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Abstract

Background: An imbalanced dataset is defined as a training dataset that has
imbalanced proportions of data in both interesting and uninteresting classes.
Often in biomedical applications, samples from the stimulating class are rare in a
population, such as medical anomalies, positive clinical tests, and particular
diseases. Although the target samples in the primitive dataset are small in
number, the induction of a classification model over such training data leads to
poor prediction performance due to insufficient training from the minority class.

Results: In this paper, we use a novel class-balancing method named adaptive
swarm cluster-based dynamic multi-objective synthetic minority oversampling
technique (ASCB_DmSMOTE) to solve this imbalanced dataset problem, which is
common in biomedical applications. The proposed method combines under-
sampling and over-sampling into a swarm optimisation algorithm. It adaptively
selects suitable parameters for the rebalancing algorithm to find the best
solution. Compared with the other versions of the SMOTE algorithm, significant
improvements, which include higher accuracy and credibility, are observed with
ASCB_DmSMOTE.

Conclusions: Our proposed method tactfully combines two rebalancing
techniques together. It reasonably re-allocates the majority class in the details
and dynamically optimises the two parameters of SMOTE to synthesise a
reasonable scale of minority class for each clustered sub-imbalanced dataset. The
proposed methods ultimately overcome other conventional methods and attains
higher credibility with even greater accuracy of the classification model.

Keywords: Imbalanced dataset, Swarm optimisation, Under-sampling, SMOTE,
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Background
Machine learning plays an important role in knowledge discovery and automatic

recognition in biomedical applications. Specifically, classification is a machine

learning technique that integrates the complex relationships between the input var-

iables and the target classes of some biomedical data. Automatic pattern recogni-

tion and prediction are then possible with the learnt model when unseen data are

tested. Machine learning from biomedical data encounters several difficulties,

mainly because these datasets are characterised by incompleteness (missing values),

incorrectness (collection error or noise in the data), inexactness (data retrieved

from incorrect sources) and sparseness (too few records available). Another subtle

problem that transcends the integrity of the data is an imbalanced class distribu-

tion; that is, there are too few target data that the users are interested in amongst

too much ordinary data collected. For instance, some decision support systems in

health care applications deal with patient data that include very few positive re-

cords in a large population, especially for new diseases. Other examples are cancer

genes in microarrays [1], abnormal sub-sequences in biosignal patterns [2], tiny

cysts in mammograms of the biological imaging field [3] and the colony distribu-

tion and mutation of E. coli or yeast [4, 5], in addition to classification in the bio-

medical engineering field [6], etc.

The imbalanced dataset problem is known to cause pseudo-accuracy – a spuri-

ously good prediction rate with low credibility. A classification model that is learnt

from a majority of mediocre data becomes biased towards the majority class and

less sensitive to recognition of the minority class samples [7]. Testing this classifier

with the same training dataset shows a high prediction accuracy on the surface.

However, when the model is tested with new unseen samples of the minority class,

the accuracy rate plummets, which indicates that the falsely high accuracy of the

training model is futile and unreliable.

The current approach of rebalancing the imbalanced dataset is to simply inflate the

population of the minority class by randomly copying its data or shrinking the

amount of majority class data until they match the population of the other class. This

approach works by matching the populations of the classes merely in quantity. And

when it comes to repeated experiment for more than ten times, this approach ignores

the subtle underlying mappings between the input variables and the target classes,

which can be highly nonlinear. In a nutshell, adjusting the quantity of data from each

class to the same level does not guarantee generation of the most effective classifier.

The methods used to attain a balanced dataset such as the aforementioned over-

sampling [8] and under-sampling [9], both of which change the numbers of two clas-

ses’ samples. These methods are at the data level. Furthermore, there also exist some

techniques at the algorithm level to overcome the imbalanced problem in classifica-

tion. Cost-sensitive learning [10] is a commonly used method in which distinct

weights are dispatched to the two classes to pressurise the classifier to the minority

class. Boosting methods [11, 12] include many weak classifiers to obtain a strong clas-

sifier to avoid the imbalance problem. All combinations of class distributions were

attempted with a support vector machine (SVM) as a performance measure [13].

