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Abstract

Background: Over-sampling methods based on Synthetic Minority Over-sampling
Technique (SMOTE) have been proposed for classification problems of imbalanced
biomedical data. However, the existing over-sampling methods achieve slightly better
or sometimes worse result than the simplest SMOTE. In order to improve the
effectiveness of SMOTE, this paper presents a novel over-sampling method using
codebooks obtained by the learning vector quantization. In general, even when an
existing SMOTE applied to a biomedical dataset, its empty feature space is still so huge
that most classification algorithms would not perform well on estimating borderlines
between classes. To tackle this problem, our over-sampling method generates
synthetic samples which occupy more feature space than the other SMOTE algorithms.
Briefly saying, our over-sampling method enables to generate useful synthetic samples
by referring to actual samples taken from real-world datasets.

Results: Experiments on eight real-world imbalanced datasets demonstrate that our
proposed over-sampling method performs better than the simplest SMOTE on four of
five standard classification algorithms. Moreover, it is seen that the performance of our
method increases if the latest SMOTE called MWMOTE is used in our algorithm.
Experiments on datasets for β-turn types prediction show some important patterns
that have not been seen in previous analyses.

Conclusions: The proposed over-sampling method generates useful synthetic
samples for the classification of imbalanced biomedical data. Besides, the proposed
over-sampling method is basically compatible with basic classification algorithms and
the existing over-sampling methods.

Keywords: Biomedical data, Over-sampling, Learning Vector Quantization,
Synthetic Minority Over-sampling Technique

Background
With the arrival of big data society, the number of imbalanced biomedical data
has increased, such as microRNA gene prediction [1] and detection of non-coding
RNA [2]. Classification of imbalanced biomedical data has been one of the major
issues in Bioinformatics. The common understanding of imbalanced data in the
community is that the majority samples outnumber the minority samples [3]. The
main problem of class imbalances is that most standard classification algorithms
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show poor classification performance because they assume or expect balanced class
distributions.
Approaches to the class imbalance problem are broadly distinguished into two ways:

one is “classification level” and another is “data level”. The classification level aims at
adjusting the induction rules that describe the minority concepts which are often weaker
than those of the majority concepts. One of the major approaches in the classification
level is boosting [4]. The idea of boosting is to increases weights of misclassified samples
and reduce the bias of class-imbalance learning. Another approach in the classification
level is tree-based learning such as C4.5 [5] and Random Forest [6]. For example, the
Random Forest classifier creates many of the minority concepts to avoid the biased
learning.
The data level is the modification of an imbalanced dataset to obtain a balanced

distribution. There are two major methods in the data level, namely over-sampling
and under-sampling. The over-sampling method increases the samples in the minor-
ity class, while the under-sampling method decreases the samples in the majority class.
Both of the methods aim at achieving a well-balanced class distribution. In general,
the under-sampling method is used to reduce the learning time of a classification algo-
rithm when the data size is larger enough to represent characteristics of the data,
while the over-sampling method is used to increase the performance of a classification
algorithm. Since approaches in the data level are independent from classification algo-
rithms, approaches in the data level are more flexible than those in the classification
level.
SMOTE (SyntheticMinority Over-sampling Technique) [7] is a powerful over-sampling

method that has shown a great deal of success in class imbalanced problems. The
SMOTE algorithm calculates a distance of the feature space between minority exam-
ples and creates synthetic data along the line between a minority example and its
selected nearest neighbor. Han et al. developed a modified SMOTE called borderline-
SMOTE [8]. The concept of their method is to generate synthetic samples near class
boundaries. Their algorithms are specifically effective towards binary class problems
with two features. However, since biomedical data such as gene expression data are
often complex, they contain even thousands of features. Chen et al. presented an
adaptive synthetic data generation called a RAMO technique [9]. They have shown
in their experiments that the technique of an adapting boosting often increases the
performance of the simplest SMOTE. Barua et al. developed a novel over-sampling
method called MWMOTE [10], which generates synthetic samples in clusters of infor-
mative minority class samples. From their experiments, it is seen that MWMOTE
outperforms RAMO and SMOTE on various benchmark datasets including biomedical
data.
The existing over-sampling methods based on SMOTE achieve slightly better or some-

