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Abstract

Background: Logistic regression has been the de facto, and often the only, model
used in the description and analysis of relationships between a binary outcome and
observed features. It is widely used to obtain the conditional probabilities of the
outcome given predictors, as well as predictor effect size estimates using conditional
odds ratios.

Results: We show how statistical learning machines for binary outcomes, provably
consistent for the nonparametric regression problem, can be used to provide both
consistent conditional probability estimation and conditional effect size estimates.
Effect size estimates from learning machines leverage our understanding of
counterfactual arguments central to the interpretation of such estimates. We show
that, if the data generating model is logistic, we can recover accurate probability
predictions and effect size estimates with nearly the same efficiency as a correct
logistic model, both for main effects and interactions. We also propose a method
using learning machines to scan for possible interaction effects quickly and
efficiently. Simulations using random forest probability machines are presented.

Conclusions: The models we propose make no assumptions about the data
structure, and capture the patterns in the data by just specifying the predictors
involved and not any particular model structure. So they do not run the same risks
of model mis-specification and the resultant estimation biases as a logistic model.
This methodology, which we call a “risk machine”, will share properties from the
statistical machine that it is derived from.

Keywords: Consistent nonparametric regression, Logistic regression, Probability
machine, Odds ratio, Counterfactuals, Interactions
Background
Logistic regression has been the de facto, and often the only, model used in the

description and analysis of relationships between a binary outcome and observed fea-

tures, both categorical and continuous. It is widely used both as an association model

and a predictive model, to look at (a) the conditional probability of outcome, given

predictors, and (b) predictor effect size estimates using conditional odds ratios. It is

also widely available in software and is easy to optimize in low-dimensional problems.

However, it does assume the data-generating model to be logistic, requires an explicit

specification of the model, and is not scalable to the higher dimensional problems that

are so common today. Good predictions and effect size estimation from a logistic

model therefore require the researcher to guess at the true data generating model, and

to exactly specify which predictors appear and how they interact with each other. If
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the model is mis-specified, both predictions and effect size estimates may be more than

slightly in error. In modeling terms, the challenge is to get all the main effects and

interactions (2-way and higher order) correctly specified in the model; otherwise effi-

cient and consistent estimation is not certain.

We recently introduced the concept of a probability machine (PM) [1], which is sim-

ply any consistent nonparametric regression machine applied to binary or categorical

outcomes. A PM produces a predicted conditional probability of success given predic-

tors, but in a model-agnostic data-driven fashion. The idea is that, starting from binary

(0/1) outcomes for each subject, a PM generates an estimated expected value for each

subject, which is just the conditional probability of success for that subject given pre-

dictors. Given today’s rich data environment, a PM has several desirable properties. It

can study any list of predictors (binary, categorical, continuous), requires no explicit

structural specification of the model, no specification of interactions, and is scalable to

very large sets of predictors, for example over a million single nucleotide polymor-

phisms (SNPs) in genome-wide association studies. As a practical matter, there are

many well-studied families of nonparametric learning machines that are provably con-

sistent for the regression problem–in the limit of large data the error rate converges to

the Bayes error rate–and with reasonably speedy convergence. The class of nonpara-

metric regression machines we have studied come from the machine learning literature,

namely random forest regression [2] and nearest neighbor regression. Both of these

have provable consistency properties under fairly general conditions [3-5]. There are of

course other possible choices, like some support vector machines. In this work, we

focus on random forest regression used with a {0,1} outcome and call it a random forest

probability machine (RFPM).

A RFPM, which is a regression random forest, is scalable to large datasets and high-

dimensional problems and requires only a specification of which features are to be

included in the machine rather than any explicit functional form. We have shown in

our earlier work [1] that even when data is generated from a logistic model, the test set

error when estimating the outcome probability of success using a RFPM often beats

that using logistic regression. In this work we look at the role of logistic regression in

particular and how the PM can play a similar role both in probability prediction and

effect size estimation under prospective sampling schemes. We show that with data

generated by a logistic model, a PM can do just as well as a correctly-specified logistic

regression for both problems, and can be superior when the logistic regression is not

correctly specified or inappropriate given the data generating model. We also suggest that

a PM can do more than just probability and effect estimation as with logistic regression. It

can also be used for descriptive discovery of interactions, among other descriptive analyses.