Our proposed algorithm is based on the classical version of the Synthetic Minor-

ity Oversampling Technique (SMOTE) [14], which is the most popular and
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effective method to rebalance the original dataset and conquer the imbalance prob-

lem. Its basic idea is to allow the algorithm to fabricate extra minority data into

the dataset by observing and assessing the characteristics of the minority class

sample’s spatial structure. We assume an over-sampling rate of N (equation (1)

synthesises N times new minority class samples) and each minority class sample xi
∈Sminority. The other parameter k is used by the algorithm to examine k neighbours

of xi in the minority class samples, and then to randomly select xt from the k

neighbours by using equation (1) to generate the synthetic data xnew [15]:

xnew ¼ xi þ xt−xið Þ � vrand; ð1Þ

where vrand is a random number between 0 and 1, and N and k are the two important

parameters of this algorithm that are used to generate the suitable number and charac-

teristic samples of the minority class.

We adopt particle swarm optimization (PSO) [16] to search for optimal values for

the pair of parameters for SMOTE. PSO is a widely used meta-heuristic algorithm

that imitates the feeding process of birds. Assuming a population X = (X1, X2,…, Xn)

that is grouped by n particles in a D dimensional search space, the ith particle in this

space is expressed as a vector Xi with D dimension, Xi = (xi1, xi2, …, xiD)
T, and the pos-

ition of the ith particle in the search space represents a potential solution that is coded

as a combination of the parameters values of K and S for SMOTE. As an objective

function, the program can calculate the corresponding fitness of position Xi of each

particle, where the speed of the ith particle is Vi = (Vi1,Vi2, …, ViD)
T, the extremum

value of each agent is Pi = (Pi1, Pi2, …, PiD)
T and the extremum of the population is Pg

= (Pg1, Pg2, …, PgD)
T. During the process of iteration, the extremum values of each

agent and the population will update their positions and speeds. Equations (2) and (3)

show the mathematical process as follows:

V idtþ1 ¼ ωV t
id þ c1r1 Pt

id− Xt
id

� � þ c2r2 Pt
gd− Xt

id

� �
; ð2Þ

Xidtþ1 ¼ Xt
id þ V idtþ1 : ð3Þ

In Equation (2), ω is the inertial weight; d = 1, 2, …, D; i = 1, 2, …, n; t is the

current iteration time; c1 and c2 are non-negative constants as the velocity factor,

r1 and r2 are random values between 0 to 1 and Vid is the particle speed.

Our proposed approach introduces under-sampling and ensemble techniques to

controllably cluster majority class samples into several sub-majority class datasets,

which will respectively combine the original minority class dataset to generate the

corresponding sub-datasets. The imbalanced sub-datasets will then make use of

PSO to determine their suitable parameters for SMOTE for the over-sampling op-

eration and finally obtain the average of their results. In addition to the accuracy

of the classification model, the Kappa value is another objective used to assure the

robustness and credibility in our experiment. Therefore, during the process of

searching for our approach, we also solve a dynamic multi-objective problem.

Compared with other methods, the proposed methods could combine different pre-

vious skills together and attain leap ascension of the classification credibility under

the premise of maintaining high accuracy.
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Methods
In classification, especially classification of a flawed dataset, the only indicator of

accuracy is not persuasive. Even though it may be sharp, the results will still lead

to misleading judgments and testing. The supplementary parameters used to meas-

ure and distinguish the classification model of imbalanced datasets are receiver

operating characteristic area [17], F-measure (abbreviated as F-1) [18] and G-mean

[19]. In this paper, we collect the F-measure and G-mean as our reference parame-

ters. The Kappa statistic [20] is another favourable assessment index used to effect-

ively estimate the credibility of the classification model. In the imbalanced dataset’s

classification, the low Kappa value accompanied a high level of accuracy because

most classification algorithms neglected the minority class samples and misclassi-

fied them in the majority class. The target class commonly takes a very small

percentage in quantity; thus the number of misclassified minority class samples

produces a low error rate. As a result, the precision of the trained model will

encounter a serious crisis of confidence when it meets multiple target class sam-

ples in a testing dataset. However, the low Kappa statistic will directly present the

credibility of the classification.