times worse result than the simplest SMOTE. One of the reasons is that even when an
existing SMOTE is successfully applied to a biomedical dataset, its empty feature space is
still so huge that it is difficult for classification algorithms to estimate proper borderlines
between classes. As a solution to the problem, this paper presents a novel over-sampling
method using codebooks obtained by LVQ (Learning Vector Quantization) [11]. The pro-
posedmethod generates synthetic samples to occupymore feature space than the existing
SMOTE algorithms.
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Methods
Learning Vector Quantization

LVQ is a supervised classification algorithm that has been widely used for various
research purposes such as image decompression, clustering, and data visualization. LVQ
is one of the neural networks modeled after the human’s visual cortex. Briefly saying, the
algorithm of LVQ is a supervised version of K–means algorithm. As like K–means, the
algorithm of LVQ determines a number of centroids called codebooks for each feature.
Figure 1 shows an example of codebooks calculated by LVQ. The data in the figure are
taken from Iris dataset (a benchmark dataset in UCI repository [12]), where the num-
ber of features is reduced from four to two by the principal component analysis. In the
figure, each of the painted colored points represents the numerical value of a codebook.
These codebooks are used to determine the class of an unknown sample according to the
k nearest neighbor rule. Each codebook is randomly placed in the beginning and moves
according to a rule based on the K–means algorithm.
There are various modified versions of LVQ developed by Kohonen, namely LVQ2.1,

LVQ3, OLVQ3,Multiple-pass LVQ,Hierarchical LVQ [13]. Each of the algorithms is differ
in how to determine the position of each codebook.

The proposed over-sampling method

As described in the previous section, the codebooks for each feature in a target dataset
are used to determine the class of an unknown sample. Hence, if the codebooks in the
target dataset is similar to those in a reference dataset, it is expected that the samples
in the reference dataset would provide the target dataset with informative data for its

Figure 1 Example of codebooks obtained by Learning Vector Quantization. These codebooks are
extracted from the samples in Iris dataset [12]. Each of the painted colored points represents the numerical
value of a codebook.
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classification problem. From the idea, this paper presents a method of generating syn-
thetic samples using real samples taken from reference datasets according to a similarity
measure of codebooks.
Figure 2 shows a flow of the proposed method. As the figure shows, the proposed over-

sampling method refers to a storage for codebooks extracted from reference datasets,
and generates synthetic samples for a target dataset. First, we define the number of code-
books for each feature in the target dataset T as n and a set of two features in T as Ti
(i = 1, 2, . . . , nc) where nc is the total number of the combinations of two features. Thus,
each of Ti has n codebooks and two features. Next, regarding the numerical value of
each codebook in T1 as T1(xj, yj) (j = 1, 2, . . . n), the sum of Euclidean distance between
T1(xj, yj) and R1(xj, yj) of a reference dataset R is calculated. Figure 3 shows an example
of Euclidean distances between T1(xj, yj) and R1(xj, yj). In this case, the sum of Euclidean
distance between T1 and R1 is d1 + d2. This procedure applies from R1 to all the set of
two pairs in the storage. Then, T1 is linked to the set of two features which output the
minimal sum of Euclidean distance.
Here, we consider the case that T1 is linked to R1. Figure 4 shows an example of

synthetic samples generated by our proposed method. As the figure shows, the sam-
ples in R1 is added to T1. If the dataset T has more than 3 features, the proposed
method determines the numerical values for each of the other features by the following
algorithm.

(1) Find the nearest sample for each of the generated synthetic samples according to
Maharanobis distance.

(2) The numerical values for each of the other features in the nearest sample are copied
to those of the other features in the generated synthetic sample.

The procedures above are conducted for all the set of two features in the training
dataset, namely from T1 to Tnc. Finally, the SMOTE algorithm applies to T to obtain
balanced class distribution.

Figure 2 Flow of the proposed over-sampling method. The numbered methods are executed in
ascending sequence.
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Figure 3 Example of the distance measure. The distance measurement is Euclidean distance.