Moreover, as probability machines are known to be consistent, the probability estimates

and derived risk estimates will also be consistent. This also holds for interaction detection

across any subsets of features. We expand on these themes in the following sections.
Methods
Conditional probability estimation

We first consider the problem of conditional probability estimation. Under prospective

sampling schemes, both logistic regression (LR) and PMs can estimate the conditional
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probability of success given a set of features. The consistency of the LR model is estab-

lished as long as the data generating mechanism is logistic, and the correct model is

specified. Under model mis-specification, it is known that the LR model is no longer

consistent. As practitioners know, establishing the adequacy of a particular logistic

model for a data set is not easy, and no tests to check the validity of the logistic link

are routinely available. We believe that any logistic regression model fit to a data set is

likely to be incorrect in its specification, though in some cases we may be more

confident based on other knowledge about the data generating mechanism. The RFPM,

on the other hand, is known to be consistent under more general conditions [3,5] and

thus can produce valid estimates of the conditional probability under a wider variety of

conditions. We note here that we will use a random forest of regression trees, where

each component tree provides a probability estimate of success (denoted in [1] as regRF).

These individual probability estimates are then averaged across the trees to provide the

regRF estimate. The random forest methodology also can provide a self-declared “prob-

ability estimate” when used as a classifier, which is nothing but the proportion of compo-

nent trees which classified the result as a success. We have found in [1] that this method,

there denoted by classRF, is far less efficient at probability estimation, and the consistency

of the probability estimates thus produced has not been demonstrated in the literature.
Simulations

We will first see how a RFPM compares to a LR when the generative model truly is

logistic. We generated multiple simulation studies using binary predictors. We consid-

ered 1, 2 or 3 binary predictors with main effects and/or interactions with respect to a

binary outcome, and add 7 other binary predictors with no association with the out-

come. This is motivated by genomic studies where the signal is typically sparse and sev-

eral genes have no association with the outcome. Details may be found in Tables 1 and 2.

We will fit three models:

1. A main effects logistic regression using all available features (LR1)

2. A logistic regression with main effects and all possible two-way interactions using

all available features (LR2)

3. A random forest regression using all available features (RFPM, denoted as RF in the

graphs)

LR1 is the usual model that is tried in most situations, since interactions are harder

to estimate and require more data for adequate power and efficiency. LR2 is a model
Table 1 Summary of logistic regression models used for simulation studies

Model Description Conditional odds ratios

1 3 main effects 1.3, 1.7, and 2.5

2 3 main effects and 2 interactions 1.3, 1.7, 2.5 (main effects); 2, 5 (interactions)

3 See Table 2

4 2 main effects 1.3, 2 (main effects)

5 2 main effects + 1 interaction 1.3, 2 (main effects); 2 (interaction)

This table summarizes the structures of the logistic regression models we have used to generate data in the simulation
studies in this manuscript.



Table 2 Structure of the model in model 3

Stratum 1 2 3 4 5 6 7 8

X1 0 1 0 0 1 1 0 1

X2 0 0 1 0 1 0 1 1

X3 0 0 0 1 0 1 1 1

Probability 0.300 0.176 0.563 0.391 0.563 0.096 0.794 0.836

We define 8 strata based on combinations of 3 binary predictors X1, X2 and X3. The conditional probability of success of
the outcome Y for each of these strata is given in the table. Outcomes Y are simulated within each stratum using a
binomial random number generator with probability of success given in the table.
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that accounts for 2-way interactions in a non-committal manner. A priori, we do not

know which interactions are actually present, and so we will interrogate all possible

such interactions. Note that this is not a fully saturated model, since that would include

all higher order interactions as well. For data with a large number of available features,

the LR2-type model quickly becomes unfeasible, since the number of parameters grows

at the rate p2 when p is the number of available features. The RFPM only needs which

features to include, and will consider complex interactions implicitly, as we will see. It

will also not break down as quickly as p increases, and is used routinely with p as large

as 100 K or 1 M or even larger; we have experience using it with over 100 million

features in a genomic data set [6].

In all our simulations, we use the randomForest package ([7], version 4.6) in R, with

tuning parameters nodesize (minimum size of the terminal nodes) set at 5% of the total

sample size, and mtry equaling the number of features. We have experimented with

smaller mtry values but have found that setting mtry to be the number of features gives

the best results. We have also experimented with setting the number of trees in the

random forest to be anywhere from 20 to 1000, and do not see much difference in the

results over this span. Our reported simulations use 100 trees per random forest. We

have also done simulations in Python using the random forest function from the

scikits-learn Python package [8], giving similar results to the R runs, albeit at slightly

slower speed. Since the results from Python are similar to the results from R, only

results from R are reported here. The code to run these simulations, in either R or

Python, is available upon request.

