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Abstract

Background: The present knowledge of protein structures at atomic level derives
from some 60,000 molecules. Yet the exponential ever growing set of hypothetical
protein sequences comprises some 10 million chains and this makes the problem of
protein structure prediction one of the challenging goals of bioinformatics. In this
context, the protein representation with contact maps is an intermediate step of fold
recognition and constitutes the input of contact map predictors. However contact
map representations require fast and reliable methods to reconstruct the specific
folding of the protein backbone.

Methods: In this paper, by adopting a GRID technology, our algorithm for 3D
reconstruction FT-COMAR is benchmarked on a huge set of non redundant proteins
(1716) taking random noise into consideration and this makes our computation the
largest ever performed for the task at hand.

Results: We can observe the effects of introducing random noise on 3D
reconstruction and derive some considerations useful for future implementations.
The dimension of the protein set allows also statistical considerations after grouping
per SCOP structural classes.

Conclusions: All together our data indicate that the quality of 3D reconstruction is
unaffected by deleting up to an average 75% of the real contacts while only few
percentage of randomly generated contacts in place of non-contacts are sufficient to
hamper 3D reconstruction.

Background
A major problem of the genomic era is how to link the protein sequence to the protein

structural and functional space. When no template with high sequence homology to

the target is found in the Protein Data Base (PDB), then building by homology cannot

be safely applied. In these cases the protein structure can be predicted with ab initio

methods whose scoring capability is poor when no conserved structural domain is

recognized in the target. Structural features, including structural conserved domains,

disulfide bonds, protein secondary structure, residue solvent accessibility and how resi-

dues contribute to local stability (contact residues), can to some extent help in con-

straining the protein 3D structure. Residues are defined to be in contact in the protein

structure when they interact within a fixed distance (threshold) that is routinely set at

a value ≥ 7 Å. Residue contact prediction was exploited with different approaches,

including statistical and probabilistic methods [1]. In a contact map representation of
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the protein 3D structure, all the short and long range interactions promoting protein

stability emerge to different extent depending on the threshold value adopted to com-

pute the 2D projection. However, this representation poses first of all the problem of

structure reconstruction. Recently it has been shown that the problem of computing a

set of 3D coordinates consistent with some given contact map is equivalent to the

unit-disk-graph realization, which is NP-hard [2]. Other well studied similar problems

are structure determination from NMR data [3,4] and protein conformational freedom

[5]. However the different solutions described are not suited to protein 3D reconstruc-

tion given the different nature of distance constraints induced by the protein contact

map. Several heuristic algorithms have been developed to address specifically the pro-

blem [[6-10], and [11]]. Routinely, most of the methods were also tested on randomly

blurred contact maps derived from small sets of proteins (in the range of 20-30 chains)

and no general conclusion was derived.

In order to address the problem of structure reconstruction we developed COMAR

[12], and FT-COMAR 1.0 [13], both performing quite efficiently. With FT-COMAR we

could analyze the reconstruction performance on a set of 100 protein contact maps con-

taining random errors [13]. Recently a method focused on the search of the essential

contacts in contact maps for protein 3D reconstruction. The method is however tested

only on 12 proteins and this hampers again large scale statistical considerations [14].

In this paper we analyze the performances of FT-COMAR 2.0, a modified version of

FT-COMAR 1.0 where reconstructed structures satisfy known protein constraints

(available on the web [15]). Our tests are performed with a GRID technology on a

much larger data set (1716 proteins) than in previous similar analysis from this group

(100 proteins, [13]), and after introducing random blurring of the computed maps. By

this, we derive some conclusions that may help future implementations of methods for

3D reconstruction. We investigate the reconstruction quality as dependent on the pro-

tein length, and on the four major SCOP classes. We also investigate the effect of

three types of random errors, general and/or restricted to contacts and non-contacts.

We find that the reconstruction quality decreases at increasing protein length and this

is rather independent of the protein structural class. Furthermore we find that rando-

mizing errors on the map is conducive to the same reconstruction performance that is

obtained when errors are randomly restricted to non-contacts. On the contrary ran-

dom errors on contacts are highly tolerated and up to 50% of contacts may be wrong

without a great loss of 3D reconstruction quality (RMSD≤5 Å). We then address the

question of how many correct contacts we need in order to reconstruct the protein

and we find that only 25% of correct entries are sufficient to obtain a 3D structure

with RMSD≤5 Å from the native one. This effect is independent of the protein length

and indicates that FT-COMAR can correctly reconstruct the 3D structure even from a

small fraction of correct contacts. Prompted by this finding we develop a filter proce-

dure that when applied makes the protein reconstruction independent of the protein

length as long as 10% of random errors is included in the map.