Results and discussion
Datasets

In order to evaluate the classification performance of our method, we have prepared
eight imbalanced benchmark datasets as shown in Table 1. In the table, the colon-
cancer dataset provided by Alon et al. [14] is a gene expression dataset that aims at
normal/abnormal classification of colon-cancer and consists of 62 colon tissue samples
with 2000 features. The leukemia dataset [15] aims at the classification of 23 acutemyeloid
leukemia patients and 49 acute lymphocytic leukemia patients. The other six real-world
datasets were obtained from UCI Machine Learning Repository [12]. As highly imbal-
anced problems, the satimage dataset and yeast dataset were converted into binary class
problem: the class “damp grey soil” and the other classes in satimage, and the class “ME2”

Figure 4 Example of generated synthetic samples by our proposedmethod. The four synthetic samples
in T1 are the actual four samples taken from R1, where T is a target dataset and R is a reference dataset.
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Table 1 Benchmark datasets used for our experiments

Datasets Features Total samples Imbalance ratio

Breast-w 683 10 0.35 : 0.65

Blood 748 4 0.23 : 0.77

Colon-cancer 2000 62 0.35 : 0.65

Ionosphere 351 34 0.36 : 0.64

Leukemia 7129 72 0.34 : 0.66

Pima 768 8 0.35 : 0.65

Satimage 6435 36 0.097 : 0.903

Yeast 1484 8 0.034 : 0.966

and the other classes in yeast. Except for satimage and ionosphere, the other datasets are
biomedical data.
Moreover, we performed β-turn types prediction on BT547 and BT823 dataset [16].

β-turns are classified into nine types based on the dihedral angles of the two center
residues in the turn [17]. In this paper, we aim at improving prediction accuracy for
DEBUT, which is one of the state-of-the-art methods for predicting β-turn types [18].
We obtained the datasets used for training and testing DEBT that are available online at
http://comp.chem.nottingham.ac.uk/debt/.

Parameter configuration for the proposed over-sampling method

As shown in Figure 1, the normalization and a feature selection method are executed
in the proposed method. In our experiments, the normalization applied to change the
range of feature values from 0 to 1 in the real number. And then, the principal component
analysis, as the feature selection method, extracted 10 useful features according to the
component scores in ascending order.
As the parameter of SMOTE techniques in the following section, five nearest neigh-

bors were selected in their sample replacement. We selected Optimized Learning Vector
Quantization 3 (OLVQ3) as a algorithm of LVQ, where the number of codebooks was
configured with two.

Classification algorithms

In order to demonstrate the versatility of our proposed method, we selected widely used
basic classification algorithms, namely SVM (Support VectorMachine) [19], Logistic Tree
[20], Neural Network [21], Naive Bayes [22], Random Forest [6], and OLVQ3. SVM was
implemented using a package called LIBSVM [23], where all the parameters were set as
default and Radial Basis Kernel was selected as the kernel. SVM is a powerful classi-
fication algorithm for two-class classification. The other algorithms were implemented
using weka 3-7-9 package [24]. In the parameter configuration for these algorithms, since
we aim at evaluating our over-sampling method, we focused on configuring them for
gaining general performances, rather than optimizing them. After some preliminary runs,
the number of trees in Random Forest was set as 200 and the number of codebooks in
OLVQ3 was set as 600 to increase the performance of RF and OLVQ3, respectively, and
all the other parameters were remained as default. In Weka 3-7-9, the default number of
trees in RF is configured with 10, and we found 10 trees were insufficient to deal with
several thousands of features in pre-experiments. Similarly, we increased the number of
codebooks in OLVQ3 from the default value 20.

http://comp.chem.nottingham.ac.uk/debt/
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Table 2 Average G-mean for three cases

G-mean

Classification algorithm Nothing: base line AdaboostM1 SMOTE LVQ-SMOTE

NaiveBayes 76.25% 77.34% 78.54% 78.94%

Logistic Tree 72.88% 74.21% 81.21% 83.64%

Neural Network 75.24% 79.62% 80.44% 80.24%

SVM 72.65% 73.31% 80.92% 83.22%

RandomForest 75.34% 78.96% 79.47% 80.68%

OLVQ3 75.76% 74.35% 80.88% 82.55%

Nothing represents that all the datasets were remained as the class imbalanced problem. In the case of SMOTE and
LVQ-SMOTE, the minority samples were increased up to the number of the majority samples.

