®)
Bionata Mining BioM\ed Central

Methodology

Spatially Uniform ReliefF (SURF) for computationally-efficient
filtering of gene-gene interactions
Casey S Greene!, Nadia M Penrod!, Jeff Kiralis! and Jason H Moore*1.2.3.4,5

Address: 'Department of Genetics, Norris Cotton Cancer Center, Dartmouth Medical School, Lebanon, NH, USA, 2Department of Community
and Family Medicine, Dartmouth Medical School, Lebanon, NH, USA, 3Department of Computer Science, University of New Hampshire,
Lebanon, NH, USA, 4Department of Computer Science, University of Vermont, Burlington, VT, USA and 5Translational Genomics Research
Institute, Phoenix, AZ, USA

Email: Casey S Greene - casey.s.greene@dartmouth.edu; Nadia M Penrod - nadia.m.penrod@dartmouth.edu;
Jeff Kiralis - jeff.kiralis@dartmouth.edu; Jason H Moore* - jason.h.moore@dartmouth.edu

* Corresponding author

Published: 22 September 2009 Received: 9 April 2009
BioData Mining 2009, 2:5  doi:10.1186/1756-0381-2-5 Accepted: 22 September 2009
This article is available from: http://www.biodatamining.org/content/2/1/5

© 2009 Greene et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background: Genome-wide association studies are becoming the de facto standard in the genetic
analysis of common human diseases. Given the complexity and robustness of biological networks
such diseases are unlikely to be the result of single points of failure but instead likely arise from the
joint failure of two or more interacting components. The hope in genome-wide screens is that
these points of failure can be linked to single nucleotide polymorphisms (SNPs) which confer
disease susceptibility. Detecting interacting variants that lead to disease in the absence of single-
gene effects is difficult however, and methods to exhaustively analyze sets of these variants for
interactions are combinatorial in nature thus making them computationally infeasible. Efficient
algorithms which can detect interacting SNPs are needed. ReliefF is one such promising algorithm,
although it has low success rate for noisy datasets when the interaction effect is small. ReliefF has
been paired with an iterative approach, Tuned ReliefF (TuRF), which improves the estimation of
weights in noisy data but does not fundamentally change the underlying ReliefF algorithm. To
improve the sensitivity of studies using these methods to detect small effects we introduce Spatially
Uniform ReliefF (SURF).

Results: SURF's ability to detect interactions in this domain is significantly greater than that of
ReliefF. Similarly SURF, in combination with the TuRF strategy significantly outperforms TuRF alone
for SNP selection under an epistasis model. It is important to note that this success rate increase
does not require an increase in algorithmic complexity and allows for increased success rate, even
with the removal of a nuisance parameter from the algorithm.

Conclusion: Researchers performing genetic association studies and aiming to discover gene-gene
interactions associated with increased disease susceptibility should use SURF in place of ReliefF. For
instance, SURF should be used instead of ReliefF to filter a dataset before an exhaustive MDR
analysis. This change increases the ability of a study to detect gene-gene interactions. The SURF
algorithm is implemented in the open source Multifactor Dimensionality Reduction (MDR)
software package available from http://www.epistasis.org.
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Background

Technological advances are rapidly improving geneticists
ability to measure variation between individuals. Because
of these advances, the genome-wide association study is
now a common approach to detecting genetic factors
which influence individual susceptibility to common
human diseases. Genome-wide association studies target-
ing common variants which, alone, influence susceptibil-
ity have produced mixed results [1-5]. As currently
performed, these studies ignore complex interactions
between variants that may lead to disease susceptibility.
These are often ignored because methods to detect these
interactions are computationally infeasible or provide
insufficient sensitivity.

Epistasis is a term literally meaning "resting upon" which
refers to the situation where interacting genes, as opposed
to a single gene, influence a trait. Because of the complex
architecture of biological networks, epistasis is likely to be
fundamental to an individual's disease risk for common
human diseases [6]. This, combined with the knowledge
that single-locus results have not frequently replicated for
common human diseases [7,8], indicates that methods to
detect and characterize epistasis are likely to be critical to
understanding the genetic basis of common human dis-
ease.