Methods
Data set

The protein dataset was selected from SCOP [16], release 1.67. We removed sequence

redundancy by using BLAST [17] and retrieved from PDB only those complete
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structures whose resolution is <2.5 Å. Our final dataset consists of 1716 protein chains

with sequence similarity <25%.

The residue length distribution of the proteins in data set is shown in Figure 1.

Noticeably most of the proteins have length ≤700 residues. The distribution of our

dataset according to the SCOP classification is:

• 1362 mono domain proteins: 251 all Alpha, 286 all Beta, 376 Alpha/Beta, 332

Alpha+Beta; and 117 in other classes;

• 354 multi-domain proteins: 17 all Alpha, 42 all Beta, 46 Alpha/Beta, 39 Alpha

+Beta; and 210 in other classes.

Protein representation and contact maps

One of the most widely used representation of contact residues defines two residues i

and j to be in contact when the Euclidean distance between their respective Ca atoms

is below some given threshold t. Typical threshold values considered in literature vary

between 7 and 12 Å. Threshold values equal to 7 and 8 Å minimize the distance

between residue physical contacts and Ca contacts [18]. The residue-residue contact

map of a protein is a two-dimensional approximation of the protein structure. For-

mally, a contact map of threshold t is the binary symmetric matrix M such that Mij =

1 if and only if the Euclidean distance between the Ca atoms of residues i and j is less

than or equal to t (Figure 2a). As we showed in [12], the higher the threshold values

the better is the 3D reconstruction; low threshold values often lead to very different

structures (up to 40 Å RSMD) starting from the same contact map. Similarly to [13],

in this work we adopt t = 12 Å for experiments where the effect of random errors is

analyzed. To measure the similarity between two protein structures described by some
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Figure 1 Distribution of protein length. The number of proteins (No. proteins) with a given length in
our dataset is shown as a function of protein length (Protein length). The average length over all proteins
is (239 ± 154) residues, as indicated.
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set of coordinates C, C’ Î R3×n, we compute the Root Mean Square Deviation (RMSD),

defined as:

D
n

C i C ik k

i

n

= −
=
∑1 2

1

( ’[ ] [ ]) (1)

where Ck Î R3×n is obtained by rotating, translating, or mirroring the coordinates set

C. Mirroring is needed since the native structure and its topological mirror share the

same distance map and thus the same contact map. In this work we consider struc-

tures to be similar only when their RMSD value is ≤5 Å.

 

 
Figure 2 Contact maps and random errors. The contact map of the Asn102 mutant of trypsin (PDB
code: 1trm chain A) is blurred with different types of random errors. Gray areas contain contacts
(computed setting the threshold at 12 Å), white areas contain non-contact and black dots are errors. (a)
The native map with 24753 residue pairs, of which 3595 are contacts, 21158 are non-contacts, and without
random errors. (b) Err 5%. This map includes a number of random errors (1237) equal to 5% of total
number of residue pairs. (c) Err-1 5%. In this map the total number of contacts is decreased by randomly
substituting with non contacts (for a total of 179 non contacts corresponding to 5% of the original
number of contacts). (d) Err-0 5%. In this map the total number of non contacts is decreased by randomly
substituting with contacts (for a total of 1057 contacts corresponding to 5% of the original number of non
contacts).
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Description of FT_COMAR 2.0

In this section we describe FT-COMAR 2.0, a fault tolerant version of COMAR gener-

ating 3D structures satisfying the backbone constrains.

FT-COMAR(CM Î {-1,0,1}n×n, t Î N)

//Pre-processing phase: error filtering

1: CM’ ¬ FILTER(CM)

//First phase: initial solution generation

2: C ¬ FT-RANDOM-PREDICT(CM’, t)

//Second phase: refinement

3: C ¬ FT-CORRECT(CM’, C, t)

4: set ε to a strictly positive value

5: while C is not a Ca trace consistent with CM’ and ε > 0 do

6: C ¬ FT-PERTURBATE(CM’, C, t, ε)

7: C ¬ FT-CORRECT(CM’, C, t)

8: decrement slightly ε

9: if C is not a Ca trace then C ¬ Ca-TRACE(CM’, C, t)

