiv. Formally, if A is the adjacency matrix

of a network G with V(G) = {v1,..., vn}, and ρ(A) = max
λ∈σ (A)

|λ|, then the eigenvector cen-

trality Ceiv(vi) of the node vi is given by the ith coordinate xi of a normalized eigenvec-

tor that satisfies the condition Ax=r(A)x. Such algorithms can be used for efficient

page ranking on the web. In biology this centrality measurement has been used,

Figure 7 Closeness and Betweeness centralities. Closeness centrality. V1: d1 = 4 × 1 + 1 × 2 + 1 × 3
= 9, Cclo(1) = 6/9. V1 accesses 4 nodes (V2, V5, V6, V7) with step 1, 1 node (V3) with step 2 and 1 node (V4)
with step 3. 6 nodes can be accessed in total by V1. V2: d2 = 2 × 1 + 4 × 2 = 10 > d1, Cclo(2) = 6/10. V2
accesses 2 nodes (V1, V3) with step 1 and 4 nodes (V4, V5, V6, V7) with step 2. 6 nodes can also be accessed
in total by V2. As a result, V1 is more central than node V2 since d1>d2. Betweenness centrality. Np(1) = 12
shortest paths that pass through node V1. The paths from the starting to the ending node are {V2-V5, V2-V6,
V2-V7, V3-V5, V3-V6, V3-V7, V4-V5, V4-V6, V4-V7, V5-V6, V5-V7, V6-V7}. Np(2) = 8 shortest paths that pass through
node V2. The paths are {V1-V3, V1-V4, V3-V5, V3-V6, V3-V7, V4-V5, V4-V6, V4-V7}. Np(3) = 5 {V1-V4, V2-V4, V4-V5, V4-V6,
V4-V7}. Np(4) = Np(5) = Np(6) = Np(7) = 0. Np = 25 the total sum of shortest paths that pass through the
nodes, thus Np= Np(1)+Np(2)+Np(3)+Np(4)+Np(5)+Np(6)+Np(7). The centralities are Cb (1) = 12/25 = 0.48, Cb (2)
= 8/25 = 0.32, Cb (3) = 5/25 = 0.20, Cb (4) = Cb (5) = Cb (6) = Cb (7) = 0, thus node V1 is more central.
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among others, to identify synthetic genetic interactions [85], gene-disease associations

[86] or network hubs [77].

Eccentricity Centrality is the measure that shows how easily accessible a node is

from other nodes. Let G = (V, E) be an undirected graph. The eccentricity centrality is

calculated as Cecc =
1

max{dist(i, j)} where dist(i, j) is the shortest path between nodes i

and j. The eccentricity Cecc of a vertex V is the greatest distance between v and any

other vertex. An example is shown in Figure 8. In biological networks, proteins or

other bioentities with high eccentricity are easily functionally reachable by other com-

ponents of the network, and thus can readily perceive changes in concentration of

other enzymes or molecules they are linked to. In contrast, those proteins that have

lower eccentricities will often play a marginal functional role in the system [87].

Subgraph Centrality is the measure that ranks nodes according to the number of

subgraphs of the overall network in which the node participates, with more weight

given to small subgraphs. Let G = (V, E) be an undirected graph and A the adjacency

matrix of network G. The subgraph centrality of a node is calculated as Csg =
∞∑
k=0

(Ak)ii
k!

.

Subgraph centrality analysis has been used to study essential proteins in proteomic

maps [77], to compute the degree of folding of protein chains [88], to understand the

molecular structure of drug-like compounds [89] or to zoom into the topological

environment of certain nodes in PPI networks of several organisms [90].

Matching Index is the measure that shows how similar two nodes are within the

network. Two vertices that are functionally similar do not always have to be connected.

