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Abstract

Background: Dysfunction in the endolysosome, a late endosomal to lysosomal degradative
intracellular compartment, is an early hallmark of some neurodegenerative diseases, in particular
Alzheimer's disease. However, the subtle morphological changes in compartments of affected
neurons are difficult to quantify quickly and reliably, making this phenotype inaccessible as either
an early diagnostic marker, or as a read-out for drug screening.

Methods: We present a method for automatic detection of fluorescently labeled endolysosomes
in degenerative neurons in situ. The Drosophila blue cheese (bchs) mutant was taken as a genetic
neurodegenerative model for direct in situ visualization and quantification of endolysosomal
compartments in affected neurons. Endolysosomal compartments were first detected automatically
from 2-D image sections using a combination of point-wise multi-scale correlation and normalized
correlation operations. This detection algorithm performed well at recognizing fluorescent
endolysosomes, unlike conventional convolution methods, which are confounded by variable
intensity levels and background noise. Morphological feature differences between endolysosomes
from wild type vs. degenerative neurons were then quantified by multivariate profiling and support
vector machine (SVM) classification based on compartment density, size and contrast distribution.
Finally, we ranked these distributions according to their profiling accuracy, based on the backward
elimination method.

Results: This analysis revealed a statistically significant difference between the neurodegenerative
phenotype and the wild type up to a 99.9% confidence interval. Differences between the wild type
and phenotypes resulting from overexpression of the Bchs protein are detectable by contrast
variations, whereas both size and contrast variations distinguish the wild type from either of the
loss of function alleles bchs | or bchs58. In contrast, the density measurement differentiates all three
bchs phenotypes (loss of function as well as overexpression) from the wild type.

Conclusion: Our model demonstrates that neurodegeneration-associated endolysosomal defects
can be detected, analyzed, and classified rapidly and accurately as a diagnostic imaging-based
screening tool.
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Background

Major efforts are underway to identify drug candidates for
the treatment of Alzheimer's disease. Most of these are
aimed at interference with the production or activity of
the amyloid peptide A, since this is the most likely caus-
ative agent of the disease [1]. However, other cell biologi-
cal phenomena such as degradative trafficking to the
lysosome have been identified as playing an important
role in the disease progression [2].

The endolysosome refers to a vesicular degradative
organelle spanning the late endosomal and lysosomal
compartments [3]. Endolysosomal compartments are
found in neuronal cell bodies, and are transported along
axons to and from synaptic termini in both mammals and
flies [4-6]. The involvement of the endolysosomal system
in neurodegeneration is suggested by defects in the mor-
phology, enzymatic sorting, and function of these com-
partments which accompany early stages of diseases such
as Alzheimer's [7,8]. In fact, Cataldo et al. [9] have shown
that there are morphometric differences in the endolyso-
somal compartments of neurons in the central nervous
system of normal and Alzheimer's disease afflicted human
subjects. Large-scale and unbiased assessment of morpho-
logical abnormalities in the endolysosomal compartment
of degenerating neurons either in vivo or in cell culture
would be valuable both to define a recognizable neurode-
generative state, and to provide a readout for high-
throughput cell-based screening paradigms.

Neuronal loss- and gain-of-function in blue cheese (bchs),
a putative lysosomal transport protein in Drosophila
[10,11] lead to a phenotype that displays features associ-
ated with human neurodegenerative diseases. These
include neuronal death, ubiquitin-rich brain inclusions,
and shortened lifespan in adults [10] and disintegration
of axonal processes, cytoskeletal defects, slowed axonal
transport and motorneuronal death in third instar larvae
(Lim and Kraut, manuscript under revision). Here, we
describe alterations in endolysosomal size and density
accompanying the neurodegenerative phenotype in
motorneurons of blue cheese mutant larvae. This system
was chosen for examining neurodegenerative endolyso-
somal changes because of several advantages over other
neurodegeneration models. First, the neurodegenerative
phenotype in blue cheese comes about due to a defect in a
presumptive lysosomal processing pathway [11], as
opposed to other commonly used mouse and fly models,
which rely on overexpression of a human gene [10,12,13].
Secondly the existence of identified motorneurons in
which degeneration takes place makes this model unique
(Lim & Kraut, submitted). Both of these features remove
ambiguity in interpreting the data. Additionally, the ease
of preparation of the neurodegenerative mutant animals,
and the fact that motorneurons in the fly larva are close to
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the surface, provide a practical advantage in collecting
large numbers of high-quality images.

