@,

BiolMed Central

Research

Search extension transforms Wiki into a relational system: A case
for flavonoid metabolite database
Masanori Arita* 123 and Kazuhiro Suwa!

BioData Mining

Address: 'Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha 5-1-5 CBO5,
Kashiwa, Japan, 2Metabolome Informatics Unit, Plant Science Center, RIKEN, Japan and 3Institute for Advanced Biosciences, Keio University,
Japan

Email: Masanori Arita* - arita@k.u-tokyo.ac.jp; Kazuhiro Suwa - suwa@dotrump.jp
* Corresponding author

Published: 17 September 2008
BioData Mining 2008, 1:7 doi:10.1186/1756-0381-1-7

Received: 23 May 2008
Accepted: |17 September 2008

This article is available from: http://www.biodatamining.org/content/1/1/7

© 2008 Arita and Suwa; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background: In computer science, database systems are based on the relational model founded
by Edgar Codd in 1970. On the other hand, in the area of biology the word 'database’ often refers
to loosely formatted, very large text files. Although such bio-databases may describe conflicts or
ambiguities (e.g. a protein pair do and do not interact, or unknown parameters) in a positive sense,
the flexibility of the data format sacrifices a systematic query mechanism equivalent to the widely
used SQL.

Results: To overcome this disadvantage, we propose embeddable string-search commands on a
Wiki-based system and designed a half-formatted database. As proof of principle, a database of
flavonoid with 6902 molecular structures from over 1687 plant species was implemented on
MediaWiki, the background system of Wikipedia. Registered users can describe any information in
an arbitrary format. Structured part is subject to text-string searches to realize relational
operations. The system was written in PHP language as the extension of MediaWiki. All
modifications are open-source and publicly available.

Conclusion: This scheme benefits from both the free-formatted Wiki style and the concise and
structured relational-database style. MediaWiki supports multi-user environments for document
management, and the cost for database maintenance is alleviated.

Background

Why is database maintenance unappreciated?

In many research fields, building or maintaining a data-
base system is not a sought-after task and researchers tend
to avoid the chore because: 1) the inputting and checking
of data are routine and tedious, 2) novel findings are
rarely based on a collection of old data, 3) database devel-
opers often do not receive deserved credit especially when
data are distributed for free, and 4) it is difficult to evalu-
ate the quality and value of data. However, most bioinfor-

matics research requires high-quality databases. Their
significance is clear from the success of major data-servic-
ing institutes such as the National Center for Biotechnol-
ogy Information (NCBI; USA) or the European
Bioinformatics Institute (EBI; UK). Without doubt, data
collection and management are important activities in sci-
entific research.

Page 1 of 8

(page number not for citation purposes)

http://www.biodatamining.org/content/1/1/7
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BioData Mining 2008, 1:7

Input, management, and query are the keys

How can we promote the development and maintenance
of high-quality databases? The key processes in data han-
dling are the input, management, and query of data. The
effort required for the first two activities can be signifi-
cantly reduced by introducing a Wiki-based system. The
Wikipedia, a web-based free encyclopaedia, for example,
continues its rapid growth despite criticism by experts of
'lack of quality control' and 'vulnerability to website van-
dals' [1]. Its English version now boasts over 2 million
articles followed by 0.7 and 0.6 million in German and
French [2]. Still unsupported is flexibility in query mech-
anisms and presentation such as displaying customized
statistics in a user-friendly way.

In the rapidly evolving frontiers of biology research, the
development of flexible and systematic query mecha-
nisms has not been pursued actively. Biological data and
their formats often co-evolve; the definition of data type
in a repository requires frequent, major updates. This is
not compatible with the relational model proposed by E.
Codd [3]. It has been the gold standard for data manage-
ment for decades but the model requires fixation of data-
base schema prior to data input. Currently, many
biologists prefer using a spreadsheet such as Excel (Micro-
soft Corp., Seattle, WA, USA) or a simple text to organize
their experimental results, and biology databases only
provide full-text searches to access large-scale, unstruc-
tured text data. Ideally, a bio-database needs to serve as a
searchable, digital laboratory notebook where users can
efficiently organize and query data. As most Wiki systems
only provide a collection of independent pages with weak
query functions, we tested the possibility of installing a
flexible query mechanism on a Wiki-based system. Here
we propose an extension of MediaWiki that can emulate
traditional database operations [4]. We demonstrate our
idea with the molecular information on flavonoid, the
major category of plant secondary metabolites.