For this reason, the second objective of Kappa is implemented in our experiment

to intuitively and objectively represent the consistency of the results and the reli-

ability of classification. The theoretical range of Kappa is between −1 and 1. There

are six intervals or degrees of interpretation of a Kappa outcome from −1 to 1

[21]: Kappa < 0, less than chance agreement; 0.01 ≤ Kappa ≤ 0.20, slight agreement;

0.21 ≤ Kappa ≤ 0.40, fair agreement; 0.41 ≤ Kappa ≤ 0.60, moderate agreement; 0.61 ≤
Kappa ≤ 0.80, substantial agreement; 0.81 ≤ Kappa ≤ 1.00, almost perfect agreement.

In our previous papers [22, 23], we adopted the other interpretation for Kappa to

split the area into four parts with values of 0, 0.4 and 0.75, which respectively pre-

sented the meaning of meaningless, low credibility, general credibility and strong

credibility. In our experiment, we have mentioned that in order to guarantee the

precision and credibility of the classification mode, both accuracy and the Kappa

value were our targets, which caused dynamic changes in the values. The optimisa-

tion algorithm is Swarm, the intelligence algorithm is PSO, and the assistant verifi-

cation algorithm is Neural Network, which will cooperate with each other to find

two suitable and best parameters (N of over-sampling rate and k neighbours) of

SMOTE to synthesise the minority samples and the variation in the class distribu-

tion to remit the imbalance problem. Equations (4) and (5) are our fitness

functions, which are calculated from the confusion matrix.

Accuracy ¼ TP þ TN
P þ N

; ð4Þ

Kappa ¼ Po− Pc

1− Pc
; ð5Þ

Po ¼ Accuracy ¼ TP þ TN
P þ N

; ð6Þ
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Pc ¼ TP þ FPð Þ � TP þ FNð Þ þ FN þ TNð Þ � FP þ TNð Þ
P þ Nð Þ2 : ð7Þ

Note that TP, TN, FP, and FN, respectively represent true positive, true negative,

false positive and false negative. P stands for positive and N for negative. Po and

Pc are the measures of the percentage of agreement and the chance of agreement

respectively. Neural Network is used to estimate and verify the fitness of each iter-

ation of the PSO. Figure 3 presents a snapshot of the fluctuation patterns of accur-

acy and kappa as the transformation progress (from TP = 0, TN = 0, FP = 100, FN =

5 to TP = 100, TN = 5, FP = 0, FN = 0) of a confusion matrix in an imbalanced data-

set classification model, G-mean and F-measure as the auxiliary metrics. In this

example, there are 100 majority class samples and 5 minority class samples. At the

606th cycle of iterations, accuracy and Kappa both have reached a very high value

of approximately 1. Since the two objectives are not opposing each other, a special

type of optimization called the non-inferior set tactics [24] is adopted here and

customized for this specific rebalancing task. Furthermore, it shows Kappa is more

sensitive than the commonly used metrics of G-mean and F-measure to judge the

bias of the imbalanced classification model from the confusion matrix.

The classification results are evaluated by different training and testing parts. We

perform a tenfold cross validation [25, 26] to test the corresponding performance of

the current dataset classification model. That means the dataset randomly is divided

into ten parts averagely, and each part will take turns being the testing dataset with

the other nine parts as training datasets in the repeated ten times’ classifications. The

Kappa, Accuracy, G-mean and other performances of this cross-validation process are

averaged from these ten classifications. Moreover, to keep the fairness of the experi-

ment, each dataset tested Random SMOTE, SRA and proposed methods separately

ten times, and the final results pertain to the mean value of the experiments.

The reason for combining cluster under-sampling and over-sampling lies in the

detailed grouping of the majority dataset. For instance, if the intelligent medical

Fig. 1 Principle of adaptive swarm clustered-based dynamic multi-objective synthetic minority oversampling
technique (SMOTE)

Li et al. BioData Mining  (2016) 9:37 Page 5 of 15



diagnostic system only records and divides the collected data into two classes -

gastric cancer data and other data, then there is no doubt that non-cancer cases

comprise the vast majority of the whole. These samples contain many different

situations, such as gastritis, gastric ulcer, gastric peroration and healthy. Hence, the

cluster of non-cancer data can include more detailed illness diagnoses and narrow

the imbalance ratio of the original dataset. As under-sampling and over-sampling,

the proposed algorithm can be divided into two parts. Figure 1 shows the principle

diagram of this algorithm, and this paper also provides the pseudo code in the

below to describe the operation process.

