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Abstract

Background: Aldolase A (ALDOA) is one of the glycolytic enzymes primarily found in
the developing embryo and adult muscle. Recently, a new role of ALDOA in several
cancers has been proposed. However, the underlying mechanism remains obscure and
inconsistent. In this study, we tried to investigate ALDOA-associated (AA) genes using
available microarray datasets to help elucidating the role of ALDOA in cancer.

Results: In the dataset of patients with non-small-cell lung cancer (NSCLC, E-GEOD-
19188), 3448 differentially expressed genes (DEGs) including ALDOA were identified, in
which 710 AA genes were found to be positively associated with ALDOA. Then
according to correlation coefficients between each pair of AA genes, ALDOA-associated
gene co-expression network (GCN) was constructed including 182 nodes and 1619
edges. 11 clusters out of GCN were detected by ClusterOne plugin in Cytoscape, and
only 3 of them have more than three nodes. These three clusters were functionally
enriched. A great number of genes (43/79, 54.4%) in the biggest cluster (Cluster 1)
primarily involved in biological process like cell cycle process (Pa = 6.76E-26), mitotic cell
cycle (Pa = 4.09E-19), DNA repair (Pa = 1.13E-04), M phase of meiotic cell cycle (Pa = 0.006),
positive regulation of ubiquitin-protein ligase activity during mitotic cell cycle (Pa = 0.014).
AA genes with highest degree and betweenness were considered as hub genes of GCN,
namely CDC20, MELK, PTTG1, CCNB2, CDC45, CCNB1, TK1 and PSMB2, which could
distinguish cancer from normal controls with ALDOA. Their positive association with
ALDOA remained after removing the effect of HK2 and PKM, the two rate limiting
enzymes in glycolysis. Further, knocking down ALDOA blocked breast cancer cells in the
G0/G1 phase under minimized glycolysis. All suggested that ALDOA might affect cell
cycle progression independent of glycolysis. RT-qPCR detection confirmed the
relationship of ALDOA with CDC45 and CCNB2 in breast tumors. High expression of the
hub genes indicated poor outcome in NSCLC. ALDOA could improve their predictive
power.

Conclusions: ALDOA could contribute to the progress of cancer, at least partially
through its association with genes relevant to cell cycle independent of glycolysis. AA
genes plus ALDOA represent a potential new signature for development and prognosis
in several cancers.
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Background
In mammalian tissues, three aldolase isozymes (A, B and C), encoded by three dif-

ferent genes, are differentially expressed during development. Aldolase A (ALDOA),

also known as fructose-bisphosphate aldolase A, is one of the glycolytic enzymes

that catalyze the reversible conversion of fructose-1, 6-bisphosphate to

glyceraldehyde-3-phosphate and dihydroxyacetone phosphate. ALDOA is primarily

found in the developing embryo and adult muscle, and contributes to various cellu-

lar functions and biological process related to muscle maintenance, regulation of

cell shape and mobility, striated muscle contraction, actin filament organization and

ATP biosynthetic process. ALDOA deficiency probably results in myopathy and

hemolytic anemia [1–3].

Recently, a new role of ALDOA has been proposed, given that ALDOA is highly

expressed in a variety of malignant cancers, including human lung cancer [4], osteosar-

coma [5], colorectal cancer [6], oral squamous cell carcinomas [7] and hepatocellular car-

cinomas [8]. It could serve as a diagnostic and prognostic marker. Although elevated

ALDOA level has been observed in these tumors, the underlying mechanism remains ob-

scure and inconsistent. Some assumed that since glycolysis in rapidly growing tumor cells

was up to 200 times faster than those of their normal tissues (Warburg effect), ALDOA

expression would be also increased as an enzyme of this process [5]. However, others

demonstrated that ALDOA probably played a non-metabolic role to facilitate cell prolifer-

ation [9]. Although RNA interference of ALDOA has been shown to inhibit cell prolifera-

tion in Ras-transformed NIH-3 T3 cells, there was no report on the potential mechanism

or associated genes relevant to the role of ALDOA played in cell proliferation [10].

In the glycolysis pathway, ALDOA functions at the fourth step, followed by

glyceraldehyde-3-phosphate dehydrogenase (GAPDH), another glycolytic enzyme at the

sixth step. GAPDH is regarded as a housekeeping gene, but its expression is not always

constant, especially in cancer, and has been supposed to correlate with cell cycle-

dependent genes [11]. However, little was known about the associated genes of ALDOA

and its mechanism other than glycolysis, albeit its potential role in tumors. In this

study, we tried to investigate ALDOA-associated genes (AA genes) with the utilization

of publicly available microarray datasets, which would help elucidating the role for

ALDOA played in cancer. Since the effect of ALDOA on lung cancer was reported in

the previous studies [4, 12, 13], microarray datasets focused on lung cancer was used to

detect AA genes, which were verified in other tumors.

Methods
Gene expression microarray datasets

Five gene expression datasets introduced in this study were from ArrayExpress (http://

www.ebi.ac.uk/arrayexpress/) of the European Institute of Bioinformatics (EBI). The

analyses included independent cohorts containing non-small cell lung cancer (NSCLC:

E-GEOD-19188 [14] and E-GEOD-37745 [15]), cervical cancer (E-GEOD-9750 [16]),

breast cancer (E-GEOD-21422 [17]), hepatocellular carcinoma (E-GEOD-14520 [18]),

all of which were publicly available. These datasets employed Affymetrix GeneChip Hu-

man Genome U133 plus 2, U133A, U133A_2 or HT_HG-U133A. The CEL files con-

taining the raw data from each experiment were directly downloaded from the EBI
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with particular accession number. Besides, another dataset from GDC Data Portal

(https://gdc-portal.nci.nih.gov/projects/TCGA-LUAD) contained normalized RNAseq

data (RSEM: RNA-Seq by Expectation Maximization) of lung adenocarcinoma based

on IlluminaHiSeq was also downloaded. Except for E-GEOD-37745, each dataset in-

cluded the case group and the corresponding control group (Table 1).