Previously, changes in endolysosomal morphology and/
or number have been noted under various neurodegener-
ative conditions [8,9]. However, these were described in a
labor-intensive and not easily quantifiable manner, and
therefore did not yield parameters that could be applied
to rapid analysis of either in vivo animal models or drug
screening platforms. Since manual quantification of
endolysosomal features is highly subjective and time con-
suming, a rapid and efficient method of assessing these
features would be desirable as the basis for a novel screen-
ing paradigm. Loo et al. [14] have implemented a multi-
variate drug screening approach on human cancer cells,
where the phenotypic effects of various drugs were classi-
fied based on 300 feature measurements. Here, we test the
efficacy of using in situ profiling of neuronal endolyso-
somes as a potential platform for morphogenetic screen-
ing. In our method, the endolysosomes are visualized by
transgenic expression in isolated motorneurons of a green
fluorescent protein (GFP)-fusion of an endolysosomal
protein, Spinster[15]. This marker has the advantage that
it can be expressed in isolated neurons of choice using the
Gal4-UAS system [16] and that it is endolysosomally
localized. Fluorescently labeled compartments appear as
fluorescent spots in 2-D image sections of neuron termini,
which synapse onto muscles at the neuromuscular junc-
tion (NMJ)[17].

The analysis presented here first uses a novel image filter-
ing method to detect fluorescently labeled endolysosomal
compartments, which appear as spots, in the NMJs of lar-
val motorneurons. The detection method relies in its abil-
ity to segment images of neurons robustly and accurately
in situ to yield endolysosomal compartments, or spots, as
regions of interest (ROIs) that can be analyzed objectively.
Standard segmentation methods based on edge detection
[18] and intensity thresholding [19] performed poorly in
recognizing spots in our images, since some spots have
very weak edges and/or intensities and therefore fall
below the detection threshold. The presence of back-
ground fluorescence or noise also exacerbated the prob-
lem of accurately detecting spots. Here, we are able to
detect both strong and weak spots while suppressing back-
ground noise by identifying regions in the image with a
high point-wise multi-scale correlation and normalized
cross-correlation [20,21] to that of a Laplacian of Gaus-
sian (LoG) filter [22,23].

The second step of our method uses a support vector
machine (SVM) classifier [24] with a radial basis function
to determine the differences in the contrast, size and den-
sity features between the wild type and the neurodegener-
ative image sets. We also rank the features, based on their
profiling accuracy, via the backward elimination scheme
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[25]. Univariate and multivariate analyses were used to
rank various features of the endolysosomal compartments
(e.g. size, density, intensity) in terms of discriminating
power in order to assess the importance of each feature in
determining the ability of the SVM to predict genotypic
origin. This identified the feature or features that could be
used most efficiently to assign a class, either neurodegen-
erative or WT, to a given sample, and also allowed the vis-
ualization of differences between each wild type vs.
mutant pair. Finally, Fisher's Linear Discriminant analysis
(FLD) [26,27] was used to visualize the underlying differ-
ences between the wild type and the various mutant
classes.

The novelty of this study lies in the application of stand-
ard machine learning and statistical analytical methods to
an in-vivo neurodegenerative model. It has previously
been noted that the endolysosomal compartments of
degenerating neurons are affected not only functionally,
but also in terms of appearance, e.g. size, shape, and den-
sity [9,28]. Our study now shows that rapid in situ profil-
ing of morphological features of endolysosomal
compartments is possible, and could therefore serve as a
potential platform for morphogenetic screening of neuro-
degenerative diseases either in animal or cell culture mod-
els. The method consists of imaging a large number of
motorneuronal endolysosomal compartments of diverse
contrast levels, whose features are not visually obvious,
and are not accessible by conventional measurement
methods. The SVM classifier evaluates changes in contrast,
size and density features of these compartments in a rapid,
unbiased manner, and on a far larger quantity of image
data than would be possible manually, e.g. by analysis of
electron micrographs, or fluorescence images.

To our knowledge, this is the first reported image-based
multivariate analysis of a neurodegeneration-related fea-
ture at the cell biological level. The strength of the
approach is that it can identify and quantitatively describe
a diagnostic aspect of the neurodegenerative phenotype,
namely alterations in key endolysosomal features.
Because of its speed, robustness, and accuracy, the pro-
posed method has potential applications in screening the
palliative effects of anti-neurodegenerative drugs on an in
vivo model.

Methods

Preparation of Larvae for Imaging

Third instar Drosophila larvae carrying a transgene for the
green fluorescent fusion protein spinster-GFP[15] in wild
type or in a genetic background mutant in the blue cheese
gene [10] or in a background carrying an overexpression
construct in blue cheese EP2299 (Enhancer-Promoter line
2299) [29,30], were analyzed. Expression of the endolys-
osomal marker spinster-GFP was driven in two identified
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motorneurons, which are referred to using the abbrevia-
tions aCC and RP2 (see reference [17]) of each hemiseg-
ment using the GAL4-UAS system [16], with an even
skipped driver line (designated RRa > spinster-GFP, where
the symbol ">" refers to a GAL4 line driving a reporter.
RRa was the abbreviated name given to the even skipped
driver line described in [31]). Genotypes were as follows:

.+ . RRa>Spinster—GFP

R ikt sshdiielell

T+ RRa

i bchs1 . RRa>Spinster—GFP
* Df(2L)c7’ RRa

iii bchs58 . RRa>Spinster —GFP
© Df(2L)c17’ RRa

EP2299 . RRa>Spinster—GFP

W= RRa

The aforementioned genotypes will henceforth be referred
to as i. Wild type ii. bchs1 iii. bchs58 and iv. EP+ respec-
tively. Df(2L)c17 and bchsl are genetic deletions and
strong loss of function alleles of blue cheese [10] while
bchs58 carries a stop mutation in the blue cheese coding
region, but does not produce detectable protein (own
observations and [32]). Larval fillets were prepared,
immunostained for GFP, and mounted as described pre-
viously [30]. Neuromuscular junctions (NMJs) of the aCC
motorneuron in abdominal hemisegments number 2-7
(A2-A7; 12 hemisegments per animal) were imaged and
NMJs for all animals of a given genotype were pooled.