Detecting and characterizing epistatic interactions in data-
sets containing large numbers of SNPs is challenging. It
requires examining the effect of SNPs not just in isolation,
but also in concert with other SNPs. In a dataset with one
million SNPs, a number typically provided by high
throughput technologies, there are about 5 x 101! pair-
wise combinations of SNPs. For three-way combinations,
the number is 1.7 x 1017. For higher order interactions the
number of combinations is astronomical. Combinatorial
methods which evaluate each such combination are not
feasible [9].

Efficient algorithms for identifying sets of SNPs likely to
contain predictive models for disease susceptibility are
therefore needed. Methods of filtering SNPs are one pos-
sibility. These first rank the attributes by some criterion.
Then either the top K SNPs or all SNPs above some thresh-
old T are selected. The SNPs within this set can then be
analyzed for interactions using combinatorial methods.
Stochastic search wrappers are another possibility. These
wrappers are probabilistic methods which retain the abil-
ity to consider all attributes and have the potential to use
information learned early in the search to direct future
exploration. Relief algorithms are nearest neighbor based
approaches to detecting attributes relevant for some out-
come. Relief algorithms are attractive for use in genetic
association studies using either filters or wrappers because
the computation time required increases linearly with the
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number of SNPs and quadratically with the number of
individuals. Importantly, these algorithms are able to
detect attributes associated with disease through interac-
tions or independent main effects, although they do not
provide a model for the effect [10]. Instead, information
gleaned from these methods can be used as input into
other approaches. Stochastic search approaches such as
genetic programming [11-13] and ant colony optimiza-
tion [14] can successfully develop models in this domain
when information from the Relief family of algorithms is
used to assist the search, although they fail to detect
purely epistatic associations without this additional infor-
mation [12]. Motsinger et al. [15] have shown that pat-
terns of correlation between SNPs can make the problem
easier to solve in the absence of expert knowledge,
although here we specifically examine uncorrelated SNPs.
Moore et al. briefly discuss both filter and wrapper
options as part of an overall epistasis analysis strategy for
human disease susceptibility [16] and Greene et al. [17]
provide a theoretical analysis of both approaches. For the
situation where there is a single source of expert knowl-
edge, the filter approach is most appropriate [17]. In this
situation we are considering the success rate of individual
Relief methods, each of which is a single source which
meets these assumptions up to a good approximation
according to the appendix (Additional file 1). For this rea-
son we test the ability of these methods to successfully fil-
ter a dataset retaining SNPs with an epistatic interaction
associated with disease susceptibility.

Numerous variants of Relief have been developed. When
applied to genetic association study data these methods
use genetically similar individuals or, equivalently, near-
est neighbors to adjust weights which are assigned to each
SNP. The nearest neighbor is the nearest individual in the
dataset to the current individual calculated across all
SNPs. While Relief uses, for each individual, a single near-
est neighbor in each class, ReliefF, a variant of Relief, uses
multiple nearest neighbors, and thus is more robust when
the dataset contains noise [18]. Moore and White devel-
oped a Tuned ReliefF (TuRF) approach for human genet-
ics [19]. This approach, though requiring more computer
time, further improves the performance when the data
contain a large number of non-relevant SNPs in addition
to a small number of relevant SNPs. TuRF achieves this by
iterating a ReliefF algorithm and, with each iteration,
deleting SNPs with the lowest ReliefF weights, i.e. those
thought to be least predictive [19]. SNPs are assigned a
weight based on their normalized weights when removed.
This iterative approach improves the overall ranking of
disease associated SNPs because noisy SNPs are most
often removed. This means that the re-estimation can
more accurately evaluate the relevance of the remaining
SNPs.
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Here we present a new version of Relief, called Spatially  to adjust these SNP weights. We define the distance
Uniform ReliefF or, briefly, SURF. It detects epistatic inter-  between two individuals as the number of their SNPs with
actions with a significantly higher success rate than the  differing genotypes. With this distance metric, nearest
Relief variant widely used for machine learning, ReliefF. = neighbors share genotypes at the greatest number of SNPs,
Iterated SURF, called SURF & TuRF, has a significantly = and so are genetically most similar.