Identification of differentially expressed genes

Raw data retrieved from ArrayExpress were then normalized using Robust Multi-array Ana-

lysis (RMA) with “affy” R-Package (version 3.2.2), and the normalized expression values rep-

resented the probe set intensity on a log-2 scale. The expression levels of more than two

probes standing for the same gene were averaged. Moderated t-statistic was carried out with

“limma” R-Package to indentify differentially expressed genes (DEGs) between different dis-

ease statuses in each dataset. Both adjusted P value (Benjamini & Hochberg, Pa) and Fold

Change (FC) were obtained and only the genes with Pa value < 0.05 and |FC| > 1.5 were se-

lected as DEGs.

Construction of gene co-expression network with AA genes

Pearson’s correlation coefficient (r) was calculated. If P values of correlation coefficients

between ALDOA and other DEGs in the cancer group were larger than 0.05, these

DEGs were regarded as AA genes. Then, if r value between each two AA genes was lar-

ger than 0.7 in the cancer group, these two genes were connected and considered for

ALDOA-associated gene co-expression network (GCN) construction. GCN is undir-

ected with each node corresponding to one gene. Given a significant co-expression re-

lationship exists between a pair of nodes, they are connected with an edge. GCN is of

biological interest since co-expressed genes are likely controlled by the same transcrip-

tional regulatory program, functionally related, or members of the same pathway [19].

Besides, network analysis was performed on GCN in Cytoscape (version 3.2.1). The

genes with highest degree and betweenness were considered as hub genes. Degree is

defined as the number of links incident upon a node. Betweenness, an indicator of a

node's centrality in a network, is equal to the number of shortest paths from all vertices

to all others that pass through that node. A node with high betweenness has a large in-

fluence on the transfer of items through the network [20].

Table 1 Six independent datasets from ArrayExpress and GDS website. Except for the RNAseq data
(normalized RSEM expression), other gene expression microarray datasets were normalized using
RMA with R-package “affy”

Cancer Accession
Number

Array Sample Size

Control Size

Non-small-cell lung cancer E-GEOD-19188 HG-U133_Plus_2 65 91

E-GEOD-37745 HG-U133_Plus_2 - 196

Lung Adenocarcinoma TCGA-LUAD IlluminaHiSeq 515 59

Cervical Cancer E-GEOD-9750 HG-U133A 24 33

Breast Cancer E-GEOD-21422 HG-U133_Plus_2 5 14

Hepatocellular Carcinoma E-GEOD-14520 HT_HG-U133A 212 222
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Partial correlation analyses between ALDOA and other genes

Given the possibility that the concurrence of up-regulated ALDOA and AA genes

could be a mutual effect of accelerated glycolysis in cancer, we revaluated their relation-

ship by partial correlation analysis, which measures the degree of association between

two random variables in statistics, removing the possible influences of glycolysis on the

co-existence of ALDOA and AA genes.

As reported, there are three important rate limiting enzymes, namely hexokinase,

phosphofructokinase and pyruvate kinase, controlling the flux of glycolysis. Hexokinase

(HK) is an uninversally expressed enzyme catalyzing the conversion of glucose into

glucose-6-phosphate. Phosphofructokinase (PFK) is responsible for the phosphorylation

of fructose-6-phosphate yielding fructose-1,6-bisphosphate. Pyruvate kinase (PK) cata-

lyzes the last step of glycolysis transferring a phosphate group from phosphoenolpyr-

uvate to ADP, producing one molecule of pyruvate and one molecule of ATP. HK2,

PFKM and PKM encode the muscle-type isozymes respectively of these three enzymes.

Here, the partial correlation coefficients (rp) between ALDOA and other genes at the

transcriptional level were calculated using R-package ‘corpcor’ when separately remov-

ing the effect of these genes.

Network clustering and identification of cluster function

ClusterOne plugin in Cytoscape is designed to discover densely connected and possibly

overlapping regions within the Cytoscape network (eg., Protein-Protein interaction net-

work) by a greedy procedure adding or removing vertices to find groups with high co-

hesiveness [21]. In this study, we utilized ClusterOne to detect highly interconnected

region (Cluster) of the ALDOA-associated GCN. The functional enrichment analysis

was performed using DEVID bioinformatics resource (version 6.7), to explore the well

known database: Gene Ontology (GO) database. We especially annotated the clusters

with GO BP (Biological Process), MF (Molecular Function), and CC (Cellular Compo-

nent) terms. For multiple hypothesis tests, Pa was obtained with bonferroni method.

Patients and tissue homogenate preparation

Frozen breast tumors stored in RNAlater® Solution (P/N: AM7021, Ambion, USA) were

obtained from 16 patients diagnosed and operated in the Cancer Hospital of Shantou

University Medical College in 2015. All patients did not receive radiotherapy or chemo-

therapy before surgery resection. Informed consent for the use of their samples was ob-

tained from all the patients. This study was approved by the medical ethics committee

of the Cancer Hospital of Shantou University Medical College. Tissue samples about

500 mg were homogenized in 1 ml TRIzol (Cat No. 15596–026, Invitrogen, USA) using

a tissue homogenizer, and then supernatant was extracted for mRNA quantification

after centrifugation.

Quantitative real-time polymerase chain reaction (qRT-PCR)

Transcripts of ALDOA and several hub genes were measured in breast tumors by qRT-

PCR. Total-RNA was extracted from tissue homogenizer, and then reversely transcribed

to cDNA was using PrimeScript™ RT reagent Kit with gDNA Eraser (Code No.

RR047A, Takara, Japan). Subsequently, the expression was measured by qRT-PCR in
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SYBR® Premix Ex Taq™ II (Tli RNaseH Plus) (Code No. RR820A, Takara, Japan), using

the gene-specific primers (Table 2). The parameters for PCR amplification were 95 °C

for 2 min, followed by 40 cycles of 95 °C for 15 s and 60 °C for 1 min, 40 cycles. β-

Actin was selected as the internal control. The relative mRNA expression was calcu-

lated with the comparative △Ct method using the formula 2-△△Ct [22].