This paper is organized as follows. The basic function and
flexibility of MediaWiki are introduced in Methods sec-
tion from a computer-science perspective. Using function-
ality, we introduce the implementation of the flavonoid
database in Results section. The advantages of our
approach and differences from other approaches are
reviewed in Discussions. Readers are encouraged to access
our website at http://metabolomics.jp/.

Methods

Flavonoid data source

Flavonoid is a class of plant secondary metabolites with a
C6-C3-C6 skeleton derived from the phenylpropanoid-
acetate pathway [5]. This class serves not only as pigments
but also as antioxidants, and as anti-inflammatory or anti-
cancer agents. Under the name of polyphenols it has

http://www.biodatamining.org/content/1/1/7

drawn much commercial attention [5]. We previously
input and classified their molecular structures identified
in various plant species [6,7]. Our structural classification
assigns a 12-digit alpha-numeral to each structure and can
reveal physico-chemical properties, modification pat-
terns, and biosynthetic pathways from an evolutionary
perspective. However, the efficient management of these
data has remained a goal. As of September, 2008, the data
consisted of 6902 flavonoid structures, 1687 plant spe-
cies, and 4970 primary journal references reporting
19,788 metabolite-species relationships.

Basic functionality of MediaWiki: extension, template,
and namespace

In most Contents Management Systems, page contents are
stored in a file system and their edit history is automati-
cally maintained to manage version differences or to
restore past edits. MediaWiki excels such systems in the
following four characteristics. First, the entire system is
built on a Relational Database (RDB). Each article, called
a page, is separated into its title and body and stored in a
single table in the background RDB (in our case, mySQL).
Second, MediaWiki supports user-defined functions
called extension. A system administrator can add extension
programs written in PHP language and enhance Medi-
aWiki functionality. By overwriting the source code, any
modification can be applied through this option. For
example, the if-then control command of a programming
language has been implemented in MediaWiki as an
extension [8]. Third, MediaWiki supports a term-rewriting
system called template. The template mechanism itself is
implemented as a special page that can be pasted into any
other page by calling its page title. A template page can
accept arguments; its function is similar to a function call
of programming languages. Lastly, MediaWiki provides a
classification scheme for pages called namespace. Each
page belongs to a certain namespace which is displayed as
a prefix of the page title. In the background RDB, each
namespace is translated into an integer value assigned to
each data tuple in the relation table. One major custom
namespace is Category. Pages in this space are used to
describe the semantic hierarchy, and all pages linking to a
Category page are automatically sorted for display in the
page. These functions are fully exercised in our database
design. Hereafter, the words extension, template, and name-
space carry the meaning described above.

Implemented functions to realize relational queries

Text data managed by Wiki-based systems are inherently
free-formatted. The fundamental operation for realizing
any query is the full-text search. In our implementation,
for efficiency, information for systematic searches must be
described in tabular form with a special separator, "&&",
at the head of each table element. Tabular data are

Page 2 of 8

(page number not for citation purposes)

http://metabolomics.jp/

BioData Mining 2008, 1:7

searched and organized with the following new com-
mands implemented as an extension on MediaWiki.

o {{#SearchTitle:argl|arg2}}: The command lists all
page titles that match the regular expression argl in
namespace arg2. The returned titles are separated by
&&.

e {{#SearchLine:argl|arg2|arg3}}: The command
lists all page lines that match the regular expression
argl in the namespace arg2. An optional argument
arg3 specifies a particular page title in the namespace.
A page title is attached at the head of every detected
line with a separator &&.

o {{#repeat:argl|arg2|arg3}} The command repeats
the application of the template titled argl that requires
arg2 arguments (arg2 must be a positive integer) for
the list of arguments arg3 separated by &&.

These commands are used to emulate two fundamental
operators in the relational model: selection (extraction of
rows from a relation table) and projection (extraction of
columns from a relation table). Note that search results
are labeled with page titles, which serve as the identifier of
the relation table being searched. A join operation (merg-
ing two relation tables by associating a particular column
common to both) is theoretically possible by repeating
searches for all table elements; however, the computa-
tional cost is too high. In our implementation, such costly
operations, including set operations, are delegated to the
Lua embeddable programming language [9]. Lua is called
by a special command #lua:argl|arg2}}, where argl is the
program body and arg? is the input value passed to the
standard input of the Lua interpreter. Lua process is
invoked by visiting a page; its standard output is embed-
ded where the command is written.