higher success rate than TuRF. For each individual SURF,

like ReliefF, adjusts weights of all the SNPs by using cer-  Relief algorithms are based on the assumption that those
tain neighbors of the individual. While ReliefF uses a fixed =~ SNPs of nearby individuals which have different states
number of nearest neighbors, SURF uses all neighbors  (i.e. differing genotypes) are either most or least predictive
within a fixed distance of the individual. This distance  of disease status. Relief algorithms adjust the weights of
may be thought of as a similarity threshold. Thus SURF  these SNPs-upward if the two individuals have different
uses precisely those neighbors more similar than this  disease status, and downward by the same amount if they
threshold. ReliefF, on the other hand, may use either = have the same status. More precisely, the original Relief
fewer or more neighbors, thereby possibly neglecting  algorithm adjusts, for each individual I;, the SNP weights
informative individuals or including uninformative ones.  using I;'s nearest hit (the individual which is closest to I
Furthermore, similarity thresholds which give greater suc-  and in the same class as I;) and I;'s nearest miss (the indi-
cess rate than ReliefF can be estimated from the data while  vidual which is closest to I;and in the other class from I;).
distances are pre-computed, thus removing a nuisance  In the case of SURF, for each individual I, this adjustment
parameter from the algorithm (see §2 in the appendix).  is done using each hit and miss within a fixed threshold
SUREF also does not increase the complexity of the algo-  distance T of I,. Figure 1 shows graphically how neighbors
rithm, so the scaling is still linear with respect to the  are selected with each Relief algorithm.

number of SNPs and quadratic with respect to the number

of individuals. Relief is able to detect epistatic SNPs, even when no single
SNP has an effect. We outline how it does this for epistatic
Relief and Spatially Uniform ReliefF (SURF) pairs. More detail is in the appendix (Additional file 1).

All Relief algorithms attach a weight to each SNP. The  All of the penetrance functions used in this work are avail-
higher the weight of a SNP, the more likely it is predictive ~ able in Additional file 2. We begin with a discussion of
of disease status. Genetically similar individuals are used  epistatic pairs. Consider the penetrance function for the
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How Relief, ReliefF and SURF select neighbors. Each panel in this figure shows the genotypes at two markers for a data-
set of cases and controls. For the purpose of this example only these two markers will be considered and both are continuous.
When analyzing real data, the process of selecting neighbors is the same, however, but there will be thousands of discrete val-
ued markers (SNPs) each of which would be represented by one of thousands of dimensions. The individual for whom neigh-
bors are being found is shown by the filled red circle. The neighbors that each approach uses for weighting are highlighted in
blue. Parts A, B, and C represent how Relief, ReliefF and SURF would select neighbors to be used in weighting. Relief selects
the nearest individual of the same class (blue circle) and the nearest individual of the other class (blue cross). ReliefF selects
some user specified number of individuals (two in this example) to be used for weighting. SURF, instead of using a fixed number
of neighbors, uses all individuals within a distance threshold. The dotted line shows a hypothetical distance threshold.
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epistatic pair of SNPs shown in Table 1. If an individual
has genotype AA and the genotype of SNP, is unknown,
then the probability the individual is sick is

.36-.469+.48-.337 +.16-.339 =.3848.

The individual has the same probability of being sick if he
has genotype either Aa or aa, provided again that the gen-
otype of SNP, is unknown. Similarly, if his genotype is
either BB, bB or bb with SNP,'s genotypes unknown, the
probability he is sick is again .3849. The point is that no
single SNP has an effect on disease susceptibility. Only the
relevant pair does.

Now we discuss how Relief detects epistatic pairs. Given
an individual I;, we define the set M, to consist of those
misses with exactly k of their two relevant SNPs in a differ-
ent state from those of individual I,. In the case of two rel-
evant SNPs, k = 0, 1 or 2. Note that the miss nearest I;is in
exactly one of the three sets M, M,, or M,,. Indeed, these
partition the set of all misses. The sizes of the sets M, can
be determined (as in §1 of the appendix) from the pene-
trance function which governs the relationship between
genotype and phenotype. As an example, with a sample
size of 1600 and the penetrance function shown in Table
1 the sizes of these sets are

| Mgp 110, | M;, =397 and |M,, |=293.