Relationship of ALDOA with several hub genes

Spearman’s rank correlation coefficients (rs) were calculated between ALDOA and each

of hub genes at the transcriptional level obtained from qRT-PCR mentioned above. P <

0.05 was considered as statistical significance.

Cell lines and culture conditions

One human breast cancer cell line SKBR3 were purchased from the Culture Collection

of the Chinese Academy of Sciences, Shanghai, and maintained in DMEM (high glu-

cose) (Gibco, Thermo Fisher Scientific Inc., California, USA) supplemented with 10%

fetal bovine serum (FBS, Biological Industry, Kibbutz Beit Haemek, Israel) at a 37 °C,

5% CO2 incubator.

Western blotting (WB)

Cells were lysed with a lysis buffer and PMSF (Beyotime, Shanghai, China) on ice

for 30 min and centrifuged at 12000 rpm for 15 min at 4 °C. Cell lysates (50 μg)

were electrophoresed on 12% SDS polyacrylamide gel and transferred onto a PVDF

membrane. After blocking with Tris buffered saline containing 0.05% Tween 20

(TBST) and 5% non-fat milk for 1 h at room temperature, the filters were washed 3

times × 5 min with TBST and then incubated with either rabbit anti-ALDOA poly-

clonal antibody (1:2000, Code No. ab71433, abcam, Cambridge, UK), or mouse anti

β-Tubulin monoclonal antibody (1:1000, Code No. HC101-01, transgene, Illkirch

Graffenstaden Cedex, France) diluted in blocking buffer at 4 °C overnight. After 3

Table 2 Primers of ALDOA, CDC20, CDC45 and CCNB2 for qRT-PCR. Primer Premier 5.0 was used
to design the primers, and Primer-BLAST tool of NCBI was used to ensure the accuracy and specifi-
city of these primers

Targeted Gene Primer Sequence (5′–3′)

ALDOA Forward ATGCCCTACCAATATCCAGC

Reverse GACAGCCCATCCAACCCT

CDC20 Forward GGCACCAGTGATCGACACATTCGCAT

Reverse GCCATAGCCTCAGGGTCTCATCTGCT

CCNB2 Forward GCGTTGGCATTATGGATCG

Reverse TCTTCCGGGAAACTGGCTG

CDC45 Forward TGGACTGCACACGGATCT

Reverse AACCTGGCTGCGGTATAG

TK1 Forward TGGCTGTCATAGGCATCGAC

Reverse CCAGTGCAGCCACAATTACG

β-Actin Forward AGCGAGCATCCCCCAAAGTT

Reverse GGGCACGAAGGCTCATCATT
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times× 5 min wash with TBST, the membranes were incubated with horseradish

peroxidase-labelled antirabbit (1:5000, Novus Biologicals, Littleton, USA) or anti-

mouse (1:5000, Santa Cruz Biotechnology, Santa Cruz, USA) IgG at room

temperature for 2 h, and washed with TBST. The blots were visualized with

chemiluminescence.

Knockdown of ALDOA expression by small interfering RNA (siRNA)

SKBR3 with abundant ALDOA expression, was used to test the effect of ALDOA on cell

cycle progression. We tried four different pairs of siRNAs designed targeting ALDOA spe-

cifically and purchased from GenePharmagps (Shanghai, China), only one of them sub-

stantially reduced the expression level of ALDOA. Therefore we used this siRNA

oligonucleotide targeting the coding sequence of human ALDOA mRNA (siALDOA) and

one scramble control siRNA (siNC) was served as control. The sense and antisense strand

sequences of siALDOA are 5′-GCCUUGCCUGUCAAGGAAATT−3′ and 5′-UUUC-

CUUGACAGGCAAGGCTT−3′, respectively, the sense and antisense strand sequences

of siNC are 5′-UUCUCCGAACGUGUCACGUTT-3′ and 5′- ACGUGACACGUUCG-

GAGAATT−3′, respectively. When cells growing in DMEM (high glucose) supplemented

with 10% FBS were at a 40–50% confluence, siALDOA or siNC was added for transfection

at a ratio of 75pmol siRNA: 7.5uL Lipofectamine 3000TM (Invitrogen, Thermo Fisher Sci-

entific Inc., California, USA), 48 h after transfection, the transfectants were either lysed to

check the efficiency of knockdown by WB, or switched to glucose-free DMEM for add-

itional 8 h culture.

Flow cytometry for cell cycle analysis

Considered that the role of ALDOA in cancer could be an epiphenomenon of gly-

colysis (Warburg effect), we performed flow cytometry assays to examine the effect

of ALDOA on cell cycle progression in the absence of glucose. Briefly, 48 h after

transfection with either siALDOA or siNC, SKBR3 cells were then cultured in

glucose-free DMEM (Gibco, Thermo Fisher Scientific Inc., California, USA) for

additional 8 h to block the initiation of glycolysis, and cells were then collected

and fixed with 70% ethanol at 4 °C overnight, then washed twice with ice-cold

PBS. After that, 1 mg/ml RNaseA (Sigma-Aldrich Co., St Louis, MO, USA) was

added at 37 °C, followed by propidium iodide (PI) staining for 30 min in the dark.

BD AccuriTM C6 flow cytometer was used to measure the DNA contents. Each ex-

periment was repeated at least three times.

Hierarchical clustering and survival analysis

Hierarchical clustering was performed to cluster samples with hub genes plus ALDOA,

in order to determine whether these genes could also distinguish tumors from controls

for other cancer types.

For the dataset E-GEOD-37745 including 196 NSCLC patients, gene expression

higher or lower than median was placed in “high” or “low”. Kaplan-Meier survival

analysis was conducted. The 3-year and 5-year overall survival (OS) rates were com-

pared by Z-test. All analyses were carried out using the open source statistical tool
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R (version 3.2.2). A flow diagram depicting the whole data process in this paper was

showed in Fig. 1.