The matching index Mij measures the “similarity” of two nodes and is based on the

number of common neighbors shared by nodes i and j. It is calculated as

Figure 8 Eccentricity Centrality. V1: 4 × 1, 2 × 2; V1 accesses 4 nodes (V2, V3, V5, V6) with step 1 and 2
nodes (V4, V7) with step 2. The step represents the shortest path. The maximum shortest path dmax = 2. V2:
3 × 1, 3 × 2; Similarly V2 accesses 3 nodes (V4, V7, V1) with step 1 and 3 nodes (V3, V5, V6) with step 2. The
maximum shortest path dmax = 2. V3: 2 × 1, 3 × 2, 1 × 3; Similarly V3 accesses 2 nodes (V1, V4) with step 1,
3 nodes (V2, V5, V6) and one node (V7) with step 3. The maximum shortest path dmax = 3. V4: 2 × 1, 2 × 2,
2 × 3; The maximum shortest path dmax=3. V5: 1 × 1, 3 × 2, 2 × 3; The maximum shortest path dmax = 3.
V6: 1 × 1, 3 × 2, 2 × 3; The maximum shortest path dmax = 3. V7: 1 × 1, 2 × 2, 3 × 3; The maximum
shortest path dmax = 3. As a result, the ordering of the nodes according to Cecc : (V1,V2), (V3,V4,V5,V6,V7).
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Mij =

∑
common neighbors∑

total number of neighbors
or Mij =

∑N
k,l AikAjl

ki + kj −
∑N

k,l AikAjl

. An example is shown

in Figure 9. The matching index is often used to cluster different components of a bio-

logical network according to some property. For instance, it has been used to describe

spatial growth in brain networks during development [91] or to predict the connectiv-

ity of primate cortical networks [92].

Further centrality measurements and their application to the study of PPIs in yeast

are introduced in [85]. A discussion about how centrality correlates with lethality in

biological networks can be found in [93]. The coupling between centrality and essenti-

ality has also been investigated in several eukaryotic protein networks [94]. It is very

often the case that studies of a particular network involve the analysis and comparison

of several centrality measures, for instance to study pleiotropy in human genetic dis-

eases [87], to compare PPI and transcriptional regulation networks [95] or to test hub

essentiality [77]. Tools that have implemented functionality for exploring the different

types of centralities previously mentioned in biological networks and not only are Cen-

tiBiN [96], Visone [97], Pajek [98], VisANT [99]. In most of the cases, however, only a

limited selection of centrality measures is available.

Network Topology
The topology of the network often reveals information about its biological significance.

Often, networks follow patterns and rules and have a specific topology that allows

scientists to go through a deeper investigation towards knowledge extraction.

Scale-free or otherwise real world networks describe natural networks like online

communities (i.e Facebook) where the nodes are the people and the edges the connec-

tion between them, or networks such as the World Wide Web (www) where the nodes

are individual web pages and the links are hyperlinks. Many biological networks also

have scale-free properties, with nodes representing bioentities and edges the

Figure 9 Matching Index. V1 is connected with 5 nodes (V3, V4, V6, V7,V8). V2 is connected with 4 nodes
(V3, V4, V5, V8). V3 is connected with 2 nodes (V1, V2). V4 is connected with 3 nodes (V1, V2). V5 is
connected with 1 node (V2). V6 is connected with 1 node (V1). V7 is connected with 1 node (V1). V8 is
connected with 2 nodes (V1, V5). Node V1 and V2 are connected with 3 common nodes (V3, V4, V8)and in
total with 6 distinct neighbors (V3, V4, V8, V5, V6 , V7). The matching index will then be M1,2 = 3/6 = 0.5,
thus V1 and V2 are functionally similar even though they are not connected.
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interactions between them (like proteins that interact physically or metabolites that

take part in the same reaction) [73,93,100]. Assuming that k is the number of links ori-

ginating from a given node and P(k) the probability that the degree of a randomly cho-

sen vertex equals k, a scale-free network exhibits a power law distribution P(k) ~ k-g

where g denotes the degree exponent. A scale-free network can be constructed by pro-

gressively adding nodes to an existing network and introducing links to existing nodes

with preferential attachment so that the probability of linking to a given node i is pro-

portional to the number of existing links ki that the node has. Thus the connectivity of

one node i to any other node j should approximately follow the rule:

P(links to note i) ∼ ki∑
j kj

.