10: return C

FT-COMAR consists of three phases. In the pre-processing phase, the input contact

map is scanned with a filtering procedure (FILTER) in order to mark the unsafe

entries. The marked entries will then be ignored in the next computations (FT-RAN-

DOM-PREDICT, FT-PERTURBATE and FT-CORRECT). In the first phase

(Phase 1), the algorithm generates a random initial set of 3D coordinates C Î R3 ×n

(RANDOM-PREDICT) that is the starting point for the refinement procedure. In

Phase 2 the algorithm iteratively applies two local correction/perturbation techniques

to the current set of coordinates, FT-CORRECT and FT-PERTURBATE. This proce-

dure refines the initial set of coordinates and eventually leads to a new set of coordi-

nates that are completely or almost completely consistent with the given contact map.

The refinement continues until the set of coordinates satisfies the protein constraints

provided by the input contact map or until a control parameter ε becomes 0. The con-

trol parameter ε has an initial positive value and it is iteratively decremented after

some refinement steps.

As a final check, the Ca-TRACE function ensures that the reconstructed structure

satisfies the backbone constrains, namely the distance between consecutive coordinates,

set between 3.5 and 4 Å, and the minimum distance between any pair of coordinates,

set to 3.5 Å. The FILTER function identifies unsafe areas of the contact map. The

functions FT-RANDOM-PREDICT, FT-CORRECT and FT-PERTURBATE are simi-

lar to the non fault tolerant version, with the only difference of neglecting entries of

the contact map labelled as unsafe. FT-RANDOM-PREDICT computes the initial

solution. When fragments of the protein demonstrate a high degree of independence

with respect to mutual interactions, FT-RANDOM-PREDICT splits the initial contact

map into submatrices,. Then a set of coordinates is separately generated for each sub

matrix with an embedding algorithm [3]. The sets of coordinates are then merged to

give the initial solution. FT-CORRECT moves residues in the reconstructed 3D struc-

ture in order to decrease the difference between entries of the computed and input

contact maps while preserving identical values. Concomitantly with FT-CORRECT,
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FT-PERTURBATE perturbs the residue position for optimising the overlap of contact

maps. Details on these functions can be found in [12].

In the following we describe FILTER and Ca-TRACE as a new development. FIL-

TER searches input contact maps for ‘unsafe’ areas, namely false entries due to noise.

This is implemented by assuming that two residues i,j are in contact if and only if they

share a high number of neighbors, i.e. there is a high number of residues which are in

contact with both i and j. In our dataset, at the selected contact threshold (12 Å, sec-

tion 2.2), only 6% of residues which are in contact share less than 10 neighbors and

just the 0.7% of residues which are not in contact share >18 neighbors. Thus our filter-

ing procedure marks contact C [i, j] as unsafe (setting C [i, j] to -1) if:

• C [i, j] = 1 (i and j are in contact) and i, j share <10 neighbours, i.e. residue i is in

contact with <10 residues which are in contact also with residue j;

• C [i, j] = 0 (i and j are not in contact) and i, j share >18 neighbours, i.e. residue i

is in contact with >18 residues which are in contacts also with residue j.

FILTER output is the contact map with unsafe areas set to -1. These entries are then

neglected by FT-COMAR.

The Ca-TRACE function changes a given set of coordinates to satisfy the following

constraints as derived from the Ca protein representation:

• the distance between consecutive coordinates i,i+1 is between 3.5 and 4 Å;

• the distance between any pair of coordinates i,j is ≥3.5 Å.

The coordinate refinement is obtained with a correction/perturbation cycle [similarly

to the refinement phase of FT-COMAR (section 2.3)].

Ca-TRACE (CM Î {-1,0,1}n×n, C Î R3×n, t Î N)

1: set ε to a strictly positive value

2: while C is not a Ca trace consistent with CM and ε > 0 do

3: C ¬ FT-PERTURBATE-TRACE(CM, C, t, ε)

4: C ¬ FT-CORRECT-TRACE(CM, C, t)

5: decrement slightly ε

6: if C is not a Ca trace then Ca-TRACE-FIX(C, t)
7: return C

Here FT-PERTURBATE-TRACE and FT-CORRECT-TRACE are similar to FT-

CORRECT and FT-PERTURBATE with the only addition of the Ca-TRACE con-

straints. FT-CORRECT-TRACE moves residues and FT-PERTURBATE-TRACE

refines their mobility. When after refinement (lines 1-5 of Ca-TRACE) the set of coor-

dinates C is not a Ca trace, the function Ca-TRACE-FIX imposes the Ca-TRACE
constraints neglecting the original contact map. This is obtained by running Ca-
TRACE with an “unsafe” contact map (all entries set to -1).