Results
DEGs were identified between NSCLC and controls

The dataset E-GEOD-19188 based on the HG-U133_Plus_2 array, available from

ArrayExpress database, contained 91 NSCLC tumors and 65 normal lung tissues

(Table 1). Linear models identified 3448 genes differently expressed between NSCLC

tumors and normal lung tissues (|FC| > 1.5 and Pa < 0.05), which were regarded as

DEGs. Of these, 1479 genes including ALDOA were up-regulated in tumors and the

remaining 1969 genes were down-regulated.

AA genes were recognized in NSCLC

To recognize DEGs whose expression in the tumors were associated with ALDOA ex-

pression (AA genes), Pearson’s correlation coefficient was conducted within the

NSCLC cancer cohort (91 arrays). Consequently, 1200 DEGs with P < 0.05 were iden-

tified as AA genes, of which the expression of 710 genes was positively correlated

with ALDOA expression (the range of r values: 0.21 to 0.61), while 490 genes were

negatively correlated with ALDOA (the range of r values:−0.54 to−0.21). Previous
studies suggested genes with positively correlated expression profiles were much more

Fig. 1 Study flow chart of this study
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likely to share similar functional annotations than genes with negatively correlated ex-

pression profiles [23]. Therefore, only these 710 AA genes were used for ALDOA-

associated GCN construction.

ALDOA-associated GCN was constructed in NSCLC

In order to construct ALDOA-associated GCN, for each pair of AA genes, we calculated

Pearson’s correlation coefficients over again between their mRNA expression profiles. To-

tally, 1619 gene pairs with r ≥ 0.7 turned out to be interrelated and connected in the net-

work. Thus the ALDOA-associated GCN finally included 182 nodes and 1619 edges.

ALDOA-associated GCN was clustered and annotated

In our study, ClusterOne was used to identify clusters from ALDOA-associated GCN

and the minimum size of cluster was set to 3 and minimum density was 0.5. Finally,

11 clusters with P <0.05 were detected. Cluster 1 was the biggest cluster with 79 AA

genes, then followed by Cluster 2 with 22 AA genes and Cluster 3 with 5 AA genes.

In view of only the first three clusters with size larger than 3 nodes, DAVID for func-

tional enrichment analysis was performed for these clusters, and all of them were sig-

nificantly enriched. The representative GO terms were listed in Table 3. Over half of

genes (43/79, 54.4%) in Cluster 1 primarily involved in BP, including cell cycle process

(Pa = 6.76E-26), mitotic cell cycle (Pa = 4.09E-19), DNA repair (Pa = 1.13E-04), M

phase of meiotic cell cycle (Pa =0.006), positive regulation of ubiquitin-protein ligase

activity during mitotic cell cycle (Pa = 0.014). ATP binding (Pa = 3.86E-05) was the

main MF of Cluster 1, while nuclear lumen (Pa = 1.20E-08) and microtubule cytoskel-

eton (Pa = 1.60E-09) were the primary CC. Distant from Cluster 1, Cluster 2 showed

MF of structural constituent of cytoskeleton (Pa =0.008) and structural molecule ac-

tivity (Pa =0.009), and CC of desmosome (Pa =0.018). The only MF category in Cluster

Table 3 Functional enrichment of AA genes in clusters. Functional enrichment analysis was
performed for cluster annotation using DEVID bioinformatics resource, exploring the well known
database: Gene Ontology (GO) database. We especially annotated the clusters with GO BP
(Biological Process), MF (Molecular Function) and CC (Cellular Component) terms

#Cluster Gene size GO Term ID Description Count Pa values*

1 79 BP GO:0022402 cell cycle process 35 6.76E-26

GO:0000278 mitotic cell cycle 26 4.09E-19

GO:0006281 DNA repair 12 1.13E-04

GO:0051327 M phase of meiotic cell cycle 7 0.006

GO:0051437 positive regulation of
ubiquitin-protein ligase activity
during mitotic cell cycle

6 0.014

MF GO:0005524 ATP binding 22 3.86E-05

CC GO:0031981 nuclear lumen 27 1.20E-08

GO:0015630 microtubule cytoskeleton 19 1.60E-09

2 22 MF GO:0005200 structural constituent of cytoskeleton 4 0.008

GO:0005198 structural molecule activity 7 0.009

CC GO:0030057 desmosome 3 0.018

3 5 MF GO:0005509 calcium ion binding 5 4.99E-04

*P value was adjusted by Bonferroni method (Pa)
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3 was calcium ion binding (Pa =4.99E-04). Given the presentation of previous study

that there was a relationship between carbohydrate metabolism and cell cycle regula-

tion, we further focused on the genes in Cluster 1 [10].

GCN was subjected to network analysis using Cytoscape, and displayed in Fig. 2.

Different degree of nodes was represented with distant color and size, while the

color of edge indicated varied correlation coefficients between these AA genes. As

shown in Fig. 2, nodes with higher values of degree and betweenness were primarily

centralized in Cluster 1, of which the top ranked 10 AA genes were listed in Table 4.

CDC20, MELK, PTTG1, CCNB2, CDC45, CCNB1, TK1 and PSMB2 were consid-

ered as the hub genes, since these genes owned both highest values of degree and

betweenness in ALDOA-associated GCN. These genes encode proteins involved in

cell cycle related activities, such as cell cycle control, APC/C (Anaphase-Promoting

Complex) activity, DNA replication and DNA repair, ATP catabolic process and G1/

S transition.

AA genes involved in cell cycle could be novel gene signatures for lung cancer and other

solid tumors

Using various datasets available to us, we evaluated whether hub genes in Cluster

1 involved in cell cycle can distinguish cancer from normal controls for lung can-

cer and other solid tumors. As shown in Fig. 3, elevated expression of hub genes

plus ALDOA were primarily clustered in the tumors.