The degree distribution P(k) has become one of the most prominent characteristics

in network topology. In terms of numerical estimation, a more reliable property, very

similar to the previous, is the cumulative degree distribution Pc(k). For a power law

distribution P(k) ~ k-g the cumulative degree distribution is of the form P(k) ~ k(-g-1)

and describes the probability of a random chosen node in the network to have a

degree greater than k. Even though lots of research has been done on power law analy-

sis in biological networks, it is still not an established approach widely accepted by the

scientific community [101].

To visually represent the properties of the network we usually rank the vertices

according to their degree and then plot the degree versus the rank of each vertex.

Another representation is to create a histogram by plotting the vertices of the graph

sorted according to their degree using a logarithmic scale. A third and very popular

representation is to plot the degrees of the nodes sorted versus either their degree dis-

tribution P(k) or their cumulative degree distribution Pc(k). An interesting analysis of

most of these properties in various PPI, metabolic or transcriptional networks of sev-

eral organisms (S. cerevisiae, H. pylori, C. elegans) can be found in [100].

A network is called assortative if the vertices with higher degree have the tendency

to connect with other vertices that also have high degree of connectivity; one such

category is social networks [102]. If the vertices with higher degree have the tendency

to connect with other vertices with low degree then the network is called disassorta-

tive. This is characteristic to most molecular interaction networks, where hubs have

the tendency to link to nodes with fewer interaction partners rather than to other hubs

[103,104]. Newman [102] discusses this property for protein interaction networks,

neural networks and food webs.

To correlate the degrees of two nodes i and j we use a joint probability distribution P

(ki, kj) = P(ki)P(kj). A more straightforward way is to use the Pearson’s Correlation

Coefficient (PCC), which quantifies the correlation or linear dependence between two

variables (in this case, the degrees of two nodes). In other words, it measures to which

extent one variable increases/decreases as the other increases. PCC (r-value) between

two nodes is defined as the covariance of the two nodes divided by the product of

their standard deviations. For the entire network, the assortativity coefficient is the

measure of how assortative or disassortative a network is overall. If M is the number

of edges, and xi and yi the degrees of the vertices at either ends of edge i, the assorta-

tivity coefficient r is calculated as follows [102].:
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r =

M−1∑
i
xiyi −

[
M−1 ∑

i

1
2
(xi + yi)

]2

M−1
∑
i

1
2
(xi2 + yi2) −

[
M−1

∑
i

1
2
(xi + yi)

]2 , with i = 1...M

This is equivalent to the Pearson correlation coefficient of the degrees at either ends

of an edge. The range of the r-values is between +1 and -1, r <0 corresponding to a

disassortative network whereas r > 0 to an assortative one. Another way to correlate

degrees is to calculate the average neighbor degree. For each vertex i, the average

degree of its neighbor is calculated as ki,nn =
1
ki

∑NV
j=1 Aijkj. The values are then averaged

for all vertices with the same degree k, showing the average neighbor degree knn(k).

Network Models
Several topological models have been built to describe the global structure of a net-

work, as introduced below.

Erdös-Rényi model for random graphs [105]

This model was mainly introduced to describe the properties of a random graph. The

simple model of a network involves taking a number of vertices N and connecting

nodes by selecting edges from the N(N-1)/2 possible edges randomly. The degree dis-

tribution for this model is given by a binomial distribution. The probability of a vertex

to have degree k is P(k) ≈ e−〈k〉 〈k〉k
k!

, where 〈k〉 is the average connectivity of the net-

work. For small P probabilities, the network seems to be disconnected and consists of

many isolated components whereas for P >log(N)/N almost all vertices are connected.

Watts and Strogatz model [106]

This model was introduced to describe networks that follow the small world topology.

This type of topology characterizes many biological networks, like metabolic networks

where it often happens that paths of few (three-four) reactions link most metabolites.