In the first part, the dataset is divided into majority class data and minority class

data, which will be processed respectively. PSO optimized k-means clusters algo-

rithm [27] the majority class into several categories as a strategy, and each

sub-majority class dataset is combined with the minority class dataset to establish

the corresponding sub-dataset, which will be reprocessed by the second part to

perform over-sampling separately. The k-means algorithm is a widely used algo-

rithm for cluster in data mining [28]. It randomly select k instances as the center

of k classes, and according to the Euclidean distance, the rest instances will be re-

spectively assigned to the closest class. Then this process will be repeated until the

sum of squared error of the centre converge. Thus the initial defended value of k

and the center of classes for k-means directly impact the cluster effect. PSO has

strong global searching ability which helps k-means to avoid falling local-best.

Since internal information sharing between particles in the population in each

Fig. 2 Flow chart of dynamic multi-objective SMOTE (SDMRA)
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iteration, the results converge rapidly and steadily. The fitness function of PSO op-

timized k-means cluster algorithm adopts the Euclidean distance as its fitness func-

tion to find out the appropriate center of the classes. Moreover, compared with the

previous methods [29, 30], in order to find the global best solution in this step,

there are two termination conditions assisting PSO to obtain a reasonable k value

of k-means (where k is the number of clusters). The first condition is that the

number of clusters must be greater than one, and the second is that the minimum

value of Kappa in all of the classification results of the numerous sub-datasets

must be greater than 0.2. Here, the classifier still implements the Neural Network.

Therefore, PSO can assist k-means adaptively find out the proper centre of classes

and the value of K to overcome weakness of the traditional k-means algorithm.

Furthermore, in a new sub-dataset, if the original minority class samples overcome

the other class samples in quantity, Neural Network will directly classify this sub-

dataset. Otherwise this dataset will perform the over-sampling operation.

The second part is the evolutionary version of the Swarm Rebalancing Algorithm

(SRA) [17, 22], which is called the Swarm Dynamic Multi-objective Rebalancing

Algorithm (SDMRA) or DMSMOTE. This algorithm is used instead of SRA to fix

a credible value of Kappa to promote accuracy. The final result is the average value

of all sub-datasets, as shown in Equation (8).

final result ¼
Xc

1
pnð Þ

� �
=c: ð8Þ

In Equation (8), pn stands for all performances (Kappa, Accuracy, G-mean, F-

measure, etc.) of each sub-dataset and c is the number of clusters. Figure 2 is the

flow chart that presents our algorithm’s second part. The concept of non-inferior

[24] sets was adopted in the PSO to solve the dynamical multi-objective problem.

In the initial step, algorithm filters and produces the non-inferior set; filtering will

input a particle that is not controlled by the others into the non-inferior set, which

will casually offer a solution as the global best before the particles update. Then,

because the new particles are not handled by the other particles and the particles

non-inferior set, these particles will be input into the non-inferior set to update it.

Meanwhile, a particle will be randomly selected from the non-inferior set as the

global best before swarm renewal. During the process of iteration, the particles’ up-

date criteria include accuracy and Kappa of the older particle that are worse than

the new; one of accuracy and Kappa of the new particle is better than the older

one, and the absolute value of the other index’s difference of the new and older is

smaller than the defined tolerance; the Kappa value is smaller than the current

threshold value of Kappa (0.2, 0.4, 0.6 or 0.8). When a new particle satisfies any

criteria, it will replace the older one, or this position will be randomly removed.

Because the results in the non-inferior set are commonly more than one, we select

the solution whose product of Kappa and accuracy is the best as the final result of

this sub-dataset. Meanwhile, we name the product as having reliable accuracy for

this improved performance.
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Direct Neural Network, SMOTE + Neural Network, Random-SMOTE [31], and

our forgoing version of SRA (PSO SMOTE) + Neural Network constitute the com-

parison benchmark. We generate the completely balanced dataset with SMOTE.

