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Abstract

Background: Identifying approximately repeated patterns, or motifs, in DNA
sequences from a set of co-regulated genes is an important step towards
deciphering the complex gene regulatory networks and understanding gene
functions.

Results: In this work, we develop a novel motif finding algorithm (PSO+) using a
population-based stochastic optimization technique called Particle Swarm
Optimization (PSO), which has been shown to be effective in optimizing difficult
multidimensional problems in continuous domains. We propose a modification of
the standard PSO algorithm to handle discrete values, such as characters in DNA
sequences. The algorithm provides several features. First, we use both consensus and
position-specific weight matrix representations in our algorithm, taking advantage of
the efficiency of the former and the accuracy of the latter. Furthermore, many real
motifs contain gaps, but the existing methods usually ignore them or assume a user
know their exact locations and lengths, which is usually impractical for real
applications. In comparison, our method models gaps explicitly, and provides an easy
solution to find gapped motifs without any detailed knowledge of gaps. Our method
allows the presence of input sequences containing zero or multiple binding sites.

Conclusion: Experimental results on synthetic challenge problems as well as real
biological sequences show that our method is both more efficient and more
accurate than several existing algorithms, especially when gaps are present in the
motifs.

Background
Computational prediction of transcription factor binding sites (TFBS) from co-expressed/

co-regulated genes is an important step towards deciphering complex gene regulatory net-

works and understanding gene functions. Given the promoter sequences of a set of co-

expressed/co-regulated genes, the goal is to find short DNA sequences (“motifs”) whose

occurrences (with allowed mismatches) in the sequences cannot be explained by a back-

ground model. An accurate identification of such motifs is computationally challenging, as

they are typically very short (8-15 bases) compared to the promoter sequences (hundreds

to thousands bases). Furthermore, there is often a great variability among the binding sites

of any given TF, and the biological nature of the variability is not yet well understood.

Finally, in many cases, the TFBS may appear only in a subset of the putatively co-regulated

genes.
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Despite the challenge, many computational methods have been developed and have

been proven useful in predicting real binding sites [1]. The existing algorithms can be

roughly classified into two broad categories according to the motif representations:

those based on position-specific weight matrices (PWMs), and those based on consen-

sus sequences. Examples of the former include well-known programs such as MEME

[2], AlignACE [3], GibbsSampler [4], and BioProspector [5]. The latter category

includes Weeder [6], YMF [7], MultiProfiler [8], and Projection [9]. In general, PWM

offers a more accurate description of motifs than consensus sequences, but the score

of PWM is more difficult to optimize. On the other hand, consensus-based algorithms

often rely on enumerating short subsequences, which may be impossible for longer

motifs. For an excellent survey of the existing methods and an assessment of their rela-

tive performance, see [1,8].

Recently several consensus-based motif finding algorithms have been developed using

evolutionary algorithms, because of their efficiency in searching over multidimensional

solution spaces. For example, GAME [10] and GALFP [11] are based on genetic algo-

rithms, and have been shown to outperform many PWM-based algorithms. In a previous

work, we proposed a motif finding algorithm based on the classical Particle Swarm Opti-

mization (PSO) strategy [12], where we used the set of positions on each sequence

together as a solution, and searched the solution space by PSO algorithm. To keep the

solution space continuous, we restructured the original sequences using a sequence map-

ping. Although the algorithm shows a good performance on small input size (for example

20 sequences and 1000 bases for each sequence), the algorithm becomes slow for larger

data sets, as the number of possible motif positions grows exponentially as the number of

sequences increases. Several other motif finding methods have also been developed based

on PSO, for example, Hybrid-PSO [13] and PSO-EM [14]. Hybrid-PSO uses a similar

basic idea as our previous work [12], and therefore has the same problem we mentioned

above. PSO-EM simply uses PSO to find candidate motifs, which are then used as seeds

by other expectation-maximization based motif finding algorithms, such as MEME [2].

In this paper, we develop a novel algorithm, called PSO+, for finding motifs. This new

method has the following contributions. First and most importantly, PSO+ differs from

other motif finding algorithms by explicitly modeling gaps, which provides an easy solu-

tion to find gapped motifs. Many real motifs contain positions of low information

(gaps), but the existing algorithms usually do not allow gaps, or require a user to specify

the exact location and length of gaps, which is often impractical for real applications.