Introducing random errors in real contact maps

To evaluate fault tolerance of FT-COMAR to white noise (i.e. random errors) we intro-

duce three types of random errors:
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• Err. A random error is generated by flipping a random entry of the native contact

map (Figure 2b). To introduce x% errors we generate x errors for each 100 couples

of residues and the total number of errors is:

x n n

100
1

2
( )−

(2)

• Err-1 (errors on contacts). The entry of the contact map is flipped only if it is a

contact (Figure 2c). Here x% errors indicate that the total number of errors is:

x
contacts

100
.#⎛

⎝⎜
⎞
⎠⎟

(3)

• Err-0 (errors on non-contacts). Errors are generated as before by changing entries

in the contact map only for non contacts (Figure 2d). Here x% errors indicate that

the total number of errors is:

x n n
contacts

100
1

2
( )

#
− −⎛

⎝⎜
⎞
⎠⎟

(4)

where n is the protein length.

We generate 10 (distinct) perturbed maps by introducing x% random errors on the

native map and run our algorithm, partially randomized, 10 times on each map. By

this in order to test the reconstruction tolerance in presence of x% random errors for

every native contact map, we generate 10 perturbed contact maps and compute 10

reconstructions for each map, for a total of 100 runs.

Computational environment

Testing FT-COMAR is computationally expensive since it requires several applications

that must be run to introduce errors in contact maps, compute the reconstruction and

evaluate the performances. Each execution is repeated 100 times, as described in sec-

tion 2.3, for a total of 12,154,234 jobs. This is a typical example of parameter sweep

application (PSA), i.e. it consists of many loosely-coupled tasks that can be executed in

parallel [19,20]. The single execution runs in a time ranging from micro seconds to

several minutes depending on the protein length and on the percentage of errors intro-

duced. Here the whole experiment was run by using the LIBI Grid PSE [21]. The aver-

age number of jobs running concurrently over the EGEE and SPACI Grid

infrastructures was about 120 with a total of 4,500 different worker nodes. By this the

execution time was greatly reduced from 34.16 years on a typical pc to about three

months.

Results and Discussion
Protein structure reconstruction from contact maps with white noise

The performance of FT-COMAR is analyzed by introducing white noise in the contact

maps. The results are obtained on a set of non-homologous proteins which is orders

of magnitude larger than any set adopted so far [6, 7, 8, 9, 10, and 11]. For each pro-

tein and each percentage of random errors 10 different noisy contact maps are gener-

ated. Then, for each noisy contact map we performed 10 different reconstructions.

Results in Figure 3 are obtained by averaging RMSD over about 1,000,000
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reconstructions. The results indicate that the reconstruction quality decreases at

increasing percentage of random errors and at increasing protein length (Figure 3).

Considering the length distribution of the protein set we can conclude that FT-

COMAR safely reconstruct proteins of any length starting from contact maps without

errors. When white noise is incrementally added, proteins with length ≤ 350 residues

are safely reconstructed (RSMD≤5 Å) provided that blurring affects 1% of the contact

map. At increasing percentage of added random errors, native protein reconstruction

fails: the longer the proteins the lower is the percentage of tolerated random errors

(Figure 3). This is due to the fact that at a fixed percentage the number of errors

increases with protein size (for instance 10% of random flips introduced on a 100 resi-

due-long protein correspond to 450 errors added to its contact map, while 1% random

errors on a protein of 400 residues amount to 798 contact map errors).