Random-SMOTE is used to randomly pick out parameters for SMOTE to generate

a new dataset, using the average of ten times of Random-SMOTE as the ultimate

result of each dataset. PSO SMOTE (SRA) has two update conditions, based on

the requirements that Kappa will be greater than the fixed Kappa threshold (0.4),

and that the accuracy must be greater than that of the previous position. In the

experiments, the populations of the PSO and the maximum iteration are 20 and

100, respectively. Note that Matlab (version 2014) has been utilized to code and

compile the whole program, and the operating and computing environment for all

experiments is in the workstation with CPU: CPU: E5-1650 V2 @ 3.50 GHz, RAM:

32 GB.

The target of our experiment is the binary classification problem. We obtained our

seven biomedical or bioinformatics datasets from Ding [32] and UCI [33]. Some multi-

class datasets were also modified by Ding to be binary classes as the target is needed or

to take the tiny proportion. Table 1 presents information on the datasets. The

Table 1 Information of our biomedical datasets

Name Imb.Ratio Target Samples

Thoraric Surgery 5.7:1 died 470

Ecoli 8.6:1 imU 336

Sick Euthyroid 9.8:1 sick euthyroid 3163

Yeast_ML8 13:1 target 8 2407

Thyroid Sick 15:1 sick 3772

Arrhythmia 17:1 class = 06 452

Mammography 42:1 minority 11183
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Imb.Ratio is the ratio between the majority class and the minority class, ranging from

5.7:1 to 42:1. The target indicates the minority class in the dataset. The selected dataset

contains the clinic dataset of thoracic surgery, disease datasets of thyroid sick and

Arrhythmia; the biological image dataset of mammography; and the microbiological

dataset of E. coli and yeast. Thus it can be seen that the imbalanced dataset appeared

in different orientations of the biologic domain.

Results and discussion
The average performance in terms of Kappa, accuracy, G-mean, F-measure, and

Imbalanced ratio as well as their respective offsets are shown in Tables 2, 3, 4, 5

and 6, respectively. The bold values significantly indicate the best value for each

dataset and method. Meanwhile, the averages of these indicators are visualized in

Figs. 3, 4, 5, 6 and 7 for comparison of the capabilities and variations of the differ-

ent approaches. All figures and tables include NN, SMOTE-NN, R-SMOTE-NN,

SRA-NN and ASCB-DMSMOTE-NN on behalf of Neural Network, SMOTE with

Neural Network, Random-SMOTE with Neural Network, PSO-SMOTE with Neural

Network and the proposed Adaptive Swarm Clustered Based Dynamic Multi-

objective SMOTE.

Figure 4 illuminates the results of our two targets, Kappa and accuracy, and the left 5

boxes stand for Kappa value with the symbol ‘-K’ and the right 5 boxes indicate accur-

acy with the symbol ‘-A‘. These two box plots are homologous to Tables 7 and 2. We

can observe that the average Kappa of NN of the original dataset is lower than 0.4 and