Second, we use both consensus and PWM representations in our algorithm, taking

advantage of the efficiency of consensus and the accuracy of PWMs. Our method also

allows some input sequences to contain zero or multiple binding sites, which is common

in real biology data set, but ignored by some of the algorithms. Finally, we propose a

novel modification to the PSO update rule to accommodate discrete values, such as

characters in DNA sequences, which may also be useful in other applications.

Methods
Introduction to Particle Swarm Optimization

Particle Swarm Optimization (PSO), which has been shown to be effective in optimiz-

ing difficult multidimensional problems in many fields, is a population-based stochastic

optimization technique for problem solving that is inspired by the social behaviors of
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organisms such as bird flocking [15]. The system is initialized with a population of

random solutions and searches for the optimal solution by updating iteratively. Each

potential solution, called particle (or agent), is represented by a point in the multiple-

dimensional solution space. When searching for the optimum solution, particles fly

around the solution space with a certain velocity (speed and direction). During flight,

each particle adjusts its position and velocity according to its own experience and the

experience of its neighbors. Specifically, each particle keeps track of the best solution it

has encountered so far. This solution is called pbest, which stands for personal best.

The system also keeps track of the global optimum of all the particles, hence called

gbest. The fundamental concept of PSO consists of changing the velocity of each parti-

cle at each time step toward its pbest and gbest locations [15].

Method overview

Figure 1 shows the main structure of the algorithm, which contains three loops. The

most inside loop, loop3, evaluates the fitness value of each agent and updates informa-

tion for the whole system. Using its current solution, an agent first finds out a best

match from each sequence, calculates the fitness value (see below), and updates pbest,

gbest if necessary. Loop2 is the main part of the PSO+ algorithm. From a random

initial solution, each agent continuously searches for better solutions in the neighbor-

hood, taking information from its own experience (pbest), and the experience of all

agents (gbest). The actual movement of each agent is determined by the update rule

(see below). Finally, as a stochastic algorithm, the final solution of PSO+ depends on

its starting solutions; the purpose of loop1 is therefore to restart the system several

times, from independent random solutions, to ensure a high overall success rate.

Algorithm PSO Motif Plus
fitness(final consensus) = -infinity;
for i=1 to MAX RESET do {//loop 1}

Initialize a random solution (current) for each agent
fitness(pbest) = -infinity for all agents
fitness(gbest) = -infinity;
for j=1 to MAX ITERATION do {//loop 2}

for k=1 to NUM AGENTS do {//loop 3}
Scan each sequence to find a best match to currentk;
Use the matches to calculate fitness(currentk);
if fitness(currentk) > fitness(pbestk) then

pbestk = currentk;
end if
if fitness(currentk) > gbest then

gbest = currentk;
end if

end for
Check Shift;
Update current for each agent based on the update rule;
if j > MIN ITERATION and no update on gbest occurred in past N iterations then

End Loop 2;
end if

end for
if fitness(gbest) > fitness(final consensus) then

final consensus = gbest;
end if

end for
Post-processing;

Figure 1 Pseudo-code. Pseudo-code of our PSO+ algorithm.
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At the final step, we use post-processing to remove and/or add some binding sites,

therefore allowing zero or multiple binding sites on each sequence. A flow chart is

shown in Additional file 1 Figure S1.

Solution space and fitness function

To utilize the PSO+ algorithm, we need to represent a solution as a vector, and deter-

mine a fitness function appropriate for the problem. As discussed in Background, a

motif of length l can be represented either as a position-specific weight matrix (PWM),

which is a 4×l matrix of real numbers specifying the probability of each base at each

position, or a consensus describing the most dominate base at each position. The

matrix can be converted into a vector of length 4l, although some care needs to be

exercised to ensure proper normalization. The consensus representation is more effi-

cient in searching for new instances, and may lead to faster convergence, while the

PWM is more powerful in representing weaker motifs and is more accurate in evaluat-

ing the motif quality. We decided to use both representations in our algorithm, to take

advantage of both forms. The solution is initialized as a consensus. During the scan-

ning stage, we use the consensus representation. After the best matches to the consen-

sus are found from all the sequences, we compute a PWM based on the set of

matches, and compute the fitness of the solution based on the PWM.

Given a solution, i.e., a consensus, it is first used to scan the input sequences to find

a best match on each sequence. Let X = (x1x2 ... xl) be the consensus sequence and

Y = (y1y2 ... yl) be a putative binding site.