Reconstruction is also evaluated as function of protein folds and for sake of clarity

we separately consider monodomain and multidomain proteins that are listed accord-

ing the four major SCOP structural classes, respectively. In all cases contact maps were

blurred with 5% random entries. The reconstruction quality is decreasing more as a

function of the protein length than considering the SCOP classes, and this is so both

for monodomain and multidomain proteins (Figure 4 and 5). On average, FT-COMAR

performances are worse on all-alpha proteins. We find that proteins for which the con-

tact map is not informative, i.e. the native contact map corresponds to highly different

3D structures, are abundant only in the all-alpha protein set [12]. This behaviour is

possibly due to the on average lower content of long range contacts in all-alpha pro-

tein contact maps than in the other proteins.
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Figure 3 Reconstruction of proteins from contact maps with random errors. The average RMSD (Avg
RMSD) value of the native structure to the corresponding ones reconstructed from blurred contact maps is
shown as a function of protein length (Protein length), and at increasing percentage of added random
errors (Err %, from 0 up to 15%). The number of errors relative to the same percentage increases with
protein size: e.g. 10% of random errors for a protein with length 100 (residues) corresponds to 450 errors;
1% of random errors for a protein with length 400 corresponds to 798 errors. 90,000 contact maps are
analyzed.
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Figure 4 Reconstruction of SCOP monodomain proteins from contact maps with random errors.
The average RMSD (Avg RMSD) value between the native structure and the corresponding ones
reconstructed from contact maps blurred with 5% random errors is plotted as a function of the protein
length (Protein length). Results are plotted by distinguishing the different SCOP structural classes, as
indicated. Each dot represents the average quality of the reconstructions of a given protein. Only mono-
domain proteins of the four major SCOP classes are considered (see section 2.1). For each SCOP structural
class, a linear least square fitting curve of the data is computed.
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Figure 5 Reconstruction of SCOP multidomain proteins from contact maps with random errors. The
average RMSD (Avg RMSD) value between the native structure and the corresponding ones reconstructed
from contact maps blurred with 5% random errors is plotted as a function of the protein length (Protein
length). Here only multi-domain proteins of the four major SCOP classes are considered (see section 2.1).
Legend is as in Figure 4.
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Protein structure reconstruction from contact maps as a function of the white noise type

FT-COMAR reconstructs contact maps containing different types of random errors (see

section 2.3). Our results (Figure 6) indicate that reconstruction within the limiting thresh-

old value (RSMD≤5 Å) is tolerating random noise on contacts more than on non-contacts.

The fault tolerance pattern of reconstruction as a function of added random noise to non-

contacts (Err-0) overlaps that of all entries (Err) (Figure 6). Reconstruction is much more

tolerant to white noise when it affects only contacts (Err-1). In Figure 6, the average

RMSD value of contact maps with 50% randomly flipped contacts (from contact to non

contact) is about 5 Å. This value is quite similar to that of contact maps where 1% of the

non-contacts randomly flips to contacts. The high standard deviation indicates that for

each percentage of Err-0 and Err in a contact map both high and low quality reconstruc-

tions are obtained and this depends mostly on the effect of protein length, as shown

above. On the contrary, for the Err-1 experiments the obtained standard deviation is

small, indicating that when contacts randomly flip to non contacts, reconstruction quality

is independent of protein length. Furthermore, if we consider that the number of contacts

in a typical contact map corresponds to about 5% of the entries we can estimate that the

number of errors in 1% of the non-contacts roughly correspond to 20% of the contact

entries. Even in this case, considering the sheer number of errors instead of the percen-

tage, when we restrict errors to contacts (Err-1) we obtain more accurate reconstructions.

These findings confirm that contact maps with errors on contacts (under predictions) can

be used to reconstruct the 3D protein structure more accurately than contact maps with

errors on non-contacts (over predictions).
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Figure 6 Structure reconstruction from contact maps with different types of random errors. The
average RMSD (Avg RMSD) value of the native to the corresponding protein structures reconstructed from
blurred contact maps is plotted as a function of the percentage of random errors in the contact maps (Err
%). Contact maps are blurred with three types of random errors: errors on both contacts and non contacts
(Err), errors on contacts (Err-1) and errors on non-contacts (Err-0). For clarity reasons, error bars representing
standard deviation are plotted only for Err-1 and for Err-0 (with only the upper bar). Each dot in the plot is
the average value over 1716 proteins.
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Reconstruction of contact maps as function of its partial deletion

In order to quantify the amount of information needed to obtain a high quality recon-

struction we randomly removed different amounts of contact map entries. Adopting

this procedure, we verify that on average FT-COMAR can tolerate up to 75% randomly

skipped entries (Figure 7) when reconstructing protein structure in the whole interval

of lengths considered. As a second step we analyze the effect of deleting entries on

blurred contact maps. As an example we show the results in Figure 8. Here 25% of the

entries on the noisy contact maps were removed and the results indicate that overall

reconstruction occurs with the performances already described in Figure 3. This find-

ing suggests that a large fraction of the map entries can be deleted in order to remove

noise without affecting the reconstruction performance.