For the analogous sets involving hits we have

|Hop 2130, |Hy, 357 and |H,, |=313.

These are actually expected numbers rounded to the near-
est integer. Since |M;,| > |M,,|, the contribution of the
irrelevant SNPs to the distance from I, to its nearest point
in M, , tends to be less than that to its nearest pointin M,,.
The two relevant SNPs contribute one to the distance from
I; to every point of M, ,. For points in M,,, the contribu-
tion to this distance is two, which makes points in M, , far-
ther by one from I;, on average, than points in M, ,. Since
the states of the relevant and irrelevant SNPs are inde-

Table I: Penetrance values for an example epistasis model with a
heritability of 0.1.

SNP,
AA (0.36) Aa(0.48)  aa(0.16)
SNP, BB (0.36) 0.469 0.198 0.754
Bb (0.48) 0337 0.502 0.141
bb (0.16) 0339 0.453 0.285
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pendent, it follows that the nearest miss is more likely to
be in M, , than M, ,. To be precise for the example in table
1 the probability, according to equation (10) of the
appendix, that the closest miss is in M, , is

Py (1A) = 516,
while the probability it is in M,, is

We mention that the probability it is in M, is

Py (0A) = 175,

but do not use this since Relief adjusts weights only for
SNPs where pairs of individuals have differing genotypes.
The analogous probabilities for hits are

Pey(1A) = 463, Py(2A) =330, and Py (0A) = .207.
If the nearest miss is in M,,, then the Relief score of both
relevant SNPs is increased by one. If it is in M, ,, there is a
50% chance that the score of the first relevant SNP is

increased by one. Thus the expected contribution due to
misses of individual I; to the score of a relevant SNP is

1
5 Pep(1A) + Py (24).

Using the same notation for hits, except with H in place of
M, an analogous discussion gives

{ 5 Petia) P2 |

as the expected contribution dues to hits of individual I; to
the score of a relevant SNP. Thus the expected contribu-
tion of individual I; to the score of a relevant SNP is

S (Peu(18) + Py (18)) + Py (28) = Py (28).

The value of this for the example we have been consider-
ing is .005. The expected contribution of individual I; to
the score of an irrelevant SNP is 0. This indicates why
Relief tends to assign higher scores to relevant SNPs than
to irrelevant ones.

The analysis of SURF, though mathematically easier, is
more subtle. Again, let I; be a random, but fixed, individ-
ual. Then, as before, each miss within the threshold dis-
tance T of I;is in one of the three sets M, M;, or M,,. For
k=0, 1 and 2, let TM,, be the subset of M,, consisting of
those individuals within distance T of I;. Using analogous
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notation for hits with H in place of M, the mean contribu-
tion of individual I, to the SURF score of a relevant SNP is

1
SiR=E(|TM1 |=|TH; [)+ (| T™M; | | TH, |)

1
=E(|TM1|_|TH1|)_(|TM2|_|TM2|)~

The J is here since each individual in TM, and TH,

changes the score of a relevant SNP by % , on the average.

Returning now to the example model, specifically expres-
sions (1) and (2), we see that |M,,| - |[H,,| <O.

Thus, on average, |TM,| - |TH,| < 0; however two factors

make SF > 0. Namely
| Mg | = Hya 540> Hyy [ =My, =20
making
| TM, | = | TH, X TH, [ = | TM, |.

Also, elements of M, , and H,, are, on average, one closer
to I; than elements of M, and H,,. Together these make

1
S (ITMy [ = [TH, [) > TH, [ = | TM, |

and, consequently, S® > 0, on average. For the example
penetrance function, equation (3) of the appendix gives
S = .519; however, this SURF score cannot be reasonably

compared to the analogous Relief score of .005 without a
discussion of the variances of these scores. We do this in
the appendix, and also indicate in §5 why SURF outper-
forms ReliefF using 10 nearest neighbors.

The scores S? depend on the value of the distance thresh-
old T. In our simulations, we have chosen T to maximize

the S¥ . The final score of a relevant SNP is the sum of the

SR values for each individual.