The cohort from TCGA-LUAD, which included 30 LUAD patients and 30 normal

controls randomly sampled from the whole dataset were clustered according to ex-

pression of hub genes and ALDOA. Class 1 was associated with controls (30/35,

Fig. 2 ALDOA-associated gene co-expression network (GCN). Different degree of nodes were represented
by distinct sizes, and correlation coefficients between AA genes were represented by distinct color of edge.
Sizes of nodes were increasing with the degree of nodes, while the color of edge was darker with ascend-
ing correlation coefficients. Purple nodes were the genes in Cluster 1, while blue nodes were the genes in
Cluster 2, and yellow nodes were in Cluster 3. Genes out of these clusters were stained in grey. Cluster 1, 2
and 3 in the red rectangle were enlarged to be distinct
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85.7%), while Class 2 was preferentially enriched for LUAD (25/25, 100%, Fig. 3a).

Only 5 LUAD cases (5/60, 8.3%) were misclassified into Class 1.

The cohort from E-GEOD-9750 containing 33 cervical cancer patients and 24 nor-

mal controls (normal cervix epithelium), were clustered. Class 1 was mainly enriched

for controls, as it has 23/29 normal controls (79.3%) and 6 cervical cancer patients.

On the other hand, Class 2 centralized 27 patients with cervical cancers and 1 normal

controls (Fig. 3b). Totally, 7 samples (7/57, 12.3%) were wrongly classed into the

opposite.

The cohort from E-GEOD-21422, which includes 14 breast cancer patients (5 with

invasive ductal breast cancer (IDC) and 9 with ductal carcinoma in situ (DCIS)) and 5

normal controls, were clustered. Class 1 had 5 normal controls (71.4%) and 2 DCIS,

while Class 2 had 7 DCIS and 5 IDC (100%, Fig. 3c).

The cohort from E-GEOD-14520 containing 30 hepatocellular carcinoma patients

and 30 normal controls (liver non-tumor tissue) randomly selected from the ori-

ginal dataset were clustered. Class 1 was preferentially associated with normal con-

trols (29/32, 90.6%). On the other hand, Class 2 was enriched for hepatocellular

carcinoma patients, as it was composed of 27 cases (27/28, 96.4%) and 1 normal

controls (Fig. 3d).

Positive relationship of ALDOA with hub genes is not regulated by glycolysis

Since HK2, PFKM and PKM2 encode the rate limiting enzymes of glycolysis.

Herein, we firstly examined the relationship of ALDOA transcripts with that of

these three genes, to look for indirectly the role of ALDOA in aerobic glycolysis

(Warburg effect). In the dataset GSE19188, ALDOA was significantly associated

Table 4 Top ranked 10 genes with highest values of either degree or betweenness. Network
analysis in Cytoscape was carried out on GCN. Moderated t-test was performed for examining
differential expression of these genes between NSCLC cases and controls (E-GEOD-19188).
Pearson’s correlation coefficients were calculated between ALDOA and these genes

Gene ID Symbole ra Pa value
b logFCc Pa value

d

991 CDC20 0.399 0.003 3.234 1.49E-33

9833 MELK 0.358 0.008 2.866 3.14E-32

9232 PTTG1 0.356 0.009 1.989 7.06E-26

9133 CCNB2 0.350 0.010 2.935 3.63E-33

8318 CDC45 0.414 0.002 1.933 3.09E-27

79023 NUP37 0.401 0.003 0.894 7.08E-20

891 CCNB1 0.395 0.004 2.734 1.14E-32

7083 TK1 0.503 <0.001 1.746 4.55E-26

5690 PSMB2 0.456 0.001 0.748 1.39E-19

29089 UBE2T 0.363 0.007 2.868 2.27E-38

55143 CDCA8 0.351 0.010 1.817 8.39E-32

55165 CEP55 0.372 0.006 2.754 5.51E-30
ar was the Pearson’s correlation coefficient of this gene with ALDOA; bPa value was calculated by the Pearson’s correlation
method adjusted by Benjamini & Hochberg method.; clogFC represented log base 2 of FC, which was the expression
level ratio between cancer and control; dPa value was calculated by the Moderated t-statistic method adjusted by Benja-
mini & Hochberg method. eThe bond symbols represented top ranked genes with highest values of degree, while the
italic symbols indicated top ranked genes with highest values of betweenness
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with HK2 (r = 0.371, P = 2.96E-04) and PKM (r = 0.406, P = 6.39E-05), but not with

PFKM (r =−0.057, P = 0.590). Likewise in the dataset TCGA-LUAD, ALDOA was

also positively associated with HK2 (rs = 0.177, P = 5.27E-05) and PKM (rs = 0.583,

P < 2.20E-16). In addition, it is significantly correlated to PFKM (rs = 0.088, P =

0.046). Thus, a consistently positive relationship between ALDOA and HK2/PKM

was both observed in these two datasets. Considered that HK2 as well as PKM

acted as key regulators of glycolysis, these two genes could be confounders in

assessing the role of ALDOA in regulating cell cycle. Therefore, secondly, we reas-

sessed the relationship of ALDOA and hub genes with highest network degree/be-

tweenness at the transcriptional level while excluding the possible effect of HK2 or

PFKM by partial correlation analyses. As shown in Table 5, the positive relation-

ship of ALDOA with most hub genes remained to be observed under conditions

controlling the expression of HK2 or PKM. Notably and interestingly, a steady

Fig. 3 Hierarchical clustering of the hub genes and ALDOA in various cancer cohorts. Each row of a
microarray heat map represented one of the AA genes with each column representing a different sample.
The gene expression values from four cohorts of (a) lung adenocarcinoma (LUAD) with different disease
states (case or control), (b) cervical cancer (CC) with disease states (case or control), (c) breast cancer (BC)
with different disease states (IDC, DCIS or control), and (d) hepatocellular carcinomas (HCC) with different
disease states (case or control) were clustered and presented by heat map
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close association between TK1 and ALDOA was observed in both these two

datasets.