Reconstruction of contact maps as function of pre-filtered white noise

The high tolerance of FT-COMAR to entry deletion is exploited by implementing a

method suited to selectively removing errors from a noisy contact map. Taking into

consideration that on average contacts tend to cluster [13], we designed a simple pre-

filtering procedure which processes entries by sorting them in relation to the number

of common contacting residues (see Methods). The following rules were implemented:

1) a contact between two residues i and j is deleted if there are too few common con-

tacting residues; 2) a non-contact is deleted if there are too many common contacting

residues. The results obtained when this pre-processing is applied are reported in

Figure 9. It appears that the reconstruction quality increases for medium size and long

proteins up to 10% random errors. Furthermore, the reconstruction quality becomes

nearly independent of the protein length up to 8-10% random errors.
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Figure 7 Structure reconstruction after random partial deletion of the contact map. The average
RMSD (Avg RMSD) value of the native and corresponding protein structures reconstructed from
incomplete maps is plotted as a function of the protein length (Protein length) and increasing percentage
of random deletion of the contact map (Skip %). The number of deleted entries relative to the same
percentage of deletion (Skip %) increases at increasing protein length.
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Computing time

FT-COMAR is suited for large-scale experiments because it is a reasonable fast algo-

rithm, as shown in Figure 10. Here, the time needed to reconstruct the noisy contact

maps with the filter procedure is shown as a function of the protein length. As

expected, the running times get worse at increasing protein size and increasing
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Figure 8 Structure reconstruction after partial deletion of contact maps and with random errors.
The average RMSD (Avg RMSD) between the native and corresponding protein structures reconstructed
from contact maps with 25% of random deletion and increasing amount of random errors (Err%, from 0 to
15%) is plotted as a function of protein length (Protein length).
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Figure 9 Structure reconstruction after pre-filtering of contact maps with random errors. The
average RMSD (Avg RMSD) of the native and corresponding protein structures is evaluated upon
reconstruction after pre-filtering of contact maps containing increasing amounts of random errors (Err %)
and is plotted as a function of protein length (Protein length). The filtering procedure checks for
neighbouring properties (see The description of FT_COMAR 2.0, Methods).
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percentages of errors in the map, ranging from a fraction of second for short proteins

to nearly half a hour for long proteins. It is worth noticing that contact maps that are

better reconstructed require less running time.

Conclusions
Reconstruction of contact maps is a necessary step of 3D protein reconstruction. The

step is particularly relevant when contact maps are predicted. Presently the prediction

quality of contact maps is still too low to allow protein reconstruction and this has

been discussed elsewhere [15]. In this work we focus on the effect of white noise on

contact map reconstruction with the specific aim of setting some constraints for future

developments. For this reason we undertook a large scale analysis of the effect of ran-

dom noise on the reconstruction of contact map with our FT-COMAR. Reconstruction

quality decreases at increasing protein length and it is rather independent of the pro-

tein structural class, with the exclusion of all-alpha proteins that on average are the

most difficult to reconstruct. This can be reconciled with the suggestion that in contact

maps long range contacts play a critical role in 3D reconstruction [1,18] and that all

alpha proteins are endowed with less long range contacts than the other SCOP classes.
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needed to reconstruct structures of proteins of a given length from contact maps containing increasing
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neighbouring properties is adopted during reconstruction, as in Figure 9.
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The large scale analysis that allows a more accurate statistics than before indicates

also that 25% of the randomly selected entries of the native contact map is enough to

correctly reconstruct the protein structure. Considering that introducing random errors

quickly degrades the quality of reconstruction and that this is not due to random flip-

ping of contacts into non-contacts we conclude that the correctness of contacts in the

map is more important than their relative abundance. Therefore our large-scale effort

validates the concept that wrong contacts make the reconstruction more problematic

than missed contacts. Essential contacts for protein reconstruction were described

before [14]. Also in our hand and for FT_COMAR, few key contacts are more condu-

cive to the real/close-to-the-real protein structure than many noisy contacts. Prompted

by this, we developed a simple filtering procedure. Its application that labels “unsafe”

certain blurred areas of the map, greatly improves the quality of reconstructed struc-

tures even for long protein chains. All together these findings are landmarks to be con-

sidered in developing future 3D reconstruction tools and also predictors of contact

maps.
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