The matching score between X and Y is computed using the following equations:
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where pa is the background frequency for base a in the input sequences or in the

whole genome. As most genomes contain more AT’s than CG’s, this formula gives

unequal weight to different types of matches/mismatches. A match between two bases

with lower background frequency would have higher score than that between two

bases with higher background frequency. For uniform base frequency pA = pC = pG =

pT = 1/4, s (a, b) = 1 if a = b and 0 otherwise, corresponding to an intuitive match/

mismatch score.

Given a set of matches of a consensus, W = w1, w2, ..., wn where each wi is a subse-

quence with length l , we compute the fitness of the consensus using the information

content (IC) score:

IC f j f j pb

bj

l

b b= ∑∑
=1

2( ) log ( ( ) / ),

where fb(j) is the normalized frequency of nucleotide b on the column j of all

instances in W and pb is the background frequency of b.
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Initial solutions and number of agents

Similar to all stochastic algorithms, the performance of PSO+ partially depends on the

initial solutions. The convergence of the algorithm can be significantly improved if at

least one of the agents has an initial solution near the optimal solution. In this work

we consider two strategies. The first strategy is to simply generate a set of random

consensus. The second strategy is to randomly choose a subsequence from the input

sequence as an initial solution. Although the first strategy would allow the maximum

coverage, the probability that any randomly generated consensus is near the optimal

solution is very low, as there are 4l possible solutions for a motif of length l. For the

second strategy, we assume that the actual binding site is closer to the consensus than

to random sequences. Since there is usually about one binding site per sequence, it is

very likely that some agents may select a binding site as an initial solution. More pre-

cisely, assuming that the average sequence length is L and the motif length is l, the

probability that a randomly selected sequence is a binding site is 1/(L − l + 1). Also

because of the Check Shift step in the algorithm, a random solution that contains a

large suffix or prefix of the binding site can often lead to the recovery of the real motif

quickly. We usually allow a binding site to be shifted by two bases to its left and right,

respectively. Therefore, each true binding site can provide up to 5 initial solutions that

are similar to the real motif. For this reason, we suggest the minimum number of

agents to be (L − l + 1)/5 to ensure a high convergence probability. In our experiments

on both synthetic and real sequences, we have found that the second strategy usually

leads to much faster convergence and therefore is implemented as the default option.

Modified PSO+ update rule for discrete problems

After each iteration, each agent needs to update its current solution based on the old

current, its own pbest, and gbest of the system, each of which is a vector. The standard

PSO algorithm is designed for optimization problems in the continuous domain; there-

fore, a new solution can be easily obtained by a sum of the three solution vectors mul-

tiplied by some random weights. In our case, however, each solution is a vector of

ACGT’s and they cannot be manipulated by multiplication and summation. In order to

generate a new solution, we use the following rule, which is applied independently to

each position of the motif:

i c r x x xi i i i i* argmax ( ( )) ,*= ′ =weight and

where x′ is the new character being generated, x1, x2, x3 are the characters in current,

pbest, and gbest, respectively, x4 is a random character from ACGT, ci is a scaling factor

to determine the relative importance of the four terms, ri is a uniform random number,

and the function weight gives a higher weight to characters having lower background

frequency. This strategy effectively suppress characters with lower occurrence, when

compared to an alternative strategy that randomly picks a character proportional to its

number of occurrences in x1, x2, x3 and x4. For example, assuming ci = 1 and the weight

function returns a constant, if x1 = x2 = x3 = A and x4 = C, the alternative strategy

would select A with 3/4 probability and C with 1/4 probability; with our strategy, we

would select A with 7/8 probability and C with 1/8 probability. This reduces the prob-

ability of drifting away when a solution is near the optimal solution.
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All agents stop their movements if the number of iterations exceeds an upper limit,

or if there has been no update for a certain number of iterations and a minimum num-

ber of iterations has passed.

Check shift

Similar to many motif finding algorithms, the output of PSO+ algorithm may have a

shift issue: the start positions of the binding sites may be one or two positions away

from the real position, and it is difficult for the algorithm to escape from such local

optima. To circumvent this problem, we periodically check whether shifting the bind-

ing sites by a small number (up to 3 bases) can improve the quality of the solution.

This is done in the CHECK SHIFT step.