All newly implemented Wiki commands (around 40;
most are the functions for string operations) are summa-
rized on our website [10]. Their source codes are also
available to reproduce our implementation on Medi-
aWiki.

Data serialization: inputs and outputs

The page contents of the database can be converted to
XML data in MediaWiki; the initial construction and
major modification of the contents, including data inte-
gration from multiple data sources, were operated in the
XML format. In our initial database construction, a sam-
ple page for a single flavonoid compound was created and
verified its XML format by serializing the page. Then other
data were reformatted in the same XML style and were
bulk input accordingly. Page update is possible either
through a web browser or the OpenOffice Project, which

http://www.biodatamining.org/content/1/1/7

recently announced the function to export Microsoft
Office documents to MediaWiki [11].

Results

Information tables for compounds, plant species, and
references

Our basic concept is to describe tabulated data in Wiki
pages and to let all other operations such as formatting for
visualization, obtaining statistics, or applying relational
operators be done by the template mechanism and text-
string searches. Information on pages is intended to be
least redundant to maintain data integrity and to reduce
input and update tasks. The translation scheme between
the relational model and Wiki pages is shown in Figure
1A. Each relation table is represented by a single name-
space and each data tuple (or a table-row) corresponds to
one Wiki page. The separation by namespaces rather than
page titles is superior for simpler page classification and
management.

Different from traditional metabolite databases (e.g.
Merck Index, Chemical Abstract Service), we prepared
three relation tables that provide compounds, plant spe-
cies, and references on an equal footing rather than
assigning a compound ID as the sole primary key for all
information (Figure 1B). The three-legged structure is
derived from a focus on the metabolite-species relation-
ship reported in literatures. Since a single reference may
describe multiple metabolite-species relationships, the
same literature information may be referred from multi-
ple pages. To minimize redundancy, literature informa-
tion is recorded only once in the reference namespace and
necessary information is dynamically integrated by using
string-search commands in the compound and species
namespaces.

For example, a page for a compound displays information
on plant species and references that is derived automati-
cally from other pages or external resources. Using the 12-
digit ID, each compound page is associated with a MOL-
format (molecular structure) file from which structural
information such as formula, exact mass, and average
mass is obtained. The same is true for the species pages.
The page title is a genus name from which the taxonomic
hierarchy is derived. Such derivation is performed either
by templates or by the embedded Lua programming lan-

guage.

Case example: (+)-catechin

The data page of catechin only includes the page title (12-
digit ID), English names, and link information for other
databases (Figure 2). The rest of the information and the
display style are generated by the template mechanism.
The page source is written as a labelled list of data, which
is subsequently formatted into a table by the template

Page 3 of 8

(page number not for citation purposes)

BioData Mining 2008, 1:7

A. Relations titled Foo in RDB

http://www.biodatamining.org/content/1/1/7

Namespace titled Foo in Wiki

Primary key | coll | col2 | col3
: 4
. > Key 5
Key 4 P> && coll
Key 5 ~ TP && col2
~~ ~— — \\ && col3
tuple —

B. Default namespace Namespace Reference Namespace Species
Metabolite key| mass Ref. key |Met.key[Sp.key Species key| name
FL1 ... 500 authorl etc.| FLI1... |Allium Allium cepa
FL2 ... 510 author2 etc.| FL2... |Allium Ananas Ccomo..
FL3 ... 480 author3 etc.| FL3... |Oryza Rosa hybrid

A

A A A

Figure |

A) Correspondence between relation table in RDB and pages in MediaWiki;. One tuple corresponds to one page
whose title is the primary key. Together, pages in the same namespace constitute the original relation table. In Wiki pages,
attributes are separated by user-defined separator symbols. In this example, && is the separator. B) Basic schema of flavonoid
database; A table for reference information connects tables for metabolite and plant species. The link is used for Metabolite-

Species table in Wiki pages.

mechanism. The fundamental difference between the
original MediaWiki and our implementation is addressed
below.

Page dependency and dynamic generation of page
contents

Page contents are dynamically generated from other page
contents through text-string searches at the time of page
browsing. The introduction of page dependency is a
marked difference from previous Wiki-based systems in
which, for example, modifications in one page do not
affect other pages. In default MediaWiki, unless specially
designed pages are prepared by system administrators, all
pages are independent. The following case exemplifies the
merits of our page dependency.