Image Acquisition

The images were acquired with a 60x/1.42NA lens at 490
nm excitation/528 nm emission wavelengths using the
Deltavision Fluorescence deconvolution imaging system
(SoftWorx; Applied Precision, Seattle) equipped with a
motorized Olympus IX70 inverted wide-field fluorescence
microscope, a 12 bit Coolsnap HQ CCD camera and a
100 W mercury lamp. A stack of 512 x 1024 pixel optical
sections spaced at 0.3 um was acquired for every NMJ in
the larvae samples with no binning. The sampling pixel
size was 0.1 um x 0.1 um along the x- and y- axes which
provided sufficient resolution for imaging the endolyso-
somal compartments.

Three morphological parameters were used to character-
ize the differences between endolysosomal compartments
in wild type and in each of the different mutant genotypes
as shown in Table 1. The exposure time and illumination
intensity were fixed for each pair-wise comparative study
(i.e. WT vs. a particular blue cheese allele) since we deter-
mined that certain measurements were sensitive to varia-
tions in exposure conditions (not shown). However, it
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Table I: Image acquisition settings for wild type vs. EP+, bchsl and bchs58

Study Exposure time (ms) lllumination intensity (% transmission)
Wild type vs. EP+ 0.5 10
Wild type vs. bchs | 0.3 10
Wild type vs. bchs58 0.3 10

was not possible to use a common acquisition setting for
all three studies due to the widely varying fluorescence of
the spots between the different groups. The acquisition
setting was selected such that the dynamic range of the
CCD chip was not exceeded, and an optimal contrast of
the endolysosomal compartments with respect to the
background was achieved. Images were deconvolved
using the constrained iterative algorithm [33] provided
with SoftWorx.

Image Processing

Endolysosomal compartments within NMJs were imaged
in 2-D optical sections and their contrast, size and density
were quantified via the following three sequential steps:
(i) enhancement of NMJ spots, (ii) detection and label-
ling of NM]J spots, and (iii) extraction of spot size, density
and contrast.

Enhancement of NM| spots

The normalized cross-correlation (NCC) as a measure of
the similarity between the local spot intensity profile and
a predefined Laplacian of Gaussian (LoG) filter was calcu-
lated as follows:

< bxr}’_]_’x,yrg7><7 —§>
[bxy-Bsy [lezsr-gl

NCC(xy)= (1)

where b, and g; , ; are column-wise vector representa-

tions of the local image neighbourhood centred at pixel
coordinates (x, y) and the 7 x 7 LoG spot filter respectively

whereas l_)x,y and g are the mean values of b, ,and g, , ;
respectively.

The point-wise multi-scale correlation (MSC) is given by
eqn. (2). The MSC measure is based on the degree of cor-

relation of a localized region at (x, y) to a total of ] "spot-
like" LoG filters

J
Msc(x,y)=1HCi(M)

i=1

where C; is a correlation measure formally expressed as
Ci(x, ¥) = Tby 82is1 x 20+ 18, 2i+1 denotes the filter dimen-
sion wherei=1, 2, ...,Jand J = 5 in this case.

Detection and Labeling of NMJ Spots

Combined NCC and MSC detection was done by first
detecting regions whose normalized cross correlation
magnitude exceeded a predefined threshold T, i.e.
INCC(x, y)| > T;.

Spots detected by the NCC were also filtered to assure
that the magnitudes of the point-wise MSC measures
exceeded another predefined threshold T, i.e. |[MSC(x,
y)| > T,. A sufficiently low threshold value was deter-
mined for T,, via a trial and error approach on the avail-
able set of image sections, such that the spot regions
were effectively distinguished from noise. Appropriate T,
and T, levels (T, = 0.4 and T, = 23) were chosen from a
range of threshold T, and T, values that were empirically
tested for their classification accuracy (see fig. 5). These
threshold values were used for the measurements of all
genotypes. After detection, a unique label was assigned
to each spot using 2-D connected components labelling
[34] so that the contrast and size information of each
spot could then be extracted.

Extraction of Size, Density and Contrast

For feature measurements, size information was encoded
as a histogram distribution with 10 size categories (S;, S,,
..r S1p) ranging from 0.01 pm2to 0.1 um2 (1-10 pixels).
Contrast information was also encoded as a histogram
distribution with 14 categories (C,, C,, ..., C;,) uniformly
divided within the 0-255 gray-scale where the contrast
measurement of a spot is defined as the difference
between the peak intensity of the spot and the back-
ground intensity surrounding it. The background inten-
sity follows the minimum pixel value within a 15 x 15
window centered around the peak intensity location. A 15
x 15 window size was chosen since it is sufficiently large
to contain any given spot.