Gapped motifs

Many real motifs contain do-not-care positions in their consensus. Furthermore, these

do-not-care positions are often consecutive, forming a motif with two short conserved

regions with some fixed distance in between. We call these do-not-care positions gaps

and the motifs gapped motifs. Most motif finding algorithms do not consider gaps

explicitly. For consensus-based algorithms, ignoring gaps can lead to serious mistakes

when a consensus is forced to be selected for a gap position, which has no dominant

characters.

Gap representation

We solve this problem by asking the users to provide two parameters, motif length l,

and gap length k. Importantly, when we search for gapped motifs, we allow gaps to

appear as the suffix or prefix of a motif. This is very useful if the actual gap is shorter

than k, or if the non-gap region of the motif is shorter than l - k. Furthermore, if a

real motif contains no gaps, our algorithm will automatically put all gaps in the flank

regions. While our algorithm may increase the guesswork from the user by asking for

gap length as an additional parameter, it actually gives the user more flexibility in

determining the appropriate motif and gap lengths.

To find gapped motifs, we introduce a bit vector of length l. The bit vector contains

exactly k 0’s and l - k 1’s, where a 0 means the position falls in a gap. This vector is

initialized randomly and latter updated by masking out the columns in the PWM with

low IC values. Given this vector, when calculating the match score between a consen-

sus and a potential binding site, we only consider the positions with 1’s. When we

compute the fitness (IC score) of a motif given all the binding sites, we consider all

columns, because in this case we have all the information to derive a PWM.

Gap insert strategy

We consider two types of gaps. The first type of gaps can be anywhere in the motif

and do not need to be consecutive. To find this type of gapped motifs, we simply mark

the columns with the lowest IC value as gaps. The second type of gaps are consecutive

and are located in the center of a motif. For this type of gapped motifs, we require a

motif to contain at most two consecutive non-gapped regions, while gaps can appear

either as a prefix, a suffix, or in the center of the motif. An algorithm using the second

type of gaps is less efficient, but can often result in better results for real motifs. This

is the default option of our algorithm. Experimental results to support this default

option are shown in Additional file 1 Table S1 and Table S2.
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Flexible gap length

If the actual gap is shorter than the given number, or if the motif is shorter than

expected, gaps can appear as suffix and/or prefix of the motif. Furthermore, the algo-

rithm will automatically put all gaps in the flank regions if the real motif contains no

gaps.

By default, we use 8-base motif with 0 gap for short motifs, 12-base motif with 2 gaps

for medium-length motifs, and 16-base motif with 4 gaps for long motifs. This strategy

works well for the unknown length motif finding problems in this paper. The program

allows a user to change the parameters by themselves.

Post-processing

The basic algorithm described above assumes that there is one and only one binding

site on each sequence, which is certainly not always true. To address this problem, we

use a statistically-inspired strategy to refine the binding sites. We assume that at least

a good fraction of the sequences contain at least one binding site. We calculate the

match score for each putative binding site returned from the basic algorithm. Let Q1,

Q2, and Q3 represent the lower quartile, median, and upper quartile of the match

scores. The inter-quartile range (IQR) of the match scores is then computed by Q3 -

Q1. All binding sites with a match score below Q1 - IQR are dropped as false binding

sites. We also rescan the input sequences using the consensus for additional putative

binding sites. A binding site with match score higher than Q2 is considered a true

binding site. A PWM is constructed using the final set of binding sites.

Results and discussion
To evaluate the performance of our algorithm, we tested it on two types of sequences.

The first type of test data consists of synthetic DNA sequences, also known as the

(l, d)-motif challenging problem [16]. The second type of data contains real promoter

sequences. The algorithm is implemented in C. The test datasets are included in Addi-

tional file 2.

Evaluation using synthetic data sets

We tested our algorithm on the (l, d)-motif challenge problem. Each challenge pro-

blem includes n sequences of length L, each of which contains a variant of a pre-

defined consensus of length l. The variants were generated by choosing d positions

randomly from the consensus and changing them to random bases.

In our first experiment, we focused on the (15, 4)-motif challenge problem, which is

one of the most popular benchmarks for motif finding programs. We chose n = 20,

and varied L from 400 to 1000. Table 1 (left half) shows the running time of our cur-

rent algorithm (PSO+), another PSO-based algorithm we developed recently (PSO)

[12], two evolutionary algorithms (GAME [10] and GALFP [11]), and three well-

known combinatorial-search algorithms (Projection [9], Weeder [6], and MotifEnu-

merator [17]). We were not able to test Weeder by ourselves because the currently

available implementation of the algorithm can only handle motifs of even lengths up

to 12. Its running time was taken from the original publication and was based on an

89% success probability [6]. The results of the other algorithms were obtained by

downloading the programs from the original authors’ websites and running with
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parameters that can recover the embedded motifs with 100% accuracy. Running time

was based on the average of 10 runs on 5 sets of sequences.