Table 3 Average Accuracy of different algorithms with different datasets

Accuracy NN SMOTE-NN R-SMOTE-NN SRA-NN ASCB_DmSMOTE-NN

ThoraricSurgery 0.848 0.653 0.686 ± 0.23 0.895 ± 0.05 0.902 ± 0.03

Ecoli 0.925 0.904 0.817 ± 0.18 0.959 ± 0.03 0.918 ± 0.02

Sick Euthyroid 0.936 0.916 0.781 ± 0.19 0.952 ± 0.03 0.927 ± 0.02

Yeast_ML8 0.926 0.690 0.756 ± 0.18 0.968 ± 0.04 0.959 ± 0.02

Thyroid Sick 0.953 0.916 0.852 ± 0.13 0.961 ± 0.03 0.946 ± 0.03

Arrhythmia 0.858 0.880 0.871 ± 0.11 0.958 ± 0.04 0.961 ± 0.03

Mammography 0.983 0.897 0.884 ± 0.10 0.960 ± 0.03 0.956 ± 0.02

A_average 0.919 0.837 0.807 ± 0.16 0.950 ± 0.03 0.938 ± 0.02

The italicized entries represent the best performance

Table 2 Average Kappa of different algorithms with different datasets

Kappa NN SMOTE-NN R-SMOTE-NN SRA-NN ASCB_DmSMOTE-NN

Thoraric Surgery 0.049 0.305 0.312 ± 0.48 0.670 ± 0.21 0.813 ± 0.11

Ecoli 0.502 0.807 0.723 ± 0.12 0.850 ± 0.05 0.848 ± 0.06

Sick Euthyroid 0.497 0.831 0.688 ± 0.13 0.824 ± 0.07 0.874 ± 0.05

Yeast_ML8 0.000 0.381 0.578 ± 0.23 0.968 ± 0.02 0.927 ± 0.04

Thyroid Sick 0.360 0.833 0.762 ± 0.12 0.906 ± 0.06 0.829 ± 0.11

Arrhythmia 0.068 0.761 0.826 ± 0.13 0.937 ± 0.04 0.966 ± 0.02

Mammography 0.436 0.794 0.729 ± 0.14 0.673 ± 0.16 0.932 ± 0.02

K_average 0.273 0.673 0.660 ± 0.22 0.833 ± 0.09 0.884 ± 0.06

The italicized entries represent the best performance
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that the length of the box is great. Especially in the Yeast_ML8 dataset, the minimum

Kappa value is zero but its accuracy is greater than 0.9 – a typical pseudo-high accuracy

as mentioned above which has no credibility. The original SMOTE totally rebalances

the imbalanced dataset. The second boxes of Kappa show great increases in the average

and the height of the body. However, SMOTE sacrifices accuracy to obtain credibility.

In contrast, the performances of Random-SMOTE are more stable than those of

SMOTE, even though its median Kappa value is less than that of SMOTE. PSO-

SMOTE has the highest accuracy and a higher Kappa value than the previous three.

Moreover, it is the most significant because it improves the Kappa value and promotes

the accuracy of the best value of 1. The accuracy of the proposed algorithm is slightly

lower than that of PSO-SMOTE, but the Kappa is higher; furthermore, the length of

the boxes shows that the proposed approach is more settled than our previous version

and that there is no discrete point on the whole.

As mentioned above, we created and introduced an index called reliable accuracy

which was the product of Kappa and accuracy. Kappa represents the degree of the clas-

sification model’s agreement, reliability and credibility; thus we can connect these two

indicators to assess the accuracy in truth. In addition, this is also a strategy of decision

making to select a suitable pair of solutions from the non-inferior set. Figure 5 presents

the average kappa, accuracy and reliable accuracy of each method. The results of the

line diagram agree with those of the above discussions about the two box plots.

Through the radar chart of Fig. 6, we compare the three commonly used auxiliary

evaluation fingers. In our experiment, F-measure (F1) almost lost its effect. We note