Case example: realization of metabolite-species table
Metabolite-species information is recorded as a separator-
delimited list of metabolite IDs and species names in the

reference pages and is visualized as a foldable Wiki-table
through the template mechanism. A superficially similar
table can be viewed in the pages for compounds and plant
species, but these are generated on demand from the
information in the reference pages. For example, the list of
plant species for a particular compound is obtained by a
text-string search for its compound ID on all reference
pages. An English name for each metabolite ID is likewise
retrieved from the corresponding compound page by a
dynamic text-string search.

Therefore, the Wiki-pages for compounds and plant spe-
cies do not contain information of the table, but only the
search commands for generation. An update on a refer-
ence page such as adding/removing a metabolite-species
relationship will be automatically reflected on the corre-
sponding pages for compounds and plant species. Since
information is not duplicated, data management efforts
are minimized.

Page 4 of 8

(page number not for citation purposes)

BioData Mining 2008, 1:7

% FL63ACNS0001 - 1

http://www.biodatamining.org/content/1/1/7

2

Upper classes : FL Flavonoid : FL6 Flavan : FL63 Flavan 3-ol : FL63AC Catechin and Epicatechin : FL3ACNS Simple substitution

(+)-Catechin

™

3 mm) TE;V T

Structural Information

* Systematic Mame |(+)-3'4'5 7-Tetrahydroxy-2 3-trans-flavan-3-ol

= (+)-Catechin

= D-Catechin

= (+)-3'4'5 7-Tetrahydroxy-2,3-trans-flavan-3-ol
= Dexcyanidanol

= Teafuran 30A

* Commaon Name

IDs and Links
% [cas 154-23-4
o |KNAPSACK |CO0000947 &

MOL file FLE3ACNSO0001. mol &

= D-Catechol
Formula C15H14086
Exact Mass 290.0790 4
Average Mass 290.2680
SMILES Oci{c3)ecc(Ol)c(c(Of3)CC([H]) (O)C([H])lcicz:
2icec(O)c(O)c2
Figure 2

The molecule view of (+)-catechin;. Red stars indicate information written on the Wiki page. Other information and for-
matting are provided by the templates. Users need not be aware of the software code in the background. The page is accessi-
ble at http://metabolomics.jp/wiki/FL63ACNSOQ001. Its source code is shown by clicking the 'View Source' tab. |. Page title: The
I2-digit ID describing the structural category of (+)-catechin. 2. Class hierarchy: This information and links are automatically
generated from the ID and class information in other Wiki pages. 3. Molecular structure: This picture is generated from the
MOL-format file on the server associated with this page. 4. Molecular information: These values are automatically generated

from the MOL-format file.

A drawback is the cost of dynamic page generation. Since
a single page may contain multiple full-text searches on all
other pages, page generation may be slow especially for a
summary or statistics page. Currently, our database con-
tains over 30,000 pages (including edit logs), and we con-
servatively estimate 100,000 pages as the limit to run the
database on the current DELL PowerEdge server (Intel
Xeon5140 2.33 GHz DualCore, 8 GB memory).

Introduction of fully dependent pages
As a natural extension of page dependency, we can let the
system generate fully dependent pages. Pages for statistics,

indexes, or search summaries belong to this category. Tra-
ditional Wiki systems do not support such pages unless
specially designed as built-in pages because they are
devoid of original contents or titles. We prepared two
types of fully dependent pages: those that are not neces-
sarily saved, and those that should be saved and subject to
page (or internet) searches. Examples of the former are
different display styles of an identical page or volatile
information that needs not be searched for. Examples of
the latter are the index pages. To support both functional-
ities, the namespace "volatile" and "persist" were newly
introduced.

Page 5 of 8

(page number not for citation purposes)

http://metabolomics.jp/wiki/FL63ACNS0001

BioData Mining 2008, 1:7

Pages in the volatile namespace describe not data contents
but function to process data. This resembles, but is clearly
different from, the template mechanism. Whereas a tem-
plate page is called from inside normal Wiki texts and its
output is embedded where the template is called, a volatile
page is linked from other pages with arguments and the
processed output is shown as if it were the page contents
of the called volatile page. Therefore, the page view may
change for each access depending on the given arguments.
Its function is the same as the widely used parameter pass-
ing mechanism through the http protocol (post/get
method in CGI, or common gateway interface), except
that any user can design such a page through Wiki.