As shown in Table 1 PSO+ is significantly more efficient than the other algorithms.

Our previous PSO algorithm was based on a very different problem formulation and is

considerably slower than PSO+. It is worth noting that the running time of the evolu-

tionary algorithms, GAME and GALFP, are much slower than PSO+ in general, but

their running time only increases slightly with sequence lengths. This might be because

these two algorithms spend a significant amount of time in initialization, independent

of sequence lengths.

Next, we compared these algorithms on their performance on challenge problems

with varying motif lengths and number of error, while sequence lengths were fixed at

600 bp. The current algorithm outperforms the existing algorithms again on these test

sequences (Table 1 right half). Similar to our previous PSO-based algorithm, the run-

ning time of PSO+ is relatively independent of motif lengths.

Third, we ran PSO+ 100 times on independent sequences, and plotted the running

time in Figure 2. As shown, the running time has a long-tail distribution, meaning in

some rare cases the algorithm may need an extremely long time to converge. Because

of this, the algorithm runs faster than the average running time in most cases. A better

strategy for detecting local optima may eliminate some of these rare cases and improve

the overall efficiency. The running time results for GALFP/GAME are shown in Addi-

tional file 1 Figure S2 and Figure S3.

Finally, we tested our algorithm using synthetic sequences containing gapped motifs,

and compared with the existing algorithms. We first generated sequences with

embedded gapped motifs, much like the synthetic challenge problems, except that each

embedded motif contains some gaps in the middle positions. Only two algorithms,

namely, PSO+ and GALFP, can correctly identify these synthesized gapped motifs. It is

not surprising to see that the other algorithms, which are not designed to find gapped

motifs, failed at these synthetic test cases. Remarkably, GALFP had basically the same

accuracy as PSO+. With further investigation, we found that using synthetic data sets

with purely random background noise is insufficient to demonstrate the limitation of

existing algorithms on finding gapped motifs. This is because gapped motifs can be

approximately represented by a PWM with uniformly distributed base frequencies in

the gapped positions, and that a motif generated by the synthetic model with a purely

random background is either strong enough so that it can be found by both PSO+ and

GALFP, or it is so weak that neither algorithm can find it. Therefore, we further gener-

ate two additional types of test cases with gapped motifs. Each test case of the first

Table 1 Running time (seconds) on (l, d)-motif challenge problems

Sequence length 400 500 600 800 1000 600 600 600 600

(l, d) (15,4) (15,4) (15,4) (15,4) (15,4) (11,2) (13,3) (17,5) (19,6)

Weeder 60 125 200 450 900 - - - -

Projection 9 23 42 162 418 4 13 94 174

MotifEnumerator - - - - - 5 119 - -

PSO 18 34 57 137 288 72 58 61 54

GALFP 100 123 161 212 286 127 137 162 172

GAME 27 30 32 36 41 23 28 34 42

PSO+ 1.1 3.1 3.4 7.3 19.4 4.9 10.6 2.3 3.8
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type consists of 20 sequences of length 600, and each sequence contains a gapped

motif of length 15 and gap length 5 and a non-gapped motif of length 15. For this

type of test cases, GALFP (as well as the other algorithms listed in Table 1) always

report the non-gapped motif; while the PSO+ algorithm report the gapped motif as

first motif, and the non-gapped motif as the second motif. For the second type of test

cases, we generate 30 sequences of length 600. We then generate a gapped motif of

length 15 and gap length 5, and embed it on 10 of the sequences, while leave the

remaining 20 sequences without any embedded motifs. For this type of test cases, only

GALFP and PSO+ can report the correct motif. GALFP only reports a single motif and

it has a 91 percent accuracy. PSO+ has an accuracy of 96 percent when only reporting

a single motif for each test case, while its accuracy improved to 98 percent with two

motifs each test case and 100 percent with eight motifs each test case.

Experiments on real biological sequences

To test the performance of our algorithm on real biological sequences, we used the

same eight representative test cases used in [11], which covered different lengths of

motifs and both gapped and non-gapped motifs. In these data sets, some sequences

may contain zero or more binding sites. Details of the data sets are available in [11].