The feature "spot density" was obtained by determining
the centroid of each spot, corresponding to the location of
its peak intensity. Subsequently a circular area with a fixed
radius r was defined around each spot so that the spot
density could be translated as the degree of overlap
between these circles. The radius r was selected such that
the circles were larger than the spots, and the diameter
(2r) typically resembled the average distance between
adjacent spots for the wild type case. We formally define
spot density D as
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Figure |

Topographic representation of R-SVM classification
accuracy over a range of threshold values for spot
detection. Normalized classification accuracy outcome after
empirical measurement using a range of values for the NCC
threshold T, and the MSC threshold T,, where AT, = 0.1 and
AT, =5, with | (white areas) representing 100% accuracy,
and 0.93 (black areas) representing 93% accuracy. Threshold
values of T; = 0.4 and T, = 23 were used in the actual meas-
urements.

_ Nﬂ'T?-—A (3)
~ A(N-1)

where N is the number of spots, r is the fixed radius and A
is the total area occupied by the spots. D is normalized
such that it lies between 0 and 1. Smaller areas of overlap
give a lower spot density. The accuracy of the density
measure is adversely affected if there are too few spots or
if the spot distribution in an NM]J section is nonuniform.
To ensure its robustness, we compute the density measure
for cases where the spot population is sufficiently large (N
> 50). We observe that the spot distribution in the NMJs
is generally uniform. However, in any given NMJ section,
there may be two or more clusters of spots that are disjoint
due to the intervening regions being out of focus at that
focal section. In such cases, the density measure is based
on the largest cluster of spots in that section.

SVM Classification

Acquired feature data was analyzed using a radial basis
function Support Vector Machine (R-SVM) classifier [24].
A leave-one-out cross validation technique was applied to
determine the classification accuracy of a dedicated R-
SVM for each pair of classes. The data set in each pair was
normalized such that each entry had a zero mean and unit
standard deviation. Since the R-SVM requires the penalty
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factor () and kernel width of the radial function () as
input arguments, we selected 'and 'which gave the high-
est classification accuracy from the following range of
input values = {0.1, 1, 10, 100, 1000} and 0.2 < <40
where the step size A = 0.2. Once implemented, R-SVM( ',

") outputs a decision value d; for every input feature vector
x; where the sign of d, is used to predict the class to which
x; belongs and the magnitude is a measure of the distance
of x; from the decision boundary.

Statistical Data Analysis

Feature Ranking — Univariate Analysis

The discriminating power of individual features was
quantified based on the Student's t-test [27] value where
discriminability is measured by the magnitude of the 12
value which is expressed as follows

2
_ (mi-m3) (4)
o1/n+oo/ny
where m, and m, are the mean values of a given feature in
the wild type and mutant class respectively, ; and , are
the corresponding standard deviation values and n; and
n, are the sample sizes of the two classes.

t

Feature Ranking — Multivariate Analysis
The Hotelling t-test [27] in eqn. 5, which is the general-
ized form of the t-test in eqn.4, is given by:

T =(m;-m,)'S!(m; - m,) (5)

The notations m; and m, denote the mean distribution of
feature vectors in the two classes whereas S = S,/n, + S,/n,
given that S, and S, are the corresponding covariance
matrices.

Data Visualization — Univariate Analysis

The differences between the wild type and mutant mean
distribution profiles for contrast and size were plotted in
histograms. The scalar value for spot density was plotted
as a probability density function with a Gaussian distribu-
tion characterized by the mean and standard deviation in
spot density values from a given genotype.

Data Visualization — Multivariate Analysis

Fisher's linear discriminant [26] is applied to visualize the
endolysosomal differences between the wild type and
mutants in 3-D feature space defined by the axes ®,, ®5
and o, which are projection vectors that optimally sepa-
rate wild type vs. bchs1, wild type vs. bchs58 and wild type
vs. EP+ respectively. They are formally defined as follows:

W..zsfl(mi—m]-) (6)
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Results

Detection of endolysosomal compartments in a
neurodegenerative model

The Drosophila neurodegenerative mutant bchs was cho-
sen as a model system in which to analyze changes in the
morphology of endolysosomal compartments in degener-
ating neurons in situ. Neuronal degeneration in bchs
mutant animals has been well-described and is believed
to affect endolysosomal function and trafficking
[10,11](Lim and Kraut, manuscript under revision). Dro-
sophila strains were created that were mutant for bchs or
overexpressing Bchs in motorneurons and that also
expressed the endolysosomal marker spinster-GFP in
motorneurons known to be affected by the neurodegener-
ative phenotype (A. Lim and R. Kraut, manuscript under
revision). Third instar larvae of the relevant genetic back-
grounds were filleted and neuromuscular termini at the
body wall were imaged with high-resolution wide-field
microscopy (see methods, and fig. 1).

