Skip to main content
Fig. 1 | BioData Mining

Fig. 1

From: SequenceCEROSENE: a computational method and web server to visualize spatial residue neighborhoods at the sequence level

Fig. 1

Schematic workflow of SequenceCEROSENE and example output shown for transcription promoter CAP (catabolite activator protein, PDB-Id 1cgp [12]). Upon computing the maximum spatial span s max , the given molecular complex is embedded in a cubic bounding box (a1) and, based on this, translated into RGB color space (a2). Eventually, corresponding sequences are color-coded in accordance to three-dimensional locations of residues (a3) from which structural residue neighborhood can be quickly deduced. For example, interfacial residues between both peptide chains in CAP are located in a region of 22 residues relating to a helix-helix interaction (highlighted by blue box I in (b) and (c)). These residues can intuitively be identified by their common grey-blue coloring in the color encoded sequences. Further, color encoding intuitively reflects that the two dsDNA molecules are comprised by chains C and F as well as D and E. Here, note the reversed color coding of the bound chains, indicating anti-parallel binding. In addition, the DNA binding domain in both peptide chains corresponds to the C-terminal region highlighted by red box B1 respectively B2. Color encoding of the sequences shows that dsDNA D-E and C-F are bound to regions B1 and B2, respectively. Note that in (b) representations of secondary structure elements outside of regions I, B1 and B2 are neglected for visual clarity

Back to article page