Classification results on the eight imbalanced datasets

In order to estimate the classification performance for our proposed method and
comparable methods, the 10-fold cross-validation was performed on each of the eight
imbalanced datasets. For instance, we divided each dataset into two parts, namely 10%
for testing and the rest 90% for training, while keeping the class distributions as possible
as it is. We repeated the 10-fold cross-validation for 20 times in each trial, and calculated
the average sensitivity, specificity, and G-mean, which are defined by the following terms,
respectively.

Sensitivity = TP
TP+ FP (1)

Specificity = TN
TN + FP (2)

G − mean = Sensitivity+ Specificity
2 (3)

were TP is the number of true positives (correctly identified as sick), FP is the number
of false positives (incorrectly identified as sick), and TN is the number of true negatives
(correctly identified as healthy).
First, the classification of the benchmark datasets was conducted to compare four cases:

nothing (no-oversampling), AdaboostM1 [25], SMOTE, and the proposed over-sampling
method (LVQ-SMOTE). Table 2 shows the average G-mean for each of the four cases.
Except for the case of Neural Network, we can find that our proposed method out-
performs both of AdaboostM1 and SMOTE. In this experiment, Logistic Tree output
the highest G-mean among the standard classification algorithms. Here, Table 3 shows
Sensitivity, Specificity, and G-mean calculated by Logistic Tree for each of the datasets.

Table 3 Sensitivity, Specificity, and G-mean for each of the datasets

Sensitivity Specificity G-mean

Datasets SMOTE LVQ-SMOTE SMOTE LVQ-SMOTE SMOTE LVQ-SMOTE

Breast-w 76.40% 74.16% 64.21% 67.89% 70.31% 71.03%

Blood 95.44% 95.00% 97.38% 99.04% 96.41% 97.02%

Colon-cancer 80.00% 85.00% 63.64% 72.73% 71.82% 78.86%

Ionosphere 80.16% 86.51% 91.56% 92.44% 85.86% 89.48%

Leukemia 95.65% 100.0% 95.92% 100.0% 95.79% 100.0%

Pima 72.76% 71.27% 77.60% 80.20% 75.18% 75.73%

Satimage 78.75% 75.76% 68.53% 75.67% 73.64% 75.71%

Yeast 74.51% 71.72% 86.81% 90.81% 80.66% 81.27%

This is the case of Logistic Tree which has shown the highest G-mean among the basic classification algorithms in Table 2.
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Table 4 G-mean for our proposedmethod (LVQ-SMOTE) in case MWMOTE instead of
SMOTE is used in our algorithm

Nothing: baseline Our proposedmethod

Datasets SMOTE MWSMOTE SMOTE MWSMOTE

Breast-w 70.31% 70.59% 71.03% 70.69%

Blood 96.41% 96.50% 97.02% 96.40%

Colon-cancer 71.82% 71.08% 78.86% 79.09%

Ionosphere 85.86% 85.92% 89.48% 91.28%

Leukemia 95.79% 95.92% 100.0% 100.0%

Pima 75.18% 74.07% 75.73% 75.69%

Satimage 73.64% 73.92% 75.71% 77.01%

Yeast 80.66% 81.20% 81.27% 81.38%

The algorithm used in this experiment is Logistic Tree.

Although LVQ-SMOTE output worse Sensitivity than SMOTE in three of eight datasets,
both of all the Specificity and G-mean in LVQ-SMOTE are superior to SMOTE. It is seen
that our proposedmethod significantly improved the classification performance for colon
cancer, ionosphere, and leukemia datasets.
Table 4 shows G-mean for LVQ-SMOTE in case one of the latest over-sampling

methods called MWMOTE [10] is used instead of SMOTE in our algorithm, where the
classification algorithm used in this experiment is Logistic Tree. As the table shows, the
G-mean for satimage has been increased by 1.30% by the use of MWMOTE in our algo-
rithm, and 5 of 8 G-means have been improved by the use ofMWMOTE in our algorithm.