The structure of interest was the Drosophila larval neu-
romuscular junction (NMJ) (shown schematically in fig.
1). The NMJ refers to the structure at the terminus of the
motorneuron that extends its axon into the peripheral
muscle field in the body wall of the larva, and makes
numerous synaptic contacts with muscle targets. Analysis
of image stacks of labelled NM]Js after filleting, immun-
ofluorescent labelling of endolysosomal compartments,
wide-field imaging, and deconvolution were carried out as
follows:

A) Differences in endolysosomal compartment features,
including spot contrast, size, and density of spots, were
quantified and compared between the wild type and the
three mutant classes using a radial basis support vector
machine (R-SVM).

B) 25 contrast, size and spot density features were ranked
in terms of their discriminating abilities using the back-
ward elimination scheme [25].

C) The differences in features between the wild type and
the mutants were visualized from both univariate feature
analysis and Fisher's linear discriminant [26,27].

Fig. 2 shows a typical maximum projection view of an
NM]J from the wild type and mutant genotypes, expressing
the endolysosomal marker spinster-GFP in two
motorneurons (aCC and RP2) terminating at the NMJ on
dorsal muscles. There are fewer compartments per area in
the bchs mutants (Fig. 2b and 2c) compared to the wild
type although most bchs1 spots appear more prominent.
The EP+ NMJ (Fig. 2d) has brighter spots than the wild

type.
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In order to overcome the problem of differing intensities
and contrast in fluorescently labelled endolysosomal
compartments, which make detection by standard convo-
lution algorithms difficult [35], we devised a spot
enhancement scheme employing two correlation tech-
niques: normalized cross correlation (NCC) [21] and
point-wise multi-scale correlation (MSC). NCC has been
widely used in frame averaging [20] and edge detection
[36]. Here we used it to identify both bright and faint
spots accurately based on the similarity of their local spot
intensity profiles to a predefined Laplacian of Gaussian
(LoG) filter. The normalized NCC measure thus resulted
in accurate spot localization regardless of intensity, but
was sensitive to background noise. Application of the
MSC, on the other hand (see Methods, eqn. (2)) gave sig-
nificantly better SNR but was sensitive to spot intensity,
i.e. weaker spots were not always detected using MSC
alone. However in combination with NCC, MSC was able
to assign higher coefficient values to bona fide spots com-
pared to background noise. Thus, spots were detected first
by including regions whose NCC magnitude exceeded a
predefined threshold T, (see Methods, detection and label-
ling of NM] spots), and potential artefacts or noise were
eliminated by ensuring that the detected regions also had
corresponding point-wise MSC measures whose magni-
tudes exceeded another predefined threshold T, (see
Methods, detection and labelling of NMJ spots).

Fig. 3 illustrates the effects of combining the two correla-
tion measures, normalized cross correlation (NCC) and
multiscale correlation (MSC), on a sample 2-D image sec-
tion of an NM]J, whereas Fig. 4 shows that combining both
NCC and MSC spot detection algorithms detects faint
spots while suppressing artefacts arising from the back-
ground. The NCC measure enables the accurate detection
of the individual spots although they may be clustered
together. In Fig. 5 we show that the proposed spot detec-
tion method is robust in distinguishing wild type from
Bchs overexpressing (‘"EP+') for threshold values of T, and
T, ranging from 0.3-0.7 and 15-30 respectively. A rela-
tively small standard deviation of ~2% is observed for the
classification accuracy.

R-SVM Classification Results

After detection of spots by NCC and MSC, size, contrast
and spot density feature measurements were extracted
from the detected spots of a given NMJ image section (see
Methods, Extraction of size, density and contrast). A stack
of images was captured for every NMJ in every class, but
the number of images in each stack varied depending on
sample thickness. Each 2-D image section of an NM] con-
stitutes a data point that is represented by a feature vector
with a total of 25 entries from which contrast, size and
spot density measurements have 14, 10 and 1 entry
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Figure 2

Preparation of Drosophila larvae for imaging labelled endolysosomal compartments in nerve termini. Third
instar larvae are dissected and opened out as indicated (upper left) to reveal the brain and larval motorneurons with axons
(green) extending into the peripheral muscle field, with segments labelled T2-A7 (purple; lower left). A bundle of axons, includ-
ing the aCC and RP2 motoraxons (see text) and expressing membrane-localized EGFP is shown making branching contacts
with dorsal muscle fibers (lower right) in an actual fixed and immunostained preparation of a larval body wall. The nerve termi-
nal (or neuromuscular junction, NMJ) is boxed and the equivalent area of an animal expressing spinster-GFP is shown (upper

right), highlighting the punctate endolysosomal compartments in the aCC terminal.

respectively. Table 2 summarizes the number of NMJs and
the corresponding data points used for comparing each
pair of classes.

A radial basis function Support Vector Machine (R-SVM)
classifier [24] was devised, into which the feature meas-
urements were fed (see Methods, SVM classification). The
R-SVM classifier quantified the differences in endolyso-
somal phenotypes between the wild type and each of the
other three mutant genotypes. The R-SVM achieved good
classification performance on previously unseen data by
finding decision boundaries that optimally separate the
wild type data points from those of the other genotypes.
The classification scheme is expressed as three two-class
problems i.e. wild type vs. bchs1, wild type vs. bchs58 and
wild type vs. EP+.