Table 5 Average F-measure of different algorithms with different datasets

F-measure(F1) NN SMOTE-NN R-SMOTE-NN SRA-NN ASCB_DmSMOTE-NN

ThoraricSurgery 0.917 0.667 0.643 ± 0.27 0.642 ± 0.1 0.865 ± 0.04

Ecoli 0.959 0.902 0.762 ± 0.18 0.795 ± 0.09 0.874 ± 0.04

Sick Euthyroid 0.966 0.916 0.793 ± 0.16 0.787 ± 0.07 0.891 ± 0.05

Yeast_ML8 0.962 0.693 0.809 ± 0.15 0.902 ± 0.09 0.939 ± 0.04

Thyroid Sick 0.976 0.915 0.820 ± 0.15 0.863 ± 0.08 0.821 ± 0.03

Arrhythmia 0.876 0.878 0.847 ± 0.16 0.895 ± 0.08 0.952 ± 0.04

Mammography 0.991 0.901 0.812 ± 0.13 0.726 ± 0.07 0.943 ± 0.03

F1_average 0.949 0.839 0.784 ± 0.17 0.801 ± 0.09 0.912 ± 0.04

The italicized entries represent the best performance

Table 4 Average G-mean value of different algorithms with different dataset

G-mean NN SMOTE-NN R-SMOTE-NN SRA-NN ASCB_DmSMOTE-NN

ThoraricSurgery 0.179 0.651 0.479 ± 0.22 0.715 ± 0.12 0.843 ± 0.05

Ecoli 0.630 0.904 0.768 ± 0.18 0.813 ± 0.12 0.875 ± 0.04

Sick Euthyroid 0.613 0.916 0.750 ± 0.15 0.832 ± 0.10 0.916 ± 0.04

Yeast_ML8 0.000 0.690 0.641 ± 0.14 0.926 ± 0.07 0.928 ± 0.05

Thyroid Sick 0.453 0.916 0.811 ± 0.14 0.898 ± 0.05 0.836 ± 0.6

Arrhythmia 0.091 0.880 0.802 ± 0.13 0.904 ± 0.06 0.951 ± 0.4

Mammography 0.520 0.896 0.795 ± 0.12 0.746 ± 0.06 0.926 ± 0.5

G_average 0.355 0.836 0.721 ± 0.14 0.833 ± 0.10 0.896 ± 0.05

The italicized entries represent the best performance
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that G-mean and Kappa have nearly the same consistent variation even though Kappa

is more sensitive and cautious.

The last bar diagram of Fig. 7 reveals the variations of the minority class data from

the majority class data. With reference from Table 6, we find that our methods synthe-

sise many minority class samples, even the number of minority class is more than the

number of majority class in the new dataset, which renders our methods to require

more time for processing, as shown in Fig. 6. However, their performance is better, and

this also illustrate that the absolute equilibrium distribution of classes does not pertain

to the best results.

Conclusions
In this paper, our proposed approach, ASCB_DmSMOTE, can overcome the imbal-

anced dataset problems in biomedical classification. It reasonably re-allocates the

Fig. 3 Snapshot of fluctuating values of accuracy and Kappa (an example of imbalanced dataset with 100
majority class samples and 5 minority class samples)

Table 6 Average Imbalanced ratio (majority: minority) value of different algorithms with different
datasets

Imb.Ratio (ma/mi) NN SMOTE-NN R-SMOTE-NN SRA-NN ASCB_DmSMOTE-NN

ThoraricSurgery 5.7:1 1:1 1.2 ± 0.7:1 0.7 ± 0.4:1 0.5 ± 0.3:1

Ecoli 8.6:1 1:1 1.3 ± 0.5:1 0.6 ± 0.2:1 0.4 ± 0.3:1

Sick Euthyroid 9.8: 1:1 1.8 ± 0.5:1 1.1 ± 0.3:1 0.7 ± 0.4:1

Yeast_ML8 12.6: 1:1 1.9 ± 0.6:1 0.6 ± 0.2:1 0.7 ± 0.2:1

Thyroid Sick 15.3:1 1:1 1.6 ± 0.4:1 0.8 ± 0.3:1 0.9 ± 0.1:1

Arrhythmia 17.1:1 1:1 1.3 ± 0.7:1 0.7 ± 0.3:1 0.5 ± 0.2:1

Mammography 42.0:1 1:1 1.5 ± 0.5:1 0.9 ± 0.2:1 0.8 ± 0.3:1

I_average 15.9:1 1:1 1.5 ± 0.6:1 0.8 ± 0.3:1 0.6 ± 0.3:1
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majority class in the details and dynamically optimises the two parameters of

SMOTE to synthesise a reasonable scale of minority class for each sub-dataset and

ultimately attains higher credibility of the classification model and even greater ac-

curacy. This algorithm is a new version of SMOTE, and through the swarm

intelligence algorithm, our swarm rebalancing series of algorithm can effectively

combine the over-sampling, under-sampling and ensemble techniques. In addition

to such a combination of methods, they can also be used with the population’s

Fig. 5 Average of Kappa, Accuracy and Reliable accuracy of all experiments

Fig. 4 Average Kappa and Average Accuracy of different methods over all datasets in boxplot
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path to consecutively determine the best and most reasonable global solution. The

new concept of reliable accuracy not only deals with decision making but also can

be more direct and valid to evaluate a classification model. Its performances are

much steadier than those of the previous version of our algorithms. Furthermore,

it is able to more scientifically and effectively generate better and more reasonable

synthetic data than the traditional class rebalancing algorithm. This work offers in-

sights to biomedical practitioners who consider the application of computational

tools to subside the imbalanced dataset problem, which is typically inherently in

biomedical data.

Fig. 7 Size variations of datasets with different methods processed

Fig. 6 Average performance of imbalanced dataset classification indices of all experiments
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