From our simulations we highlight two cases. Model 1 will consist of a binary out-

come generated under a logistic model from 3 independent binary predictors with

baseline success probability 0.3, conditional odds ratios of 1.2, 1.5 and 2 respectively

and 7 other independent binary predictors with no association with the outcome, i.e.,

logit pð Þ ¼ logit 0:3ð Þ þ log 1:2ð Þ X1 þ log 1:5ð Þ X2 þ log 2ð Þ X3 þ 0 X4 þ…þ 0 X10

Model 2 is the same as model 1, except that there are interactions between X1 and X2
and between X2 and X3 with interaction odds ratios of 2 and 5, respectively. The quality

of the estimated probabilities of success, conditional on the predictors, was evaluated

using bias and efficiency. Bias is measured by the difference between the true condi-

tional probability used to generate the data sets and the average individual prediction

over the simulated data sets. Efficiency in predicting the individual conditional prob-

ability is measured by the width of the interval defined by the 5th and 95th percentiles

of the simulated distribution of predictions for each individual.
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Figure 1 shows the performance of the three fitted models under Model 1. We find

that all three models provide reasonably unbiased estimation of the true probabilities,

though naturally LR1 and LR2 are less biased since they are in the family of the data-

generating model. We also find that LR1 is most efficient, more efficient than LR2. This

is because degrees of freedom are being expended in estimating the interactions that,

in this model, do not exist. The RFPM has efficiency intermediate to the two, reflecting

the fact that it implicitly finds a sparse model [5], but is still not as efficient as a logistic

model when the data is generated from a logistic model. This is not surprising to us, since

we’re being penalized for not assuming a particular correct structure for the model.

Figure 2 shows the performance of the models under Model 2. Since Model 2 con-

tains interactions that are not specified in LR1, LR1 does poorly in estimating the true

probabilities. LR2 does contain these interactions, so the estimated probabilities are

accurate. RFPM also provides accurate estimates of the probabilities, but without any

explicit specification of any interactions. Once again the efficiency of RFPM is inter-

mediate to LR1 and LR2, since we’re paying a penalty for nonparametric estimation but

not as much as estimating multiple unnecessary parameters; RFPM still optimizes to a

sparser model than LR2 implicitly. However, we would like to note that, in practice,

LR1 is the usual model that is fit to data and is reported on; modeling for interactions

is not routinely done specially as the number of predictors increase. Given that LR1 is
Figure 1 Comparative performance of RFPM and logistic regression under a main effects model. A main
effects logistic regression model (LR1), a main effects + 2-way interaction logistic regression model (LR2)
and a Random Forest Probability Machine (RF) are fit to 1000 simulated data sets under Model 1 (data with
only 3 main effects under a logistic data generating model). Figure 1(a) Average conditional probability
estimates of LR1, LR2 and RF are compared with the true probabilities in the data generating model. Figure 1(b)
Width of the interval defined by the 5th and 95th percentiles of the simulation distribution of each probability
target over 1000 simulations are compared between the three models that are fit.



Figure 2 Comparative performance of RFPM and logistic regression under an interaction model. A main
effects logistic regression model (LR1), a main effects + 2-way interaction logistic regression model (LR2)
and a Random Forest Probability Machine (RF) are fit to 1000 simulated data sets under Model 2 (data
with 3 main effects and 2 two-way interactions) under a logistic data generating model). Figure 2(a)
Average conditional probability estimates of LR1, LR2 and RF are compared with the true probabilities in
the data generating model. Figure 2(b) Width of the interval defined by the 5th and 95th percentiles of
the simulation distribution of each probability target over 1000 simulations are compared between the
three models that are fit.
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nominally the model most often used, Figure 2a shows that the presence of interactions

can severely bias its results. RFPM accommodates potential interactions without a

priori specification and hence maintains good predictive performance. As an initial

model for binary outcomes, RFPM provides a more robust solution with respect to

model specification than the main effects logistic paradigm.