Because of the way the variance of this sum varies with T,
slightly smaller values of T are probably optimal. This is
discussed at the end of §2 of the appendix.

Results and Discussion
Our results suggest that the SURF approaches provide a
more successful method for the detection of gene-gene

http://www.biodatamining.org/content/2/1/5

interactions in these data. Figure 2 shows both success rate
and significance test results for a single sample size and
heritability (1600 and 0.1 respectively). These results indi-
cate that the success rates of the SURF approaches (SURF
and SURF & TuRF) are greater than their corresponding
ReliefF approaches (ReliefF and TuRF). Furthermore the
step plots show that this difference is highly significant
except for the 99% percentile comparison of ReliefF and
SURF. Neither of the non-iterative approaches is highly
effective for filtering to the 99t percentile for this herita-
bility and sample size, so as a stringent filter the iterative
approaches are most useful.

Our complete results, shown in figure 3, show that the
new SURF algorithm, outperforms ReliefF. Furthermore
we see that this increase in success rate is not redundant
with the tuned approaches, as both of these, TuRF and
SURF & TuRF, which iteratively remove attributes with
low quality estimates, are much better than the standard
Relief and SURF approaches at selecting a small subset
which contains the functional attributes. Here we see that
these approaches significantly outperform ReliefF and
SURF when the task is to filter the dataset to the 99% or
95 percentiles of SNPs. Finally we find that SURF & TuRF
outperforms TuRF alone achieving a much greater success
rate, particularly at moderate heritabilities. We find that
these differences are statistically significant. The success
rate when SURF is used, particularly with larger sample
sizes, is consistently significantly greater than the success
rate when the standard method, ReliefF is used (see Addi-
tional files 3, 4, 5) for both the "tuned" and non-iterative
approaches. Additionally the success rates of these
"tuned" algorithms to include the proper SNP in the 99t
and 95 percentiles are consistently significantly better
than the success rates of the non-tuned approaches (see
figure 2 and Additional files 3, 4, 5).

Methods which increase success rate without an increase
in computational complexity or sample size are extremely
desirable for genome-wide association studies. By devel-
oping improved methods for detecting epistasis we greatly
expand our ability to characterize interactions in large
datasets. Moore argues that when people use sensitive
methods to detect epistasis, they are frequently able to
find examples of it [20]. Algorithms which both detect
and characterize epistasis in the absence of main effects
are of combinatorial complexity for the number of SNPs.
The SURF algorithm we introduce to detect disease associ-
ated interacting SNPs is, like ReliefF, of linear complexity
for the number of SNPs. Moreover, its success rate for
epistasis analysis is higher than ReliefF's. One caveat is
that Relief methods such as SURF, though useful for
detecting interacting SNPs, neither identify specific inter-
acting pairs nor develop a model. Because SURF & TuRF is
able to detect interacting genetic variants which are pre-
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Figure 2

Example Success Rate and Significance of Differences. Part A shows the detailed success rate analysis results for a sin-
gle heritability (0.1) and sample size (1600). The success rate to filter both relevant SNPs into percentiles from the 99t to 50t
is shown. The 99 tpercentile corresponds to the top 10 SNPs by the assigned weights in these datasets which contain 1000
SNPs. In part B pairwise comparisons are made between each pair of methods at the 99%, 95t and 75t percentiles. ReliefF,
SURF, TuRF, and SURF&TuRF are labeled R, S, T, and ST respectively. Significance is illustrated with levels of grey (i.e. light grey
indicates 0.01 <p < 0.05, dark grey indicates 0.001 <p < 0.01, and black indicates p < 0.001). As an example, at the 99t percen-
tile the blank square at the intersection of R and S indicates that the difference between ReliefF and SURF was not significant.
On the other hand the black square at the intersection of S and ST indicates that the difference between the success rates of

SURF and SURF&TuRF at that percentile was highly significant.

dictive of human health, weights from this algorithm can
be used to filter a dataset before traditional combinatorial
approaches are used to characterize the interaction.
McKinney et al. have previously integrated ReliefF [21]
and TuRF [22] with other information sources using an
evaporative cooling technique to direct genetic associa-
tion analyses. Direct replacement of ReliefF by SURF &
TuRF may improve the sensitivity of these frameworks to
detect and characterize interactions.