Based on these data sets, it has been reported that two genetic algorithms, GALFP [11]

and GAME [10], are significantly more accurate than five popular algorithms: MEME

[2], Bioprospector (BP) [5], BioOptimizers based on MEME (BOM) and BioOptimizers

based on Bioprospector (BOB) [18]. Therefore, we only compared PSO+ with GALFP

and GAME directly.

As in [11], we measure accuracy by precision, recall, and F-score. Precision is defined

as c/p and recall is defined as c/t, where c, p and t are the number of correctly
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Figure 2 Running time distribution. Running time distribution of PSO+ on (15,4)-motif challenge
problem (sequence length = 600). Results are based on 100 runs on independent sequences.
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predicted binding sites, the number of predicted binding sites and the number of true

binding sites in the sequences, respectively. The F-score combining both precision and

recall is defined as F = 2 * Precision * Recall = (Precision + Recall). Table 2 shows the

average results of PSO+, GALFP [11] and GAME [10] on 20 runs (the bold entries are

the winners). As shown, PSO+ and GALFP have about the same accuracy. PSO+ has

the best F-scores on 4 of 8 test cases while GALFP has the best F-scores on 3 test

Table 2 Comparisons of average performance on the 8 real datasets, the bold numbers
are the best results among three algorithms

GAME GALFP PSO+

Precision Recall F-score Precision Recall F-score Precision Recall F-score

CREB 0.43 0.42 0.42 0.70 0.84 0.76 0.76 0.68 0.72

CRP 0.79 0.78 0.78 0.99 0.73 0.84 1 0.78 0.88

ERE 0.52 0.78 0.62 0.82 0.76 0.79 0.92 0.92 0.92

E2F 0.79 0.87 0.83 0.77 0.85 0.81 0.68 0.7 0.69

MEF2 0.52 0.55 0.53 0.91 0.98 0.95 1 1 1

MYOD 0.14 0.14 0.14 0.57 1 0.72 0.20 0.43 0.27

SRF 0.71 0.86 0.78 0.75 0.89 0.82 0.80 0.56 0.66

TBP 0.81 0.74 0.77 0.87 0.87 0.87 0.86 0.91 0.88

Figure 3 Experimental results on real motifs. Left: real motifs; right: motifs found by our algorithm. The
motifs are listed in the same order as in Table 2 (CREB, CRP, ERE, E2F, MEF2, MYOD, SRF, TBP).
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cases. More in-depth investigation reveals that PSO+ generally has the highest preci-

sion (5 out of 8), while GALFP has the highest recall (3 out of 8). This indicates that

PSO+ reported less but more accurate binding sites than GALFP.

Interestingly, two of the eight cases (CRP, ERE) are clearly gapped motifs, as shown

in Figure 3. PSO+ won in both cases, especially in ERE (average F-score: 0.92, 0.79,

and 0.62, for PSO+, GALFP and GAME, respectively), indicating that the gap model in

our algorithm is effective. On the other hand, even though our algorithm has a much

larger search space by allowing gaps, its performance on the other six motifs that do

not have gaps is still among the best. Figure 4 shows the results of PSO+ on the ERE

motif, with or without the gap option. Without the gap option, our algorithm attempts

to maximize the total information content of all positions, which results in a motif

with relatively uniform information content across all positions. In contrast, with the

gap option, our algorithm automatically determines the low-information positions and

treats them as gaps, and therefore improves the accuracy of the final result. With the

gap option turned on, the Pearson correlation coefficient between the predicted and

true motif PWMs is improved from 0.92 (p = 10-22) to 0.97 (p = 10-33).

Finally, it takes our algorithm 20 to 60 seconds for each of the 8 test cases. In com-

parison, the average running time is about 62 seconds for GALFP, and 291 seconds for

GAME.

Conclusions
In this work, we have proposed a novel algorithm for finding DNA motifs based on

Particle Swarm Optimization (PSO). Our contributions include a novel modification of

the PSO update rule to allow discrete variables, a model to allow gapped motifs, and a

simple method to ne-tune the motif when some sequences contain zero or multiple

binding sites. Experimental results on synthetic challenge problems as well as real bio-

logical sequences show that our method is both more efficient and more accurate than

several existing algorithms, especially when gaps are present in the motifs. We are

working to finalize our program, which will be freely available to the research commu-

nity soon.
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