As a consequence, local changes in metabolite concentration local perturbations in

these networks will propagate throughout the entire network. In this model, the fre-

quency of nodes P(k) with k connections follows a power-law distribution equation P

(k) ~ k-g, in which most nodes are connected with small proportion of other nodes and

a small proportion of nodes are highly connected. Thus each vertex is connected to N/

2 nearest neighbors. In exponential networks the probability that a node has a high

number of connections is very low.

Barabasi-Albert model [107]

This model describes scale-free networks and it is one of the most basic models since

it describes most of the biological networks [37,108]. The concept behind this model is

to reveal information about the dynamics of the network, especially from an evolution-

ary perspective. The networks are built to mimic gene duplication events, such that

they expand continuously by addition of new nodes and the new nodes attach prefer-

entially to sites that are already well connected [109]. Initially we start with small num-

ber of nodes m0. At each step, a new node m <m0 is added and gets linked to the
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existing network. The probability that a new node is now connected to node i is

P(ki) =
ki∑
j kj

where ki is the connectivity of node i. The rate of connecting new nodes

to node i is
∂ki
∂t

= �k
ki∑
j kj

= m
ki
2mt

=
ki
2t
. The connections are time-dependent so

ki(t) = m
√

t

ti
where ti is the time point when node i enters the network. The probabil-

ity that a node has degree smaller than k is ti >
m2t
k2

. The probability density of the

network is P(k) =
∂p(ki(t) < k)

∂k
or P(k) =

2m2t + 1
m0 + tk3

∼ k−3, such that the model pro-

duces a power law distribution of g = 3.

Cluster Analysis and Visualization
Cluster analysis [110] aims at classifying a set of observations into two or more

mutually exclusive unknown groups based on combinations of variables. Thus, cluster

analysis is usually presented in the context of unsupervised classification [111]. It can

be applied to a wide range of biological study cases, such as microarray, sequence and

phylogenetic analysis [112]. The purpose of clustering is to group different objects

together by observing common properties of elements in a system. In biological net-

works, this can help identify similar biological entities, like proteins that are homolo-

gous in different organisms or that belong to the same complex and genes that are co-

expressed [113,114].

It is generally difficult to predict behavior and properties based on observations of

behaviors or properties of other elements in the same system, therefore various

approaches for cluster analysis emerge. Clustering algorithms may be Exclusive, Over-

lapping, Hierarchical or Probabilistic. In the first case, data are grouped in an exclusive

way, so that a certain element can be assigned to only one group (exclusively). On the

other hand, the overlapping clustering uses fuzzy sets to cluster data, so that each

point may belong to two or more clusters with different degrees of membership. A

hierarchical clustering algorithm organizes data in hierarchies and is based on the

union between the two nearest clusters; it is commonly used for microarray and

sequence analysis [115]. A more analytical categorization of clustering algorithms can

be found at [110,116].

An important component of a clustering algorithm is the distance measure between

data points. If all the components of the data instance vectors have the same physical

units, it is then possible that the simple Euclidean distance metric is sufficient to suc-

cessfully group similar data instances. One example is to cluster cities on a map, since

in this case Euclidean distance represents real natural distances. However, for higher

dimensional data the Euclidean distance can sometimes be misleading. In that case, a

popular measure is the Minkowski metric and is calculated as

d(i, j) =
(

D∑
k=1

|xi,k − xj,k|p
)1
p where D is the dimensionality of the data. The Euclidean

can be calculated if we set p = 2, while Manhattan metric has p = 1. There are no

general theoretical guidelines for selecting a measure for a given application.
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Hierarchical clustering is a method of cluster analysis which seeks to build a hierar-

chy of clusters. There are two different strategies to organize data. These are the

agglomerative and the divisive: Agglomerative: It is a “bottom-up” approach. Each

observation starts in its own cluster, and pairs of clusters are merged as one moves up

the hierarchy. Divisive: This is a “top-down” approach. In this case, all of the observa-

tions start by forming one cluster, and then split recursively as one moves down the

hierarchy. Some of the most common tree based clustering algorithms that organize

data in hierarchies are the Unweighted Pair Group Method with Arithmetic Mean

(UPGMA) [117,118], Neighbor Joining [112,119] and Hierarchical Clustering [120,121],

all of which represent their clusters as tree structures. The results of hierarchical clus-

tering are usually presented in a dendrogram. Figure 10 shows an example of how

genes can be clustered.