SURF & TuRF's greatly increased success rate to detect
epistasis improves our ability to detect variants leading to
disease risk in the absence of main effects. This new dis-
tance based approach may also be extensible to biological

and biomedical data beyond case-control genetic associa-
tion studies. While ReliefF, which SURF & TuRF builds on,
is usable for these discrete endpoints and attribute values,
other modifications to ReliefF have extended this
machine learning method to other data types. With
Regression ReliefF (RReliefF), ReliefF is broadened to han-
dle continuous attributes and endpoints [23,24]. Future
work should examine whether the new distance based
approach used for SURF & TuRF also improves these
methods. If using a distance threshold also improves RRe-
liefF methods, the sensitive SURF approach can be
applied to continuous gene expression data or to detect-
ing variants predictive of continuous endpoints. With
future work it may also be possible to combine continu-
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Figure 3

Success Rate Analysis. This is a summary of success rate as shown in figure 2 across a wide range of sample sizes and herit-
abilities. Within each heritability the success rates for all five genetic models for that heritability are averaged. The x-axis for
each plot corresponds to the percentiles as in figure 2. Across these situations, SURF alone performs as well as TuRF when fil-
tering to the 75t percentile of SNPs. SURF outperforms ReliefF, the tuned approaches outperform the non-tuned approaches
when using a more stringent filter (i.e. 99t and 95% percentiles), and SURF & TuRF outperforms TuRF with ReliefF.

ous and discrete attributes, to provide a method capable
of examining gene-gene, gene-environment, and environ-
ment-environment interactions in a common framework.

Conclusion

Now that it is technically and economically feasible to
measure large numbers of DNA sequence variations in
human genetics, the bioinformatics challenge is to iden-
tify and improve methods for detecting variants which are
predictive of disease risk. This is particularly challenging
when the task is to identify polymorphisms which have

little or no independent effect. The Relief family of algo-
rithms provides one potential solution for SNP selection,
and SURF & TuRF is a novel within this family which
effectively detects epistasis. By developing sensitive and
computationally efficient methods capable of detecting
epistasis, it becomes more practical to probe datasets for
these interactions. Highly sensitive methods will allow
researchers to better understand the impact of epistasis on
human health. Both SURF and SURF & TuRF have been
included as filtering methods in the user friendly open
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source Multifactor Dimensionality Reduction (MDR) soft-
ware package.

Methods

As discussed SURF weights can be used for genetic analysis
in either filters or probabilistic wrappers. Here we con-
sider the simpler filter approach. Specifically we analyze
SURF's ability to filter a dataset to the 99, 95t and 75%
percentiles of SNPs without removing those SNPs with an
interaction effect predictive of disease susceptibility. Reli-
efF has previously been used in the genetic analysis of
complex diseases in this fashion [25].

The goal of our simulation study is to generate artificial
datasets with high concept difficulty to evaluate SURF in
the domain of human genetics. We first develop 30 differ-
ent penetrance functions (i.e. genetic models) which
determine the relationship between genotype and pheno-
type in our simulated data. These functions determine the
probability that an individual has disease given his or her
genotype. This probability depends only on the genotypes
of the two interacting SNPs, not on the genotype of any
one SNP. The 30 penetrance functions include groups of
five with heritabilities of 0.025, 0.05, 0.1, 0.2, 0.3, or 0.4.
These heritabilities range from very small to large genetic
effect sizes. Each functional SNP has two alleles with fre-
quencies of 0.4 and 0.6. These models are included in
Additional file 2. Each of the models is used to generate
100 replicate datasets with sample sizes of 800, 1600, and
3200. Each dataset consists of an equal number of case
(diseased) and control (disease free) subjects. Each pair of
functional SNPs is added to a set of 998 irrelevant SNPs
for a total of 1000 attributes. A total of 9,000 datasets are
generated and analyzed.