Case example: author summary

From more than 4500 article information, author statis-
tics can be generated: for example the number of com-
pounds reported by the author and the annual
publication trend. Since the data are fully dependent on
reference pages, the page for the author summary was
placed in the wolatile namespace. It accepts an author's
name as a sole argument and generates statistics for the
author's publications from all reference pages.

On the other hand, pages in the persist namespace initially
contain nothing and the page contents are fully projected
from other pages. While a page in wvolatile namespace
offers function as its page body and receives arguments to
be processed, a page in persist namespace receives both
arguments and function body from other pages. Each time
the contents are projected, the corresponding persist page
retains the projected information so that the data are
cashed and subjected to web searches.

Case example: molecular indexes

Indexes of molecular names, molecular weights, or chem-
ical formulas are indispensable information for large-
scale data collections. Index pages are fully dependent on
other pages and should be automatically updated when
molecules are added or deleted. Although a list of mole-
cules may be displayed using the #SearchLine function
(see Methods section) in volatile namespace, such a list
cannot be utilized for further full-text searches because the
list is not materialized as the page body. Therefore, the
persist namespace is required to realize such fully depend-
ent pages whose page sources list data rather than func-
tions to generate lists. In our implementation, indexes of
the exact mass, average mass, molecular name, and chem-
ical formulas were prepared in the persist namespace.

Discussion

Search commands alleviate administrators' load
Traditional HTML-based systems including Wiki provide
a collection of independent pages only. Therefore, it is dif-
ficult to obtain page summaries or identify discrepancies

http://www.biodatamining.org/content/1/1/7

on pages even inside the same website. To acquire statis-
tics, for example, users must rely on search engines, or
administrators must prepare CGI-based functions to pro-
vide user-dependent views.

The installation of embeddable query commands allevi-
ates, at least in part, these difficulties. It yields (fully)
dependent pages; page statistics or indexes can be easily
designed and maintained, provided that data pages are
written in a uniform format. On Wiki-based systems,
moreover, not only administrators but also users have the
right to create such pages.

The introduction of embedded queries thus changes the
way Wiki-based systems are used. It accelerates the
exchange of information and reduces the cost of main-
taining data integrity through appropriately designed,
dependent pages. However, creating dependent pages
requires understanding of MediaWiki system and addi-
tional programming skill (interested readers are encour-
aged to view page sources of our website). Thus, our
contribution rather benefits advanced users that can write
dependent (i.e. programmed) pages than the majority of
end users.

Related Wiki-based systems

Our implementation on MediaWiki for flavonoid data is
a novel, though small-sized, prototype for interdependent
web pages. There have been attempts to utilize Wiki-based
systems for gene annotation or for the management of
biological information [12-14]. However, embeddable
queries are not supported, rendering it difficult to provide
statistics or summary pages. A notable exception is
BOWiki, which supports a reasoning engine for descrip-
tion logic and can introduce n-nary relationships among
pages to manage ontology data [15]. In terms of search
function, most Wiki-based systems either use the build-in,
simple text search command, or install Google extension
as in WikiPathways [16]. In both cases, search results are
only listed in a custom page. To the authors' knowledge,
no Wiki-based systems have supported embeddable
search commands. As the scripting language, we chose
Lua for its lightweight and simple design as an embedda-
ble language.

Advances from MediaWiki

MediaWiki supports streamlined page formatting through
the so-called template mechanism. A tabulated list of data
can be transformed into a uniform style by using this
mechanism. Our implementation also extensively utilizes
the function, but we additionally exploit the #repeat com-
mand so that the system can handle an arbitrary number
of data records (see Methods section). In the original
MediaWiki, only a fixed number of arguments are allowed
for each template (or command) and there is no mecha-

Page 6 of 8

(page number not for citation purposes)

BioData Mining 2008, 1:7

nism to handle data of unknown size. Under this restric-
tion, processing search results is impossible because the
number of returned items is unpredictable. Thus, the
introduction of loop- or control structures is the funda-
mental difference from MediaWiki and other Wiki-based
systems. In other words, we allow users to write small
computer programs inside Wiki pages, i.e., to realize doc-
ument computing.