Let nr be the number of clusters and xri is the ith object in cluster r and cluster r is

formed from clusters p and q. In the following, we describe the different methods used

to calculate distances between clusters in hierarchical clustering.

Single linkage calculates the smallest distance between objects in the two clusters to

merge them: d(r, s) = min(dist(xri, xsj)), i Î (i,..., nr), j Î (1,....ns).

Complete linkage calculates the largest distance between objects in the two clusters

to merge them: d(r, s) = max(dist(xri, xsj)), i Î (i,..., nr), j Î (1,....ns).

Average linkage uses the average distance between all pairs of objects in any two

clusters: d(r, s) =
1

nrns

nr∑
i=1

ns∑
j=1

dist(xri, xsj). This algorithm is also known as Unweighted

Pair Group Method with Arithmetic Mean (UPGMA) [117,118].

Centroid linkage finds the Euclidean distance between the centroids of the two clus-

ters: d(r, s) = ||xr − xs||2,xr =
1
nr

nr∑
i=1

xri · || ||2 is the Euclidean distance.

Median linkage uses the Euclidean distance between weighted centroids of the two

clusters, d(r, s) = ||xr − xs||2, xr , xs are weighted centroids for the clusters r and s. If

cluster r was created by combining clusters p and q, xr is defined recursively as

xr =
1
2
(xp + xq)xr.

Single or complete linkages are the fastest of the linkage methods. However, single

linkage tends to produce stringy clusters, which is not always preferable. The centroid

or average linkage produce better results regarding the accordance between the pro-

duced clusters and the structure present in the data. These methods require much

more computations. Average linkage and complete linkage may be the preferred meth-

ods for microarray data analysis [115].

Ward’s linkage finds the incremental sum of squares; that is, the increase in the

total within-cluster sum of squares as a result of joining two clusters. The within-clus-

ter sum of squares is defined as the sum of the squares of the distances between all

objects in the cluster and the centroid of the cluster. The sum of squares measure is

equivalent to the following distance measure d(r, s) =

√
2nrns

(nr + ns)
||xr − xs||2,

where || ||2 is the Euclidean distance and xr , xs are the centroids of clusters r and s

and nr and ns are the number of elements in clusters r and s.
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Weighted average linkage uses a recursive definition for the distance between two

clusters. If cluster r was created by combining clusters p and q, the distance between r

and another cluster s is defined as the average of the distance between p and s and the

distance between q and s: d(r, s) =
(d(p, s) + d(q, s))

2
.

Neighbor Joining [112,119] was initially proposed for finding pairs of operational

taxonomic units (OTUs) that minimize the total branch length at each stage of cluster-

ing of OTUs starting with a star-like tree. The branch lengths as well as the topology

of a parsimonious tree can quickly be obtained by using this method [112].

Known platforms that already share the tree-based algorithms described above are

the Hierarchical Clustering Explorer (HCE) [122,123], MEGA [124-127] or TM4 [128].

Figure 10 Average linkage hierarchical clustering example. The expression of 44 genes was measured
in 4 experiments (E1, E2, E3, E4). The genes were classified according to their coexpression levels. The
Pearson Correlation Coefficient was used (r-value) to analyze gene set signal values. Genes were clustered
according to the r-value correlation matrix using the Average Linkage Hierarchical clustering method. The
tree on the left clusters the expressions of the genes whereas the tree on top of the figure clusters the
profiles of the experiments. Thus experiments E2 and E3 are similar and closely related.
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A recent review article shows which file formats, visualization techniques and algo-

rithms can be used for tree analysis [129].

Another category of clustering algorithms tries to cluster data in separate groups by

identifying common properties that the nodes of a network share. Different strategies

exist, like for example trying to find dense areas in a graph or areas where message

exchange between nodes is easier or to identify strongly connected components or cli-

que-like areas etc. Many of such algorithms have been used in different case studies

like for example to identify protein families [130], to detect protein complexes in PPI

networks [131,132], or for finding patterns and motifs in a sequence [133]. Even

though many more exist, some of the most famous algorithms are given below.