The R-SVM was trained with data sets for each parameter
from pairs of genotypes (i.e. bchs1 vs. WT or bchs58 vs.
WT), and then challenged to classify images of unknown
origin. Optimal classification accuracies of 78.1%, 72.2%
and 82.0% were obtained for wild type vs. bchs1, bchs58
and EP+, respectively. Their corresponding SVM parame-
ters representing the standard deviation of the Gaussian
kernel and the penalty factor were as follows: (4, 1000),

(40, 1000) and (8, 10) respectively for the three geno-
types. Table 3 shows the confusion matrices for the three
pairs. This is a significant achievement since, by simply
analyzing an arbitrary 2-D section of an NMJ, we can accu-
rately predict 78.1%, 72.2% and 82.0% of the time if the
NM]J is a wild type or conversely a bchs1, bchs58 and EP+
mutant class respectively.

In order to assess the ability of the SVM to predict the gen-
otypic origin of a given NMJ image, mean decision values
(reflecting degree of reliability of the assignment of
mutant vs. wild type) were calculated. The mean decision
values for all the individual decision values obtained by
the SVM for each NM]J section of a particular category of
mutant vs. wild type were averaged and plotted with
standard errors (Fig. 6). The differences in the mean deci-
sion value between the wild type and mutant classes are
statistically significant with a high confidence interval of
99.9%.

Multivariate and Univariate Feature ranking

Using univariate and multivariate analyses, we assessed
the value of various features to the SVM in determining its
ability to predict genotypic origin (i.e., feature ranking).
The purpose of feature ranking is to determine which fea-
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Figure 3
Spinster-GFP tagged endolysosomal compartments in motorneuron termini. Projected stacks of deconvolved
images from NMJs of (A) Wild type (B) bchs| (C) bchs58 and (D) EP+ genetic backgrounds, expressing spinster-GFP in endolys-
osomal compartments. The fluorescently labelled endolysosomal compartments appear as bright spots within the NMJ region
of the motorneuron. For purposes of presentation in this figure, images have been adjusted for brightness and contrast.

tures have the greatest discriminating power, and can thus
be used most efficiently to assign a class (neurodegenera-
tive vs. WT) to a given sample. This analysis also enables
us to visualize the differences within each wild type vs.
mutant pair.

The different feature categories, including 10 different size
bins, 14 contrast bins, and the single density measure-
ment were taken as individual features (see Methods,
Extraction of size, density, and contrast). The Hotelling t-test
[27] (see eqn. 5), was used to rank each of the features via
the multivariate analysis approach (see Methods, Statisti-
cal data anlysis). A Hotelling multivariate T2 statistic was
applied in a sequential backward elimination scheme [37]
to rank the contrast (C; ), size (S, o) and density (D)
features based on their discriminating power. We start
with a complete set of features and sequentially remove
those features that reduce the T2 value the least. Thus the
feature of least importance is removed first and the most
important is removed last. In the event that two or more
features have the same T2 value, we remove the feature
that corresponds to the lowest univariate T2. The use of T2
statistics is desirable due to its strictly monotonic function
where its value for a subset of features is always less than
or equal to that of the full set. Fig. 6 shows the monotonic
decrease in the T2 value where, at every stage, the least
important feature is sequentially removed for each wild
type vs. mutant pair.

The feature describing spot density, D, appears as one of
the top six most discriminating features for all three geno-
types (Fig. 7). The smaller spots of sizes S,, S; and S, play
an important role in discriminating wild type from bchs1
and bchs58 as shown in Fig. 7b, whereas spots of contrast
levels Cs, Cg, etc. are crucial in discriminating wild type
from EP+ as shown in Fig. 7c. Spots of mid level contrast
Cy and C, more effectively discriminate wild type from
bchs1 whereas those of lower contrast C; and Cs aid the
discrimination of the bchs58 case.

Visualizing the Differences in Genotypes — Univariate and

Multivariate Analysis

The differences between the wild type and mutant feature
data were visualized by plotting on histograms the mean
distribution profiles of endolysosomes from the different
genotypes among the various contrast, size, and density
bins (Fig. 8). In this way, the differences in the profiles of
the mean spot size and contrast as well as variations in the
spot density values could be compared visually between
the wild type and the three mutant classes. A significant
difference is observed in the mean spot size profiles (Fig.
8b, e) where the endolysosomal compartments are larger
in the bchs mutants compared to the wild type. The mean
contrast profiles of the bchs mutants in (Fig. 8a, d) are
however very similar to the wild type. The converse is true
for EP+ where the mean contrast profiles (Fig. 8g) show
that, in general, the spots in EP+ have higher contrast lev-
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Figure 4
NCC and MSC spot detection and enhancement filters produce different outputs. (A) Sample 2-D image section of

an NMJ. (B) the normalized cross correlation output, NCC, detects spots as well as background noise. (C) Point-wise multi-
scale correlation measurement, MSC, suppresses background noise but emphasizes brighter spots such that weaker spots may
fall below the detection threshold. For purposes of presentation in this figure, images in A and C have been adjusted for bright-

ness and contrast.
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Accurate detection of faint and strong spots while suppressing background noise. Figure 4(A) A 2-D maximum pro-
jection from a deconvolved stack of a wild type NMJ. (B) Endolysosomal spots detected from the projection using NCC and
MSC are highlighted in red.