To further make the point about the sensitivity of logistic regression to model specifi-

cation, we simulated data from a logistic model where each of the 8 subgroups defined

by X1, X2 and X3 has an arbitrary conditional probability. This is in effect a saturated

logistic model with a 3-way interaction term. We still keep the 7 unassociated predic-

tors as before. As we can see in Figure 3a, predictions from both LR1 and LR2 miss the

true probabilities, LR1 to a greater degree than LR2, since the generating model is not

a sub model of either LR1 or LR2. The RFPM, on the other hand, more accurately esti-

mates most of the probabilities with no change in the model specification compared to

the modeling done for Models 1 and 2 earlier. Figure 3b shows that the RFPM is now

just as efficient as LR1, and more efficient than LR2. These combined shows that RFPM

is a better choice of initial model when the generative model, though logistic, is not a

sub-model of the LR models being fitted.



Figure 3 Comparative performance of RFPM and logistic regression under a saturated model. A main
effects logistic regression model (LR1), a main effects + 2-way interaction logistic regression model (LR2)
and a Random Forest Probability Machine (RF) are fit to 1000 simulated data sets under Model 3 (a saturated
model). Figure 3(a) Average conditional probability estimates of LR1, LR2 and RF are compared with the
true probabilities in the data generating model. Figure 3(b) Width of the interval defined by the 5th and
95th percentiles of the simulation distribution of each probability target over 1000 simulations are compared
between the three models that are fit.
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Counterfactual machines

Counterfactual arguments are the basis of our interpretation of regression coefficients.

Regression coefficients are interpreted to be the average change in outcome when a

predictor changes by one unit, all other predictors remaining the same. In other words,

we are asking what could happen if we change just one factor, everything else being

equal. We argue that, using probability machines, we can look directly at counterfactual

outcomes in the context of binary outcomes to see the counterfactual change in suc-

cess probability for each individual when one binary predictor is changed. The core

idea can be extended easily to continuous outcomes and conceptually to continuous

predictors, which we will present in a future manuscript.

Conceptually, we can consider two groups of individuals where each individual in

one group is identical to an individual in the other group, except for the value of one

feature X1. If this were possible, we could directly observe the changes in outcome in

each person resulting from changing the value of X1 by merely observing their corre-

sponding doppelganger in the other group. Such experiments are carried out regularly

in, for example, comparing wild-type clonal mice versus mice where a particular gene

is knocked out, while treating both groups the same. Such experiments are of course

not possible in human population studies. We can, however, get a very good sense of

how one’s doppelganger would behave using predictive models. We train two predictive
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models, one for individuals with X1 = 0 and one for individuals with X1 = 1. Each cap-

tures the feature landscape, so to speak, and its relationship with the outcome in each

subgroup. Now, if we predict the outcome of an individual with X1 = 1 using the pre-

dictive model trained on the X1 = 0 subgroup, it would be as if we supplanted this indi-

vidual into the feature landscape of the X1 = 0 group, and the prediction would be

reflective of the relationship between this feature landscape and the outcome, preserv-

ing all the other feature information about this individual. In other words, we can

mimic the behavior of this individual’s conceptual doppelganger, and the difference between

an individual’s observed outcome and their predicted outcome using a predictive model

trained on the other group would be the counterfactual effect of X1 on that individual.

We can operationalize the description above using RFPMs. Suppose we want to pre-

dict the counterfactual outcomes for each individual when the value of the binary pre-

dictor X1 is changed. We split the dataset into two subgroups D0 and D1 based on

whether X1 is 0 or 1. We now train identically specified RFPMs on each subgroup,

calling the trained RFPMs PM0 and PM1 respectively. Now, for binary data, we can’t

directly observe the probability of success, but we can estimate it based on our models.

For an individual with X1 = 0, their “observed” probability of success would be the pre-

diction from PM0 and their counterfactual probability of success would be their predic-

tion from PM1. We can similarly compute the “observed” and counterfactual probabilities

of success of an individual with X1 = 1 using predictions from PM1 and PM0 respectively.

Thus, for each individual, we can compute under the RFPM model a probability p0 and a

probability p1 of success under the conditions X1 = 0 and X1 = 1 respectively.