We test each method with the following parameters. All
four methods can use some or all of the dataset when per-
forming weight estimations. Here we use the entire data-
set, as this is similar to what is performed in practice
where the number of individuals is often more limiting
than the computational costs. ReliefF and TuRF require a
number of neighbors. Here we use 10, as suggested by
Robnik-Sikonja and Kononenko [24] in a comprehensive
analysis. SURF requires a distance threshold. Our theoret-
ical analysis in §2 of the appendix (Additional file 1) sug-
gests that the mean distance between all pairs of
individuals in the dataset and across all attributes can be
used and thus we use this distance in this situation. By
using the mean distance as calculated from the data, we
remove this nuisance parameter from the algorithm. Both
SURF & TuRF and TURF remove a number of SNPs at each
iteration before re-estimating the weights of the remain-
ing SNPs. Here we remove 25 SNPs at each iteration
(2.5% of the dataset).

http://www.biodatamining.org/content/2/1/5

Here, because we are interested in interactions, we con-
sider the success rate to be the number of times that both
relevant SNPs are scored above a given threshold. We set
this stricter standard here because further analysis steps
can not succeed of both relevant parts of the interaction
are not discovered. To estimate the success rate, we use
100 datasets for each of the 30 models. Specifically, the
percentage of datasets for which a method ranks the two
relevant SNPs above the Nt percentile of all SNPs is the
estimate of the method's success rate. We apply Fisher's
exact test to assess the significance of differences between
the success rates of the tested methods at these thresholds.
These percentiles represent the situation where each
method is used to filter a large dataset with 1000 SNPs to
a smaller dataset of 10, 50, and 250 SNPs respectively.
Fisher's exact test is a significance test appropriate for cat-
egorical count data [26]. The resulting p-value for this test
can be interpreted as the likelihood of seeing a difference
of the size observed among success rates when the meth-
ods do not differ. We consider results statistically signifi-
cant when p < 0.05. Additionally, we graphically show
results for filtering to each percentile from the 99t to the
50,
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Additional file 1

Appendix. This is an appendix to accompany the manuscript that includes
additional theoretical analysis of the Relief algorithms discussed in the
Manuscript.
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Additional file 2

Epistasis models. These are the epistasis models used in our data simula-
tion.

Click here for file
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0381-2-5-52.pdf]
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Additional file 3

Significance of differences with a sample size of 800. This is a plot
showing the significance of statistical results for the situation where there
are 400 cases and 400 control individuals. These plots follow the example
shown in Figure 2. Pairwise comparisons are made between each pair of
methods at the 99t, 95t, and 75t percentiles. ReliefF, SURF, TuRF, and
SURF & TuRF are labeled R, S, T, and ST respectively. Significance is
illustrated with levels of grey (i.e. light grey indicates 0.01 <p <0.05,
dark grey indicates 0.001 <p <0.01, and black indicates p <0.001).
Click here for file
|http://www.biomedcentral.com/content/supplementary/1756-
0381-2-5-S3.pdf]

Additional file 4

Significance of differences with a sample size of 1600. This is a plot
showing the significance of statistical results for the situation where there
are 800 cases and 800 control individuals. These plots follow the example
shown in Figure 2. Pairwise comparisons are made between each pair of
methods at the 99t, 95t, and 75t percentiles. ReliefF, SURF, TuRF, and
SURF&TuRF are labeled R, S, T, and ST respectively. Significance is illus-
trated with levels of grey (i.e. light grey indicates 0.01 <p < 0.05, dark
grey indicates 0.001 <p <0.01, and black indicates p <0.001).

Click here for file
|http://www.biomedcentral.com/content/supplementary/1756-
0381-2-5-84.pdf]

Additional file 5

Significance of differences with a sample size of 3200. This is a plot
showing the significance of statistical results for the situation where there
are 1600 cases and 1600 control individuals. These plots follow the exam-
ple shown in Figure 2. Pairwise comparisons are made between each pair
of methods at the 99th, 95th, and 75t percentiles. ReliefF, SURF, TuRF,
and SURF&TuRF are labeled R, S, T, and ST respectively. Significance is
illustrated with levels of grey (i.e. light grey indicates 0.01 <p <0.05,
dark grey indicates 0.001 <p <0.01, and black indicates p <0.001).
Click here for file
|http://www.biomedcentral.com/content/supplementary/1756-
0381-2-5-85.pdf]
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