Relationship of ALDOA with several hub genes were verified in breast tumors

Given that ALDOA and hub genes could identify most cancers from normal controls

using public datasets which were demonstrated above, we further examined the mRNA

levels of ALDOA and several hub genes in breast tumors by RT-qPCR. 16 independent

tumors were included. However, only transcripts of 14 patients were put into analysis

for 2 tumors with detection error and inconsistence among three replicates. Transcripts

of four hub genes (CDC20, TK1, CCNB2 and CDC45) and ALDOA were detected and

Spearman Correlation Coefficients were calculated. As shown in Fig. 4, the correlation

of ALDOA with two hub genes were confirmed. The rs between CCNB2 and ALDOA

was 0.714 (P = 0.004), while rs between CDC45 and ALDOA was 0.697 (P = 0.006).

Table 5 Partial correlation analyses for reassessing the relationship of ALDOA and hub genes.
Partial correlation analyses were performed in R-package ‘corpcor’ to reassess the relationship
between ALDOA and hub genes (the top ranked 10 genes with highest values of either degree or
betweenness)

Symbol HK2 PKM

rp
a Pb rp

c Pd

GSE19188 TK1 0.408 6.45E-05 0.424 3.14E-05

CDC45 0.302 3.82E-03 0.356 5.78E-04

CCNB1 0.290 5.51E-03 0.364 4.19E-04

CDC20 0.284 6.77E-03 0.336 1.19E-03

NUP37 0.275 8.74E-03 0.370 3.28E-04

UBE2T 0.264 1.20E-02 0.326 1.73E-03

CDCA8 0.254 1.60E-02 0.278 7.87E-03

CEP55 0.236 2.50E-02 0.310 2.93E-03

CCNB2 0.230 2.90E-02 0.323 1.87E-03

MELK 0.220 3.70E-02 0.299 4.18E-03

PSMB2 0.206 5.20E-02 0.163 1.25E-01

PTTG1 0.193 6.90E-02 0.369 3.40E-04

TCGA-LUAD TK1 0.442 <2.2E-16 0.296 7.44E-12

PSMB2 0.438 <2.2E-16 0.334 7.99E-15

UBE2T 0.384 <2.2E-16 0.318 1.44E-13

CDC20 0.369 <2.2E-16 0.271 4.34E-10

CCNB1 0.367 <2.2E-16 0.242 2.76E-08

PTTG1 0.347 4.44E-16 0.289 2.39E-11

NUP37 0.346 6.66E-16 0.190 1.44E-05

CCNB2 0.312 4.59E-13 0.150 6.60E-04

CDC45 0.297 6.85E-12 0.184 2.77E-05

CDCA8 0.287 3.08E-11 0.189 1.60E-05

CEP55 0.263 1.40E-09 0.143 1.18E-03

MELK 0.242 2.80E-08 0.157 3.64E-04
arp was the correlation coefficient between ALDOA and the other genes using partial correlation analyses with P values
(bP) when controlling HK2 expression at the transcriptional level; Likewise, crp was the partial correlation coefficient
between ALDOA and the other genes with P values (dP) when controlling PKM expression at the transcriptional level
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Although the positive trend between ALDOA and CDC20 or TK1 was observed, the

correlations between them (rs = 0.468, P = 0.091; rs = 0.380, P = 0.180) were failed to

meet statistical significance.

ALDOA might affect the cell cycle progression independent of glycolysis

According to previous reports [24], 8 h of incubation in glucose-free medium leaded

to rapid reduction of the ATP levels, an indicator of glycolysis, in breast cancer cells.

Therefore, 48 h after transfection, we switched SKBR3 cells transfected with either

siALDOA or siNC to glucose-free DMEM for additional 8 h to minimize the effects

of glucolysis. Then proceeded to flow cytometry analysis. Shown in Fig. 5 was the

average of three independent experiments, compared to SKBR3-siNC, knockdown of

ALDOA significantly increased the percentage of cells in G0/G1 phase (39.15 ± 4.75%

vs. 50.32 ± 7.44%, P = 0.047), which was accompanied by a considerable decrease in

Fig. 4 mRNA levels of ALDOA detected by RT-qPCR and its relationship with CDC20, CDC45, CCNB1 and
TK1. The horizontal axis and vertical axis of each scatter plot represented relative transcriptional expression
of each gene. P values were received from Spearman’s correlation analysis
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the percentage of cells in S phase (35.41 ± 1.71% vs. 21.95 ± 2.80%, P = 0.006). There

were no significant changes in the percentage of cells in G2/M phase (19.40 ± 2.27%

vs. 26.54 ± 5.15%, P = 0.112).

ALDOA might improve the predictive power of hub genes for NSCLC

To evaluate whether hub genes with or without ALDOA could be biomarkers to pre-

dict cancer prognosis, survival analyses were conducted using the dataset E-GEOD-

37745, which composed of survival time and outcomes of 196 NSCLC patients. As

shown in Fig. 6, high expression of CDC20 had a trend to be associated with poor

outcome, and ALDOA could improve the predictive power (log-rank P = 0.045). Simi-

lar results were observed of MELK (P = 0.010), PTTG1 (P = 0.005), CDC45 (P =

0.004), CCNB1 (P = 0.012) and TK1 (P = 0.034). Besides, both 3-year and 5-year OS

rates of different hub gene levels were shown in Table 6, indicating that patients with

high expression of ALDOA plus hub genes indicated worse survival rates, especially

the 5-year OS rate.