Markov Clustering [134] (MCL) algorithm is a fast and scalable unsupervised clus-

tering algorithm based on simulation of stochastic flow in graphs. The MCL algorithm

can detect cluster structures in graphs by a mathematical bootstrapping procedure

which takes into account the connectivity properties of the underlying network. The

process deterministically computes the probabilities of random walks through a graph

by alternating two operations: expansion, and inflation of the underlying matrix. The

principle behind it is that random walks on a graph are likely to get locked within

dense subgraphs rather than move between dense subgraphs via sparse connections. In

other words, higher length paths are more often encountered between nodes in the

same cluster than between nodes within different clusters, such that the probabilities

between nodes in the same complex will typically be higher in expanded matrices.

Clusters are identified by alternating expansion and inflation until the graph is parti-

tioned into subsets so that there are no longer paths between these subsets [135,136].

k-Means [137] is a method of cluster analysis which aims to partition n observations

into k clusters in which each observation belongs to the cluster with the nearest mean.

K-means and its modifications are widely used for gene expression data analysis [138].

It is a supervised method and users need to predefine the number of clusters. Its com-

plexity is O(nlk) where k is the number of clusters, n the size of the dataset and l the

loops of the algorithm. The k-means algorithm is one of the simplest and fastest clus-

tering algorithms. However, it has a major drawback: the results of the k-means algo-

rithm may change in successive runs because the initial clusters are chosen randomly.

Affinity Propagation [139] takes as input measures of similarity between pairs of

data points and simultaneously considers all data points as potential candidates. Real-

valued messages are exchanged between data points until a high-quality set of exem-

plars and corresponding clusters gradually emerges.

Restricted Neighborhood Search Cluster Algorithm [140]: It tries to find low cost

clustering by composing first an initial random clustering. Later it iteratively moves

one node from one cluster to another in a random way trying to improve the cluster-

ing cost.

Spectral clustering [141]: This algorithm tries to find clusters in the graph such that

the nodes within a cluster are connected with highly-similar edges and the connections

between such areas are weak, constituted by edges with low similarity. The aim is to

identify these tightly coupled clusters, and cut the inter-cluster edges. Figure 11 shows

an example of protein complex prediction from PPI yeast dataset [12].

Despite the great variety of clustering techniques, many articles directly compare the

various clustering methodologies like [135] and [142]. Very often we encounter articles
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that compare similar algorithms using different datasets and come to very diverse con-

clusions and results i.e [142,143].

Concerning the visualization of networks, the availability of clustering techniques and

their complex configuration/combination, today to a large extent, there is a lack of

visualization platforms or tools that are able to integrate a variety of more advanced

algorithms and the development implementation of such implementations emerges

[144]. Platforms that share clustering algorithms are the Network Analysis Tool

(NEAT) [145] and jClust [146] but they are still poor in the variety of methods they

offer. Software like ArrayCluster [147] and MCODE [60] is often used in analysis of

gene expression profiles and coexpression detection. Many visualization tools [144]

such as Medusa [148], Cytoscape [149], Pajek [98] and many others [144] visualize net-

works in both 2D and 3D, but very few of them like Arena3D [150] try to bridge the

gap between clustering analysis and visualization.

Discussion
Protein-protein interaction (PPI) networks [1] are very diverse and it is difficult to

come to general conclusions about their properties, mainly because data are generated

from different sources both computationally and experimentally as described in a pre-

vious section. In most of the cases, PPI networks follow the laws of scale-free networks

[93]. In such networks there are always proteins with higher degree of connectivity that

appear to be of higher biological significance. Such proteins are the most important for

the survival of the cell [93]. Large-scale maps of protein interaction networks have

Figure 11 Predicting protein complexes from PPI networks. Protein complexes predicted after
applying Spectral clustering algorithm and filtering the results in a yeast protein-protein dataset [12] using
the jClust application [146]. The budding yeast Arp2/3 complex that is highlighted was successfully
predicted.
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been constructed recently using high-throughput approaches to identify protein inter-

actions [151-155]. It has been shown that these networks are highly dynamic, both

during common cellular processes and on the evolutionary scale [109]. Further details

on PPI network construction and analysis are given in [156].