els than those in the wild type. Their mean spot size pro-  Spot density is a scalar value and as such the differences in
files, on the other hand, (Fig. 8h) are very similar. spot density values between the two groups are visualized
from the corresponding probability density function

Table 2: Number of NMJs and data points (image sections) used to characterize differences between (i) wild type vs. EP+, (ii) wild type
vs. bchs| and (iii) wild type vs. bchs58

Class | Class 2
Genotype No. of NM] Data points Genotype No. of NM] Data points
Wild type 13 135 EP+ 19 176
Wild type 21 217 behs| 25 83
Wild type 21 217 bchs58 20 79
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Table 3: Confusion matrices of spin wild type vs. (a). bchsl, (b). bchs58 and (c). EP+

Predicted Class

Wild type behs|
Actual Class Wild type 77.0 23.0
behs| 27.3 72.7

Predicted Class

Wild type bchs58
Actual Class Wild type 71.9 28.1
bchs58 27.0 73.0

(@)

Predicted Class

Wild type EP+
Actual Class Wild type 78.5 215
EP+ 20.5 79.5

(©)

(b)

(PDF) with a Gaussian distribution characterized by their
respective mean and standard deviation in spot density.
The spot density of the wild type endolysosomes is, in
general, higher than those of any of the mutant classes
(Fig. 8¢, f, i). This is not an artifact of spot clustering in the
mutants, since individual spots are resolvable from aggre-

gations of spots. The filter profile was detectable within
these more clustered regions.

Fisher's linear discriminant [26,27], shown in fig. 9, was
used to compute the projection vectors ®,,, ®;5and ®;,
which optimally separate wild type vs. bchs1, wild type vs.

B Wild type O Mutant

1.5 q----e=-smssssesseeseeeecceoeo-
Wild type vs. bchs58
=
7 =
o
€05 4o
<=
cu
=
g 0
c
L
G-05 -==--======i
[
©
c
U S—
=
1.5 demmmmmeem e
Figure 6

Wild type vs. bchs1

Mean decision values for R-SVM classifications of samples. Mean decision values obtained by the R-SVM on samples of
wild type (dark gray) vs. bchs58, bchs| mutant and EP+ overexpressing classes, respectively (light gray). A larger decision value
indicates greater distance from the decision boundary and thus greater reliability of the classification.
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bchs58 and wild type vs. EP+ respectively. These eigenvec-
tors are then used to visualize the differences in distribu-
tion between the wild type and the mutant phenotypes.
The discrimination between the wild type and mutant
classes are visualized (Fig. 9b, c). As observed, wild type
and EP+ were optimally discriminated along the axis ®,,
(Fig. 9a) but axes ®,, and ®,5 (not shown) do not contrib-
ute to this discrimination. Interestingly, the same two axes
(o, and ®,5) are both the best at discriminating wild type
from mutants bchs1 and bchs58 (Fig. 9b, c). This implies
that both bchsl and bchs58 share common properties
which set them apart from the wild type. This is consistent
with these two genotypes both being strong loss of func-
tion alleles of bchs.

Conclusion

We have developed a novel imaging-based method for
quantifying neurodegeneration-associated changes in the
endolysosomal compartment, an organelle whose func-
tion is strongly associated with the pathology of neurode-
generative diseases, in particular Alzheimer's disease[2].
This method may be useful as a potential tool for diagno-
sis and screening of the neurodegenerative pathology at
the cellular level.

Image analysis was carried out on individual affected neu-
rons in a Drosophila neurodegenerative model, blue
cheese, a mutant which is thought to disrupt lysosomal
function[11]. We were able to accurately detect and ana-
lyze GFP-labelled endolysosomes at the termini of
motorneurons in situ, using novel automated segmenta-
tion and feature extraction algorithms. The key steps of
the method are as follows: (1) A combination of normal-
ized and standard cross correlation techniques is used to
give accurate segmentation of compartments from image
sections, even those with poor SNR; (2) Contrast, size and
spot density measurements are extracted from individual
endolysosomal compartments; (3) Impartial and auto-
mated diagnosis of the phenotypes via the R-SVM classi-
fier is carried out, and (4) A backward elimination scheme
is used to rank the various feature measurements in terms
of their power to discriminate the mutant phenotypes
from the wild type.