Conceptually there is nothing in this operationalization that limits us to RFPMs or

even PMs. You could do the same exercise using a logistic model as well. However, a

logistic model would just give back estimates reflective of the chosen model structure

provided it is the correct model; it would merely be a self-fulfilling exercise. If the logis-

tic model is mis-specified, this exercise will give you estimates that are different from

what the model provides. PMs provide non-parametric estimates without a particular

model structure, so this exercise can help find dependency patterns in the data without

assumptions about particular links or particular structural constraints like linearity.
Risk machines: generating risk effect estimates using probability machines

Logistic regression thrives on providing risk estimates, in particular conditional odds

ratio estimates, with respect to predictors within the model. Using the concept of coun-

terfactual machines described earlier, generating estimates of different risk estimates

becomes straightforward using probability machines. In fact, since we are able to get

estimates of both the observed and counterfactual probabilities of success p0 and p1,

we can actually estimate any function of them, not just the odds ratio which is a con-

straint of the logistic or multiplicative model. For example we can estimate conditional

risk differences and risk ratios at an individual level as well as odds ratios. More pre-

cisely, for each subject in the study population, we can compute

1. the risk difference (RD): p1 − p0
2. the risk ratio (RR): p1/p0
3. the odds ratio (OR): p1(1 − p0)/p0(1 − p1)
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We can compute group-specific estimates of each of these functions by averaging

(mean or median) the individual estimates over the members of the group; the overall

conditional estimates or main effects estimates are obtained by averaging over the en-

tire study. Note that since the estimation targets the feature-specific counterfactual

probabilities per subject, we are free to choose any function of them for our risk esti-

mates. We call this method generally the “two-machine method”, since we need to train

2 machines, one on each subgroup defined by the predictor of interest X1.

Often we are not interested in the overall main effect but in subject-specific effects,

which can lead to discovery as well as estimation of interactions. In fact, this is prob-

ably the more frequent case. That is, the assumption that the effect of a feature is

unaffected by all other features–a pure main effects model–needs to be tested before it

is believed. Unfortunately computational difficulties in assessing complex interactions

over a large number of features under a logistic regression paradigm have made the

main effects model the de facto standard rather than something to be validated. Our

scheme allows us to easily obtain odds ratio estimates, or other risk function estimates,

for subgroups defined by a second feature or a set of features by merely averaging the

individual odds ratio estimates over each subgroup. This would then enable a very easy

computation of the interaction odds ratio. In this paper, we present a second method

for interaction estimation that directly leverages the counterfactual argument.

Consistency of each machine on its defining data set implies consistency of the risk

estimates. Discrete features in the data with more than the two levels [Yes, No] lead to

finitely more machines, yet the new calculations are straightforward. Features with

continuous values could be studied by binning the exposure data, but this approach too

often imposes an unacceptable loss of information and so requires further study.
Simulations

We followed the simulation set-up described earlier, and consider scenarios with only

main effects. Main effects odds ratios for each simulated data set were computed dir-

ectly from each logistic regression model (LR1 and LR2); for the RFPM, subject-specific

odds ratio estimates were obtained using two-machine counterfactual machines for

each predictor, and the main effect odds ratio estimates were obtained by averaging

over the individual odds ratio estimates. We report the results of the simulation study

using Model 1, which has 10 independent binary predictors of which three have

non-null main effects and no interactions between the predictors.

The simulated distributions for the estimated odds ratios for each method are shown

in Figure 4. We see that all the procedures evidently produce unbiased estimates, since

medians of estimated odds ratios were very close to the true values (shown by the hori-

zontal lines). In terms of variability the RFPM model is quite competitive with the LR1

model, which is the true and correct generative model. The LR2 model is typically

more variable since it in effect pays a penalty for having to estimate all the two-way

interactions on the same sample.

The main message here is that the two-machine counterfactual machine method can

reproduce the true odds ratios from the simulation in an unbiased manner, and have

efficiencies not much worse than the logistic main effects model, which is the data gen-

erating model. A logistic model which is mis-specified for the data generating model



Figure 4 Simulation-based distributions of odds ratio estimates using RFPM and logistic regression.
Simulated distributions of the conditional odds ratios for X1, X2, and X3 under Model 1 (3 main effects)
estimated using a main effects logistic regression model (LR1), a logistic regression model with main effects
and all two-way interactions (LR2) and a risk machine using RFPM and the “two-machine method”. The solid
lines represent the true main effects present in the data.
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produces both inaccurate predictions and biased effect estimates, even if the correct

predictors are included. Moreover, it is difficult to assess whether the model is mis-

specified without further modeling and testing, a fact that is often unaccounted for in

deriving inference from the final model. The RFPM model where the correct predictors

are included accounts for the patterns in the data to provide accurate predictions and

individual effect size estimates. Aggregate estimates of main effects and interactions

and exploration of whether interactions are present can be done based on a single

modeling run. The advantage that the risk machine method has is that it is not

constrained by having to guess the data-generating model. In fact, in the simulation

setting in Figure 3, where each of 8 predictor subgroups has a unique success probabil-

ity, generated by a fully saturated model, the risk machine can in fact estimate the

subgroup-specific odds ratios accurately by using an appropriate number of counterfac-

tual machines (in this case, 23 = 8 machines) or by averaging the individual odds ratio

estimates over the appropriate subgroups from a single machine run.