Discussion
In this study, we utilized the available microarray datasets from the public database,

ArrayExpress and GDC, to evaluate transcriptional levels of ALDOA and AA genes in

solid tumors. The dataset used for detecting the DEGs and AA genes relied on an inde-

pendent NSCLC cohort (E-GEOD-19188), but not aggregated data for avoiding false

Fig. 5 Evaluation of ALDOA influence on cell cycle in SKBR3 under minimized glycolysis by flow cytometry.
(a) WB indicated an obviously downregulated ALDOA expression in SKBR3-siALDOA compared to that in
SKBR3-siNC. (b) Knockdown of ALDOA significantly increased the percentage of cells in G0/G1 phase (39.15
± 4.75% vs. 50.32 ± 7.44%, P = 0.047), accompanied by a considerable decrease in the percentage of cells in
S phase (35.41 ± 1.71% vs. 21.95 ± 2.80%, P = 0.006). No significant changes were seen in the percentage of
cells in G2/M phase (19.40 ± 2.27% vs. 26.54 ± 5.15%, P = 0.112). (c) and (d), representative DNA histograms
of SKBR3 transfected with siNC (SKBR3-siNC, C) or siALDOA (SKBR3-siALDOA, D) after incubation in glucose-
free median for additional 8 h
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positive and/or negative correlation resulted from combining different datasets from vari-

ous sources. Our identification of statistically significant changes in ALDOA expression in

NSCLC enabled the evaluation of the gene expression profile that associated with

ALDOA. In this study, AA genes in tumors were identified through ALDOA-associated

GCN construction and clustering, to help explaining the role of ALDOA in tumors.

ALDOA has been known as the sole aldolase isozyme in red blood cells and skeletal

muscle and is necessary for the production of adenosine triphosphate (ATP) in eryth-

rocytes and muscle fibers [3]. Recently, increasing evidences have shown that ALDOA

could express in cancer cells, and its contribution to carcinogenesis in some tumors

has been proposed both in vivo and in vitro. The role of ALDOA in lung cancer has

been widely studied. Rho et al. [13] has pointed that ALDOA protein was up-

regulated in human lung adenocarcinomas compared to normal pulmonary tissue,

which was consistent with the result of Lin’s paper [12]. Du et al. [4] further showed

that ALDOA protein may induce epithelial-mesenchymal transition and promote cell

migration in lung squamous cell carcinoma. Additionally, in previous studies, positive

effect of ALDOA on initialization and progression of other cancers, such as colorectal

cancer, oral tumor, osteosarcoma and hepatocellular carcinoma, had also been dem-

onstrated [5–8]. Moreover, in vitro, ALDOA mRNA levels were down-regulated after

glioma cell line SHC-44 cells treated with all-trans retinoic acid [25]. Compared with

Fig. 6 Prognostic significance of up-regulation of hub genes and ALDOA in lung adenocarcinoma. Kaplan-
Meier survival analysis was performed on this cohort from E-GEOD-37745 including 196 patients with lung
adenocarcinoma. Up-regulation of these selected AA genes were associated with poor prognosis. Combin-
ation of elevated ALDOA expression with individual AA gene improved the prediction power. P values were
obtained from Kaplan Meier analysis comparing survival rates between patients with high expression of
both ALDOA and each hub gene, and patients with expression of other levels. H = high. L = low
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melanocytes, the mRNAs of ALDOA were highly expressed in human melanoma cell

lines G361 [26]. In our paper, we also confirmed that ALDOA might contribute to

tumorgenesis with aberrant mRNA levels in NSCLC. All these above have demon-

strated that elevated ALDOA expression might be a potential biomarker for cancer

diagnosis.

However, the mechanism of ALDOA in cancer remains unknown. Although some pa-

pers suggested that this was correlated to glycolysis, Ritterson and Tolan [10] have

shown that silencing ALDOA drastically decreased the rate of cancer cell proliferation,

and this did not greatly interfere with cellular energy metabolism. Although ALDOA is

localized primarily in the cytoplasm, nuclear localization of ALDOA might be a com-

mon feature of proliferating cells, including cancer cells. All these indicated another po-

tential mechanism other than glycolysis that ALDOA might involved in for

carcinogensis. As a supplement to these reports, our analysis further showed that a ma-

jority of AA genes (over 50%) in the biggest cluster (Cluster 1) out of ALDOA-

Table 6 3-year and 5-year OS rates of patients with different expression level of AA genes with or
without ALDOA expression. Z-test was used to compare OS rates between different groups

AA genesa Sample
size

3-year OS 5-year OS

OS rate Zb P OS rate Zb P

CDC20 L 98 0.582 0.156 0.876 0.439 0.582 0.561

CDC20 H 98 0.571 0.398

CDC20 H ALDOA H 55 0.491 1.515 0.130 0.309 1.938 0.053

others 141 0.61 0.461

MELK L 98 0.52 1.601 0.109 0.367 1.447 0.148

MELK H 98 0.633 0.469

MELK H ALDOA H 54 0.426 2.947 0.003 0.259 3.122 0.002

others 142 0.634 0.479

PTTG1 L 98 0.592 0.439 0.661 0.480 1.745 0.081

PTTG1 H 98 0.561 0.357

PTTG1 H ALDOA H 53 0.491 1.472 0.141 0.245 3.000 0.003

others 143 0.608 0.483

CDC45 L 98 0.633 1.601 0.109 0.490 2.029 0.042

CDC45 H 98 0.52 0.347

CDC45 H ALDOA H 58 0.466 2.031 0.042 0.276 2.617 0.009

others 138 0.623 0.478

CCNB1 L 98 0.643 1.884 0.060 0.510 2.597 0.009

CCNB1 H 98 0.51 0.327

CCNB1 H ALDOA H 54 0.463 1.987 0.047 0.259 2.790 0.005

others 142 0.62 0.479

TK1 L 98 0.612 1.005 0.314 0.480 1.745 0.081

TK1 H 98 0.541 0.357

TK1 H ALDOA H 59 0.475 1.885 0.059 0.288 2.421 0.015

others 137 0.62 0.439
aPatients in the cohort E-GEOD-37745 were divided into one group of patients with low expression of hub gene and the
other group of patients with high expression of hub gene, or divided into one group of patients with high expression of
both hub gene and ALDOA, and the other group of patients with other expression levels; bThe difference of 3-year and
5-year OS rates between the group of patients with low and high expression of hub gene, or between the group of pa-
tients with high expression of both AA and ALDOA, and the other group of patients with other expression levels were
compared by Z-test respectively
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associated GCN were enriched for biological process relevant to cell cycle control,

which demonstrated that ALDOA mRNA expression in NSCLC probably involved in

cell proliferation. This result turned out to be consistent with the finding of Mamczur’s

paper [9], which pointed to ALDOA as a factor involved in the regulation of cells pro-

liferation in lung cancer cell. Mamczur and his colleagues further showed that ALDOA

tended to co-existed with the expression of MKI67, a marker of proliferation. Interest-

ingly, our paper also displayed a positive relationship between ALDOA and MKI67 (r =

0.275, Pa = 0.046), and MKI67 was included in Cluster 1 (Fig. 2).