Fluorescently labelled endolysosomes in motorneuronal
endings appear as spots with diverse contrast and inten-
sity in 2-D image sections. Due to this variability, conven-
tional image segmentation fails to detect these
compartments. In contrast, our segmentation approach,
which uses normalized cross-correlation and multi-scale
correlation algorithms in succession, is sensitive yet selec-
tive to these compartments regardless of their contrast lev-
els. Based on measurement of relatively few key features
(spot density, intensity, and size) endolysosomes from
neurodegenerative motorneurons can be accurately recog-
nized and differentiated from the wild type. These differ-

http://www.biodatamining.org/content/1/1/10

ences are not obvious by inspection, and manual
collection of such quantitative data from a large number
of image samples is prohibitively labour-intensive. As a
solution to this problem, the automated algorithm detects
differences between the neurodegenerative mutant com-
partments and normal compartments with a highly statis-
tically significant confidence interval of 99.9%.

The ranking of the different feature measurements against
each other showed that the relative importance of a partic-
ular feature in distinguishing the origin of a sample varied
between genotypes. For example, the differences between
the wild type and phenotypes resulting from overexpres-
sion of the Bchs protein (EP+) are largely attributable to
contrast variations. On the other hand, both size and con-
trast variations differentiated the wild type from either of
the loss of function alleles bchs1 and bchs58. Density
measurements were different in all three bchs genotypes
(loss of function as well as overexpression) from the wild
type. Ranking of feature importance makes it in principle
possible to select the features most relevant to an assess-
ment of the neurodegenerative phenotype, and increase
the speed and accuracy of a diagnostic readout.

While the contrast, size, and density feature differences
between genotypes are quite subtle, as is evident from Fig.
2, clearly the R-SVM classifier was able to distinguish the
neurodegenerative (mutant) case from wild type, in all
three genetic classes. Surprisingly, the application of the
feature detection algorithm to the fluorescence images in
some cases yielded results that were counter-intuitive to
observations made by eye: strikingly, images of NMJs
from neurons overexpressing Bchs appeared in general to
have larger compartments, whereas the algorithm
revealed that the compartments were actually of similar or
even smaller size, but higher contrast.

Interestingly, both the neurodegenerative bchs loss of
function alleles gave endolysosomal spot size profiles that
were bigger than wild type, and this feature was promi-
nent in determining genotypic origin. This may be related
to the observation of enlarged lysosomal compartments
in the neurodegenerative lysosomal storage diseases
[38,39] and in the human Chediak-Higashi syndrome,
which results from mutation in a gene related to bchs [40].
Another decisive feature difference, the lower density of
the compartments at the NM]J in all three degenerative
genotypes, is also consistent with the inefficient axonal
transport of endolysosomes from neuronal cell bodies
toward the termini (where images were obtained) that
was observed in these same genotypes (A. Lim and R.
Kraut, manuscript under revision).

An important finding of this study was that Fisher's linear
Discriminant categorized both loss of function alleles
according to the same eigenvectors, even given the sub-
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Figure 7

Multivariate T2 ranking of features in increasing order of importance in determining the classification of phe-
notypes. Effect of leaving out different contrast, size, and density (C, S, and D) feature classes on the ability of the R-SVM to
discriminate between (a) Wild type vs. bchs| (b) Wild type vs. bchs58 and (c) Wild type vs. EP+.
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Comparisons between histogram distributions of features in wild type vs. mutant classes (bchsl|, bchs58 and
EP+). (a), (d) and (g): mean contrast profiles, (b), (e) and (h): mean size profiles, and (c), (f) and (i): probability density functions
of spots (endolysosomes) at NMJs of the given genotypes. Spot contrast is slightly increased for the Bchs overexpressor EP+ in
comparison to wild type, whereas mean spot size is larger than wild type in the bchs mutants bchs| and bchs58. Density is

lower in all cases in comparison to wild type.

tlety of the differences in features. This demonstrates the
power of the method to identify essential feature informa-
tion and classify phenotype ("degenerative" vs. "normal")
based on relatively small data sets. Moreover, subclasses
of phenotype (e.g. Bchs overexpressor vs. bchs mutant)
can be defined, since particular eigenvectors and distribu-
tions along these vectors appear to be typical for certain
genotypic classes, as is seen in Fig. 9.

In conclusion, as one of the key early pathological features
of neurodegenerative disease, it is significant that the
endolysosomal phenotype is now open to analysis by an
automated, potentially high throughput process. The
technique described here may be useful in rapid screening
of drug candidates, since it can easily be applied to images
in cell culture models of neurodegeneration. This type of
analysis should also allow rapid, unbiased evaluation of
degenerative changes in different in vivo models, which
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Fisher's linear discriminant discriminates between wild type and mutant phenotypes. 2-D scatter plots of wild
type vs. EP+ (a) Wild type vs. bchs| and (b) Wild type vs. bchs58 (c) in Fisher's space spanned by axes ®,,, ®,3and ®,4. Note
that the scatter plots in (b) and (c) show that the wild type differs from bchs| and bchs58, the two loss of function alleles, in the
same way (spanned by the same projection axes and having similar distributions), but that WT deviation from the EP+ (Bchs
overexpression) profile is clearly distinct from those of bchs| and bchs58 (different projection axes and distributions).

are undetectable by traditional manual methods, and may
ultimately be useful as a means of reliably diagnosing a
systemic cellular condition that affects the endolysosomal
compartment and predisposes neurons to degeneration.
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