We have looked at how this strategy scales to larger feature sets. We have simulated

10000 observations under a logistic model with 100 features, where 20% of the features

have non-zero regression coefficients simulated from a N(0.7,0.2) distribution that are

then randomly multiplied by −1 or 1. We find that the RFPM risk estimates for the

features that have non-null associations with outcome tend to be attenuated to the null,
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whereas the estimates from logistic regression tend to be biased away from the null

(Figure 5). We believe that this is because, with a larger number of predictors, some of

the probability machines do not have enough training data to generate good predictions.

The distribution of risk estimates corresponding to all the predictors are in Additional

file 1: Figure S1a (logistic regression) and Figure S1b (RFPM). We are continuing research

to understand the mechanics of this behavior and strategies to improve performance.
Interaction detection and estimation

Interaction estimation

It is sometimes thought that nonparametric statistical learning machines cannot accur-

ately estimate effect sizes. As shown above using the two-machine method, consistency

of the probability machine, and therefore of the risk machine, demonstrates otherwise.

It is effective as a practical method for main effects odds ratio estimation, given logistic

regression data over binary predictors. Of course the multiple machine method for risk

effect estimation is not restricted to logistic regression data, and can be applied to any

regression problem with binary outcomes.
Figure 5 Simulation-based distributions of odds ratio estimates from RFPM and logistic regression with
100 features. Simulated distributions of the conditional odds ratios for features with non-null association with
the outcome under the simulation model. Under this model, 20 features out of 100 have non-null associations
with conditional odds ratios simulated from a N(0.7,0.2) distribution, then multiplied randomly by −1 or 1.
The data is generated from a logistic regression model. We find that RFPM estimates are attenuated to
the null, whereas logistic regression estimates tend to be biased away from the null. Diamonds denotes
the true coefficients under the simulation model.
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We now consider the problem of interactions. We will start be describing estimation

of multiplicative interactions as are seen in the logistic model context, for binary pre-

dictors. We introduce a “4-machine method” analogous to the earlier 2-machine

method to estimate interaction effects. This works as follows. For estimating the inter-

action effect due to two binary predictors X1 and X2, each taking values in {0,1}, parse

the data into four groups defined by the four possible values of X1 and X2, that is the

four subsets of the data defined by {X1, X2} = {(0, 0), (0, 1), (1, 0), (1, 1)}. Fit a probabil-

ity machine to each group separately. Note that within each subgroup the values for

{X1, X2} remain fixed, so the machine will not use the specific values for either feature.

The separate machines are distinctly constructed. They don’t see each other or the data

for the other groups: the separate model predictions for the probability of success in

the outcome are therefore conditional on the particular combinations of the predictors

{X1, X2}. We now estimate the probability of success of each individual using each of

the 4 machines, arriving at a vector of probabilities (p00, p01, p10, p11) for each individ-

ual. One of these represents the observed probability and the others represents coun-

terfactual probabilities under the other (X1,X2) combinations. It is now straightforward

to compute the interaction ratios for each individual, which is the ratio of the odds

ratios p11(1 - p10)/(1 - p11)p10 and p01(1 - p00)/(1 - p01)p00. The overall odds ratio can

be obtained by averaging these individual odds ratios over the study population. This is

in fact exactly analogous to the interaction effect estimated in a logistic regression, apart

from the log transformation applied to the odds ratios that is standard in logistic regression.

We note here that we need to run 4 machines to estimate each interaction, in

addition to an overall machine that could be used to identify strongly predictive fea-

tures. This is obviously burdensome in many current contexts. Our philosophy is not

to estimate all possible interactions, but to identify particular “interesting” interactions

based either on biology, previous results, or the predictive power of the features based

on a global run. We note here that creating 4 subgroups may produce subgroups with

a wide range of sample sizes even with moderately unbalanced predictors. Working

with unbalanced predictors is not a problem when using regression machines since we

are estimating the expectation of a binary outcome. We have run several simulations to

satisfy ourselves that this theoretical result holds. However, due to potential loss of

sample size in each stratum, there may be the need to adjust the parameters of the

machine, such as the terminal node size in a random forest, to accommodate the

practical issues of fitting the model accurately.