Moreover, we performed network analysis of GCN, and in view of the degree and be-

tweenness of nodes, CDC20, MELK, PTTG1, CCNB2, CDC45, CCNB1, TK1 and

PSMB2 were identified as the hub genes (Table 4), all of which directly or indirectly are

involved in cell cycle control. Except for PSMB2, the relationship between these hub

genes and cancer has been reported by previous studies. TK1, the most ALDOA rele-

vant gene in GCN (r = 0.503), is a key kinase in the one-step salvage pathway, partici-

pates in DNA synthesis and is therefore closely related to the S-phase of the cell cycle.

CDC45 (r = 0.41) is crucial for the initiation as well as the elongation process of

eukaryotic DNA replication. Both of them have been found to be upregulated in several

tumors and associated with proliferating cell populations [27–29]. The APC/C’s main

function is to trigger the transition from metaphase to anaphase by tagging specific

proteins for degradation. CDC20 (r = 0.40) is a regulatory protein that activates the

APC. PTTG1 (r = 0.36) is an APC substrate that associates with a separin until activa-

tion of the APC. Upregulation of these two genes was associated with aggressive pro-

gression and poor prognosis in several tumors [30–32]. CCNB1 [33, 34] and CCNB2

[35, 36] might contribute to G2/M transition, and function as an oncogene and serve

as a potential therapeutic target. MELK is a cell cycle-dependent protein kinase that be-

longs to the KIN1/PAR-1/MARK family. MELK overexpression has been detected in

various human tumors [37]. Given that a significant correlation between these genes

and ALDOA was observed in our paper, it was supposed that ALDOA probably served

as a key role in cell cycle regulation.

Our analysis also demonstrated up-regulated transcripts of ALDOA and hub genes could

mostly distinguish tumors from controls not only in NSCLC, but also in other tumors,

namely cervical cancer, breast cancer and hepatocellular carcinoma, suggesting that tran-

scription of ALDOA might contribute to increased cell cycle-related cell proliferation, and

be an important and probably universal step in carcinogenesis. We further detect transcripts

of ALDOA and several hub genes in breast tumors by RT-qPCR, and Pearson’s correlation

analysis demonstrated a positive relationship of ALDOA with CCNB2 and CDC45, but not

CDC20 and TK1, even a trend observed between them. Although intimate correlation of

ALDOA with several genes relevant to carbohydrate metabolism, such as LDHA (r = 0.605,

Pa < 0.001), PFKP (r = 0.598, Pa < 0.001), GPI (r = 0.595, Pa < 0.001), TPI1 (r = 0.548, Pa <

0.001), GAPDH (r = 0.517, Pa < 0.001), PGK1 (r = 0.447, Pa = 0.001), PGAM1 (r = 0.411, Pa
= 0.002), ENO2 (r = 0.394, Pa = 0.004), PKM (r= 0.363, Pa = 0.007) and ENO1 (r = 0.361, Pa
= 0.008) was found for NSCLC, no cluster enriched into GO terms relevant to carbohydrate

metabolism, indicating that ALDOA participated in carcinogenesis more likely through cell

cycle control other than glycolysis. However, it might be partially due to limited number of

metabolic genes found to be correlated with ALDOA, and it is unsuitable for ClusterOne

used in our paper since this program tended to detect clusters with a large size of nodes.
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Given that the positive relationship between ALDOA and AA genes indicated by

Pearson’s correlation analysis could not exclude the possibility that it might be an

entirely mutual consequence of the high energy demands required for rapid growth

(Warburg effect). Thus, we reassessed their association by partial correlation ana-

lyses using GSE19188 and TCGA-LUAD by removing the potential influences of

the two ALDOA-associated rate limiting enzymes of glycolysis (HK2 and PKM)

[38–40]. We found that the significant association between ALDOA and most of

hub genes remained, especially that between ALDOA and TK1 was seen both in

these two datasets (GSE19188: rp = 0.408/0.424; TCGA-LUAD: rp = 0.442/0.296). Al-

though RT-qPCR mentioned above failed to indicate a positive relationship between

them (probably due to the limited sample sizes), we still supposed TK1 might be a

promising target when studying the mechanism of ALDOA in cancer in future.

Additionally, knocking down ALDOA in SKBR3 cells blocked cells at G0/G1 under

minimized glycolytic condition, suggesting that ALDOA could contribute to the

progress of cancer, at least partially through its association with genes relevant to

cell cycle independent of glycolysis.

Several hub genes found in our paper have been proposed to predict poor prognosis

of NSCLC in previous studies, such as CDC20 [41], MELK [42], PTTG1 [43], CCNB1

[44] and TK1 [45]. However, our study have indicated that these genes in combination

with ALDOA could dramatically improve the predictive power for NSCLC prognosis.

As shown in Figure 6 and Table 6, patients simultaneously with high expression of

ALDOA and AA genes had a significantly lower survival rates than patients only with

high expression of AA gene, especially for 5-years OS rates.

Conclusions
Our study has displayed ALDOA mRNA upregulation in cancers, confirmed its seem-

ingly universal effect on carcinogenesis. Positive association between ALDOA and hub

genes relevant to cell cycle remained even after minimizing the effect of glycolysis, indi-

cating that ALDOA might contribute to cell proliferation of cancer, at least partially in-

dependent of glycolysis. AA genes, especially the hub genes would help to elucidate the

non-glycolytic related functions of ALDOA in cancer. ALDOA might be a potential

diagnostic and prognostic factor for cancer since ALDOA could distinguish tumors

from controls and dramatically improve the predictive power of AA genes for poor

survival.
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