β-turn types prediction

As a classification algorithm, we used the SVM with optimized parameters config-
ured in DEBT [18]. We applied our proposed method to the eight benchmark datasets
as the reference to generate synthetic samples for the learning data, and seven-fold
cross-validation was performed on the BT547 and BT823 dataset, respectively. In order
to confirm the effectiveness of our method, SMOTE was not applied to the learning
data. Table 5 shows MCC (Matthews Correlation Coefficient), Sensitivity, and Specificity
obtained in the experiment. MCC is defined as below.

MCC = TP × TN − FP × FN√
(TP + FN) × (TP + FP) × (TN + FP) × (TN + FN)

(4)

Table 5 Results of β-turns prediction on the BT547 and BT823 dataset

DEBT [18] DEBT + our method

Dataset β-turn type MCC Sensitivity Specificity MCC Sensitivity Specificity

BT547 I 0.38 71.6% 82.6% 0.40 73.7% 85.0%

II 0.33 63.0% 90.8% 0.31 66.7% 86.1%

IV 0.27 69.8% 73.3% 0.38 81.6% 75.2%

VIII 0.14 47.8% 84.4% 0.26 60.3% 84.1%

Non-turn 0.37 21.1% 99.7% 0.39 30.4% 97.6%

BT823 I 0.39 70.6% 84.2% 0.37 71.3% 82.5%

II 0.33 62.7% 91.2% 0.30 61.4% 92.1%

IV 0.27 68.3% 74.4% 0.35 78.4% 78.9%

VIII 0.14 42.2% 87.2% 0.17 47.9% 86.3%

Non-turn 0.38 23.6% 99.7% 0.40 27.5% 97.4%
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Table 6 Comparison of MCC scores between DEBT + ourmethod, DEBT, and another β-turn
type predictionmethod

Dataset Prediction method I II IV VIII

BT547 DEBT + our method 0.40 0.31 0.38 0.26

DEBT 0.38 0.33 0.27 0.14

X.Shi et al. [26] 0.53 0.55 0.31 0.04

BT823 DEBT + our method 0.37 0.30 0.35 0.17

DEBT 0.38 0.33 0.27 0.14

X.Shi et al. [26] 0.64 0.63 0.32 0.13

And, Table 6 shows MCC scores of DEBT + our method, DEBT, and one of the latest
method for β-turns prediction. From Table 5, the average MCC was improved by 0.05 in
BT547 and 0.016 in BT823, and the average Sensitivity was improved by 7.88% in BT547
and 3.82% in BT823 by using our method. Meanwhile, the average Specificity was slightly
decreased, 0.56% in BT547. In Table 6, although MCC of our method on type I and II
were lower than that of X.Shi et al., MCC of our method on type IV and VIII were higher
than that of X.Shi et al. The type IV and VIII are rare patterns in β-turns prediction, and
it was difficult to predict these types in the existing methods [18]. Since our method can
be used to expand the feature space in a rare case. we can say that our method generated
useful synthetic samples for type IV and VIII.

Conclusions
This paper has presented a new over-sampling method using codebooks obtained by
Learning Vector Quantization. In general, even when an existing SMOTE is applied to a
biomedical dataset, it is still difficult to estimate proper borderlines between classes. In
order to tackle this problem, we have proposed to generate synthetic samples using code-
books obtained by the learning vector quantization. The experimental results on eight
real-world benchmark datasets have shown that the proposed over-samplingmethod gen-
erates useful synthetic samples for the classification of imbalanced biomedical data. It
is expected that the proposed over-sampling method is basically compatible with basic
classification algorithms and the existing over-sampling methods. In addition, experi-
ments on datasets for β-turn types prediction show our proposed method has improved
prediction of β-turns type IV and VIII.
In the future work, we plan to analyze benchmark datasets for extracting more effective

codebooks. Moreover, we would like to improve the proposed algorithm regarding the
generation of synthetic samples.
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