Intuitive model-free interaction detection

We now present a method for exploring the presence of interactions from a single

machine run. This method cannot be used directly for estimation, though the derived

estimates might be reasonably close to the truth, since accounting for counterfactual

effects is not done. We present this method using RFPM as our representative prob-

ability machine, though other machines can be used just as effectively.

We will use RFPM to discover interactions visually and intuitively without invoking

parametric models using a single global machine run. We have seen that fitting a

RFPM to binary outcome regression data provides consistent estimates of the probability

Prob(Y = 1|X). A single run only gives predictions of the conditional probabilities and not

any counterfactual predictions–it is not a counterfactual machine.
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Consider our usual scenario where we have a binary outcome Y, whose expectation is

predicted using several binary predictors X1, X2, . . . , Xp, and where we wish to explore

the interaction of X1 and X2 on Y. Let each predictor take values in {0,1}. We first fit a

single RFPM to the data, and obtain estimates Prob(Y =1 | X) of the conditional prob-

ability of Y = 1. Next, compute the average predicted probabilities conditional on the

four possible combinations over (X1, X2) and define

p00 ¼ averageX3;…;Xp
logit Prob Y∣X1 ¼ 0;X2 ¼ 0;X3;…;Xp

� �� �

p10 ¼ averageX3;…;Xp
logit Prob Y∣X1 ¼ 1;X2 ¼ 0;X3;…;Xp

� �� �

p01 ¼ averageX3;…;Xp
logit Prob Y∣X1 ¼ 0;X2 ¼ 1;X3;…;Xp

� �� �

p11 ¼ averageX3;…;Xp
logit Prob Y∣X1 ¼ 1;X2 ¼ 1;X3;…;Xp

� �� �

Note that these are the subgroup-specific averages from a single probability machine

run and not counterfactual computations. An interaction plot is created by displaying

these four values against values of X1. As in classical analysis of variance, we check if

the line joining p01 and p11 is parallel to the line joining p00 and p10. This is a check for

multiplicative interactions. For additive interactions, we replace the averages over the

logit-transformed probabilities above with the averages of the probability estimates

themselves.
Simulations

Consider a logistic model with outcome Y and ten binary predictors X1,…,X10 each with

P(Xi = 1) = 0.3, with main effects odds ratios of 1.3 and 2 corresponding to X1, and X2,

and 1 for the rest. Call this Model 4. We add interaction odds ratios of 2 corresponding

to the predictor pair (X1,X2) to Model 4 and call it Model 5. We generate 1000 data

points under each model and repeat 1000 times.

We first generate interaction plots as described above for the (X1,X2) interaction

effect under each of the two models for a particular simulated data set (Figure 6). The

figures indicate that there is no interaction effect between X1 and X2 in Model 4 but

some multiplicative interaction in Model 5. These results were consistent across the

simulated data sets.

We can compute the classical contrast T = p11-p10-p01 + p00 from the fitted machine.

If the lines are parallel, i.e., no multiplicative interaction, T should be 0. This contrast

can be used as an indicator to detect the presence of an interaction over pairs of features.

In Model 4, T = 0.004 (true value = 0) and in Model 5 it is 0.747 (true value = 0.693) for

the (X1,X2) interaction.

We can use the 4-machine method described earlier to estimate the interaction effect

of (X1,X2) in Model 5. Figure 7 shows the results of the simulation study, where the

box plots represent the simulated distribution of the estimates of the (X1,X2) interac-

tions in the data generating model using the logistic regression model LR2 (main

effects + all two-way interactions) as used earlier, and the 4-machine RFPM-based

method, denoted RFPM. We find that the logistic regression estimate is biased slightly

upwards, whereas the RFPM-based estimates are accurate and have similar precision as

the logistic regression based estimates. These results show that RFPM-based methods,

and indeed any consistent probability machine, can be used within the 4-machine



Figure 6 Interaction plots. Interaction plots for the (X1,X2) interaction under Model 4 (no true interaction)
and Model 5 (Interaction odds ratio = 2). We find that the lines for Model 4 are reasonably parallel, whereas in
Model 5 they are not, indicating presence of multiplicative interaction. Note the y-axis are logit-transformed
probabilities. The solid line represents the subgroup with X2 = 0 and the dotted line represents the
subgroup with X2 = 1.