Placement of dependent information

The existence of dependent pages raises the problem of
data placement. In general, when page contents are gener-
ated from original data applied to a function, the result
can be placed at the location of (1) the original data, (2)
the function, or (3) elsewhere (Table 1): Case (1) is the
template function on MediaWiki; a function in the tem-
plate namespace is called by the original data and the
result is embedded where the template name appears.
Case (2) is a page in the volatile namespace; it resembles
the http-based parameter passing in CGI in which users
input arguments to show user-dependent views. Case (3)
is a page in the persist namespace; it resembles the
Resource description framework Site Summary (RSS) con-
cept in which data-crawling software, called a feed reader,
scans registered news-sites or web logs to obtain real-time
news. Retrieved information may be cast as an independ-
ent web page elsewhere. A well-known example is Google
News [17]. The difference from RSS is that a persist page is
updated at the time of browsing, and its contents persist
as if it were an independent page until the next update.

Security issues

The embedding of the Lua programming language on
MediaWiki made it possible to implement any program
code (see Methods section). It was too powerful a func-
tion to suppress server attacks. To avoid denial-of-service
(DOS) or other attacks through Lua, we closed its 1/O
function and restricted its running time to 10 seconds. A
page-size quota was also set. Therefore, it became impos-
sible to handle truly large-scale data (e.g. one million
pages) on our system. However, this limitation is due to
our system maintenance and is not a theoretical limita-
tion (provided that we can use a high-performance com-
puter as our server).

Table I: Data placement policy of Wiki pages

http://www.biodatamining.org/content/1/1/7

Since all pages are accessed through the http protocol, all
pages are subject to web vandalism. Although the original
MediaWiki supports a password-based edit restriction,
this does not work for volatile and persist pages, which are
updated only by visiting these pages. Although both types
are fully dependent and can be easily reconstructed, van-
dalized persist pages may be cached by external web search
engines (e.g. Google). To prevent this, in our current
implementation all pages are password-protected, and
persist pages are updated only through accesses by regis-
tered users.

Conclusion

We proposed the introduction of embedded string-search
commands on MediaWiki, and realized a half-formatted
database system that can handle relational operations.
The introduction of embedded string-searches created the
notion of page dependency and document computing.
Dependent pages are categorized into three types, each
corresponding to standard Wiki pages, http-based param-
eter passing in CGI, and RSS-like pages. Thus, page
dependency sorts out seemingly irrelevant web function-
alities in a streamlined manner. The advantage is that any
(registered) user can create such pages through a web
browser.

Using these functionalities, a database of around 7,000
flavonoid molecules was implemented. On our system,
the task of data input and maintenance was rendered eas-
ier and systematic queries became possible through a tab-
ulated data format.

The introduction of embeddable search commands is the-
oretically possible for standard HTML with Java script. If
searching against external servers were to be realized, the
concept will change how we manage information on the
web. Imagine a world where every user obtains a power to
design and construct statistics pages as is done by Google:
a world where construction of 'meta’ knowledge becomes
much easier. To accelerate information exchanges and to
improve data integrity on the web, what is anticipated is a
framework like our system for the entire internet.

Page type Contents Required data Data placement Similar web facility
Normal data N/A this page HTML
Template function body function arguments function caller MediaWiki

Volatile function body function arguments this page CGI*
Persist N/A function body & function arguments this page RSS

(* ... http-based parameter passing; CGI ... common gateway interface; RSS ... resource description framework (RDF) site summary)

Page 7 of 8

(page number not for citation purposes)

BioData Mining 2008, 1:7

Competing interests
The authors declare that they have no competing interests.

Authors' contributions

MA incepted and conducted the research and wrote the
manuscript. KS helped with implementation. Both
authors read and approved the final manuscript.

Acknowledgements

The authors thank Dr. Toshiaki Tokimatsu (Kyoto University), Yoko
Shinbo, Yukiko Nakanishi, Miwa Yoshimoto, and Tadashi Gambe for pre-
paring and managing the flavonoid data. The manuscript was edited by
Ursula Petralia. This research was supported by a Grant-in-Aid for Scientific
Research on Priority Areas "Systems Genomics" from MEXT and BIRD,
Japan Science and Technology Agency.