Regulatory networks (GRNs) are usually sparsely connected. More specifically, the

average number of upstream-regulators per gene is less than two [64]. Theoretical

results show that the selection for robust gene networks will form minimal complexes

even more sparsely connected [64], thus a fundamental design constraint could shape

the evolution of gene network complexity. Network maps have been constructed for

the transcriptional regulatory networks of E. coli and S. cerevisiae and are maintained

in databases [26,157,158]. They are very sensitive and flexible to evolution [159] since

their dynamics changes continuously over time and since transcription factors evolve

faster than their target genes [160]. The number of regulators Nreg grows faster than

the number of genes Ntot they regulate and it has been shown that
Nreg

Ntot
≈ N for pro-

karyotes and
Nreg

Ntot
≈ N0.3 for eukaryotes, where N is the network size [161,162].

Mostly they follow the power-law distributions and thus belong to the scale-free net-

work category, even though some of them, like the transcriptional regulatory networks

of E. coli and S. cerevisiae have been shown to possess mixed scale-free and exponen-

tial properties [75].

Signal transduction networks are characterized by several patterns and motifs like

self-sustaining feedback loops. These patterns appear at every time point during the

signal transduction in the network and they reveal information about the topology of

the network, therefore are important for biological functionality [163]. The nodes with

the highest centralities in such networks correspond to domains involved in signal

transduction and cell-cell contacts [164]. Signal transduction networks are sparse and

they follow the scale-free properties. In E. coli and S. sereviase, the degree distribution

is P(k) = k-g, g ≈ 2 and most of the molecules are involved into few interactions and

only few of them have higher connectivity [8,165].

Metabolic and biochemical networks are scale-free networks indicating a small-

world structure considering the topology of the network based on its metabolites

[166,167], where all of the nodes in such networks are connected through a short path

to any other. One example is presented in [167] for E. coli. The probability that a sub-

strate participates as input in k metabolic reactions follows the power-law distribution

P(k) = k-gin, gin ≈ 2.2 whereas the probability of a substrate to be produced by k meta-

bolic reactions equals similarly to P(k) = k-gout, gout ≈ 2.2. Metabolic networks are

extremely heterogeneous and vary from organism to organism. The scale-free structure

remains robust even after removal of some central nodes [166] and despite the fact

that the architecture of the metabolic networks rests on highly connected substrates

[167]. A characteristic feature of these networks is the apparent conservation of net-

work diameter even in distantly related organisms [167]. It has been shown that meta-

bolic networks can form hierarchical structures [168,169] where specific patterns and

motifs are overrepresented. Methods to detect such motifs have been applied on net-

work pathways analysis [44,45,47,48], one example being flux mode analysis [48].
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Conclusions
The mathematical discipline which underpins the study of complex networks in biolo-

gical and other applications is graph theory. It has been successfully applied to the

study of biological network topology, from the global perspective of their scale-free,

small world, hierarchical nature, to the zoomed-in view of interaction motifs, clusters

and modules and the specific interactions between different biomolecules. The struc-

ture of biological networks proves to be far away from randomness but rather linked

to function. Furthermore, the power of network topology analysis is limited, as it

provides a static perspective of what is otherwise a highly dynamic system, such that

additional tools should be combined with this approach in order to obtain a deeper

understanding of cellular processes.

The complexity of biological networks increases as data are accumulated. The inher-

ent variability of biological data, data inaccuracy and noise, the overload of information

and the need to study the dynamics and network topology over time, are currently the

bottlenecks in systems biology. Improved techniques for integration of data arising

from different sources, as well as for visualization, will be crucial for understanding the

functionality of complex networks. Moreover, new mathematical developments in the

field and discovery of new areas of applications should be pursued in the near future.
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