Figure 7 Simulation-based distribution of estimates of multiplicative interaction using RFPM and
logistic regression. Simulation distributions for the estimates of the (X1,X2) multiplicative interaction under
Model 5 using a RFPM risk machine approach (RFPM) and a logistic regression model with main effects and
all possible two-way interactions (Logistic). The dotted line represents the true interaction odds ratio of 2.
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methodology to accurately detect and estimate multiplicative interaction effects when

they truly exist.

The discovery method leveraging interaction plots and the linear contrast can be used

to scan pairs of predictors to quickly find potentially interacting predictors, and the

4-machine estimation method can be used to estimate the interaction effects for those

interacting predictors. We can visualize the sets of potentially interacting predictors

using a heat map, where each axis has the set of predictors of interest and the color is

based on the magnitude of the linear contrast statistic T. Note that we can just as easily

investigate additive interaction under the same general scheme with the exact same

RFPM as before, with no additional modeling runs; this is due to the fact that we are

predicting the counterfactual probabilities in a nonparametric, model-free manner and

so can estimate any particular function of them immediately. We are no longer limited

by the logistic model’s constraint of multiplicative interaction estimation.

The extension of this methodology to categorical predictors is straightforward. Plausible

and efficient extensions to continuous predictors are under study.
Conclusions
We believe there are several advantages to the learning machine approach for risk

effect estimation. This approach leverages directly the concept of counterfactual esti-

mates and consistent predictive models to get predictions of the counterfactual prob-

abilities. First, since these predicted counterfactual probabilities are generated by

probability machines which are consistent, the individual counterfactual probability

estimates should also be consistent, within the respective contexts X = 0 and X = 1.

Obtaining good estimates of these individual probabilities grants us the flexibility of

directly estimating different risk effect functions, such as risk differences, risk ratios

and odds ratios, that are all based on the standard counterfactual argument. More pre-

cisely, these risk machine estimates are nonparametric estimates of the population ef-

fects and are not influenced by assumptions made in modeling as is essential for using

classical logistic regression. This property also allows us to empirically understand the

nature of the effect in the additive, multiplicative or other scale, rather than having to

begin with an assumption of multiplicative interaction, as when using logistic regression.

Second, one cannot typically assume that data is generated from purely main effects.

Our simulations show that if interactions are suspected, then RFPM is an accurate and

more efficient choice for estimating the conditional probabilities, and then for estimat-

ing the odds ratios, than is the exploratory logistic regression, LR2, which includes all

two-way interactions. Of course, interactions need not be limited to two-way interac-

tions, and including higher order interactions in a logistic framework quickly increases

the number of parameters to be estimated, hence further reducing efficiency. The

model-free risk machine approach also allows us to freely consider complex nonlinear

interactions, as when the odds ratios or risk ratios change nonlinearly with another

continuous predictor.

Third, the risk machine RFPM intrinsically incorporates higher order interactions in

its tree and forest based probability estimation and so can smoothly accommodate risk

estimation over higher order interactions, without having them inserted as features in

the analysis before the machine is applied to the data.
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Fourth, note that for all the experiments described, the specification of the RFPM

machine was identical, in that we only tell the machine what the predictors are and

identify the outcome: nothing more is assumed as part of any model building approach.

We can be entirely agnostic to the generative mechanism of the data while invoking a

nonparametric risk machine such as RFPM and still end with good estimation and

prediction. Such is not the case for a logistic regression approach unless it estimates

from a correct and fully specified model.

The risk machine approach, therefore, is an efficient and practical way to interrogate

data with binary outcomes, free of the usual hazard of model misspecification. Effect-

ively the researcher does not need to validate or calibrate a parametric model before

efficient and unbiased risk estimation can be studied, and the data analytic energy can

be directed at consideration of what makes functional sense for risk estimation across

all the features.

Additional file

Additional file 1: Figure S1. These figures show the distribution of conditional odds ratios for all the features in
the simulation model described in Figure 5. This model has 100 features and a sample size of 10,000, and 1000
simulated data sets were generated following a logistic model. 20 features have non-null association with the outcome,
with the logistic coefficients (log-odds ratios) simulated from a N(0.7,0.2) distribution and then randomly multiplied by
−1 or 1. Figure S1a shows the results from fitting logistic regressions to the simulated data sets. Figure S1b shows the
results from fitting RFPM to the simulated data sets. Diamonds denotes the true log-odds ratios under the
simulation model.
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