References

I. Giles J: Special Report - Internet encyclopaedias go head to
head. Nature 2005, 438:900-901.

2. Wikipedia home [http://www.wikipedia.org

3. Codd EF: A relational model of data for large shared data
banks. MD Comput 1998, 15(3):162-166.

4. MediaWiki home [http://www.mediawiki.org]

5. Bohm BA: Introduction to Flavonoid Amsterdam: Harwood Academic
Publishers Amsterdam; 1998.

6. Shinbo Y, Nakamura Y, Altaf-Ul-Amin M, Asahi H, Kurokawa K, Arita
M, Saito K, Ohta D, Shibata D, Kanaya S: KNApSAcK: A compre-
hensive species-metabolite relationship database. In Chapter
1.6 Biotechnology in Agriculture and Forestry Plant Metabolomics Volume
57. Edited by: Saito K, Dixon RA, Willmitzer L. Berlin Heidel-
berg:Springer Verlag; 2006:165-184.

7. Tokimatsu T, Arita M: Viewing flavonoid through metabolic
maps. Saibou Kougaku (in Japanese) 2006, 25(12):1388-1393.

8. Parser Function in MediaWiki [http://meta.wikimedia.org/wiki/
Help:ParserFunctions]

9. lerusalimschy R, de Figueiredo LH, Celes W: Lua - an extensible
extension language. Software: Practice & Experience 1996,
26(6):635-652.

10. Information of newly implemented commands [http://metab
olomics.jp/wiki/Doc:Extensions]

1. New function of the open Office project
ices.openoffice.org/wiki/New Features 2.3]

12. Mons B, Ashburner M, Chichester C, van Mulligen E, Weeber M, den
Dunnen J, van Ommen GJ, Musen M, Cockerill M, Hermjakob H,
Mons A, Packer A, Pacheco R, Lewis S, Berkeley A, Melton W, Barris
N, Wales |, Meijssen G, Moeller E, Roes PJ, Borner K, Bairoch A:
Calling on a million minds for community annotation in
Wi ikiProteins. Genome Biology 2008, 9(5):R89.

13. Salzberg SL: Genome re-annotation: a wiki solution? Genome
Biology 2007, 8(1):102.

14. EcoliWiki (EcoliHub's subsystem for community annota-

tion) [http://ecoliwiki.net]
15. BOWiki (a collaborative editor for biomedical knowledge)

[http://bowiki.net/wiki/]

16. Pico AR, Kelder T, van lersel MP, Hanspers K, Conklin BR, Evelo C:
WikiPathways: pathway editing for the people. PLoS Biol 2008,
6(7):.

17. Google News [http://news.google.com]

[http://wiki.serv

http://www.biodatamining.org/content/1/1/7

Publish with Bio Med Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."
Sir Paul Nurse, Cancer Research UK
Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and published immediately upon acceptance
« cited in PubMed and archived on PubMed Central
« yours — you keep the copyright

Submit your manuscript here:

O BioMedcentral
http://www.biomedcentral.com/info/publishing_adv.asp

Page 8 of 8

(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16355180
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16355180
http://www.wikipedia.org
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9617087
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9617087
http://www.mediawiki.org
http://meta.wikimedia.org/wiki/Help:ParserFunctions
http://meta.wikimedia.org/wiki/Help:ParserFunctions
http://metabolomics.jp/wiki/Doc:Extensions
http://metabolomics.jp/wiki/Doc:Extensions
http://wiki.services.openoffice.org/wiki/New_Features_2.3
http://wiki.services.openoffice.org/wiki/New_Features_2.3
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18507872
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18507872
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18507872
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17274839
http://ecoliwiki.net
http://bowiki.net/wiki/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18651794
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18651794
http://news.google.com
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Why is database maintenance unappreciated?
	Input, management, and query are the keys

	Methods
	Flavonoid data source
	Basic functionality of MediaWiki: extension, template, and namespace
	Implemented functions to realize relational queries
	Data serialization: inputs and outputs

	Results
	Information tables for compounds, plant species, and references
	Case example: (+)-catechin

	Page dependency and dynamic generation of page contents
	Case example: realization of metabolite-species table

	Introduction of fully dependent pages
	Case example: author summary
	Case example: molecular indexes

	Discussion
	Search commands alleviate administrators' load
	Related Wiki-based systems
	Advances from MediaWiki
	Placement of dependent information
	Security issues

	Conclusion
	Competing interests
	Authors' contributions
	Acknowledgements
	References

