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Abstract

MicroRNAs (miRNAs), a class of endogenous small noncoding RNAs, mediate
posttranscriptional regulation of protein-coding genes by binding chiefly to the 3’
untranslated region of target mRNAs, leading to translational inhibition, mRNA
destabilization or degradation. A single miRNA concurrently downregulates hundreds
of target mRNAs designated “targetome”, and thereby fine-tunes gene expression
involved in diverse cellular functions, such as development, differentiation,
proliferation, apoptosis and metabolism. Recently, we characterized the molecular
network of the whole human miRNA targetome by using bioinformatics tools for
analyzing molecular interactions on the comprehensive knowledgebase. We found
that the miRNA targetome regulated by an individual miRNA generally constitutes
the biological network of functionally-associated molecules in human cells, closely
linked to pathological events involved in cancers and neurodegenerative diseases.
We also identified a collaborative regulation of gene expression by transcription
factors and miRNAs in cancer-associated miRNA targetome networks. This review
focuses on the workflow of molecular network analysis of miRNA targetome in silico.
We applied the workflow to two representative datasets, composed of miRNA
expression profiling of adult T cell leukemia (ATL) and Alzheimer’s disease (AD),
retrieved from Gene Expression Omnibus (GEO) repository. The results supported the
view that miRNAs act as a central regulator of both oncogenesis and
neurodegeneration.
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Introduction
MicroRNAs (miRNAs) constitute a class of endogenous small noncoding RNAs con-

served through the evolution. They mediate posttranscriptional regulation of protein-

coding genes by binding chiefly to the 30 untranslated region (30UTR) and occasionally

to the 50UTR or coding regions of target mRNAs [1]. This interaction leads to transla-

tional inhibition, mRNA destabilization or degradation, depending on the degree of se-

quence complementarity. During miRNA biogenesis, the pri-miRNAs are transcribed

from the intra- and inter-genetic regions of the genome by RNA polymerase II, fol-

lowed by processing by the RNase III enzyme Drosha into pre-miRNAs. After nuclear

export, they are cleaved by the RNase III enzyme Dicer into mature miRNAs that con-

sist of approximately 22 nucleotides. Finally, a single-stranded mature miRNA is select-

ively recruited onto the Argonaute-containing RNA-induced silencing complex (RISC),

where the seed sequence located at positions 2 to 8 from the 50 end of the miRNA
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serves as an essential scaffold for recognizing the target mRNA [2]. Furthermore, recent

evidence indicates that Argonaute proteins directly regulate miRNA processing by

binding to pri-miRNA transcripts in the nucleus [3].

Currently, 1,600 precursor and 2,042 mature human miRNAs are registered in miR-

Base Release 19 (August 2012). In general, a single mRNA is targeted by several differ-

ent miRNAs, while a single miRNA at one time reduces the production of hundreds of

target proteins that constitute “targetome” [4]. Thus, redundant interactions between

miRNAs and their targets result in the complexity of miRNA-regulated gene expres-

sion. Furthermore, certain miRNAs activate transcription and translation of the targets,

further enhancing the complexity [5,6]. Consequently, the whole human “micro-

RNAome (miRNAome)” regulates greater than 60% of all protein-coding genes [7]. By

targeting multiple transcripts and affecting expression of numerous proteins, miRNAs

are capable of fine-tuning diverse cellular functions, including development, differenti-

ation, proliferation, apoptosis and metabolism [2]. Therefore, aberrant regulation of

miRNA expression is greatly involved in pathological events underlying cancers [8] and

neurodegenerative diseases, such as Alzheimer’s disease (AD) and Parkinson’s disease

(PD) [9,10]. Certain miRNAs are released extracellularly, and circulate steadily in the

serum, plasma, and cerebrospinal fluids, which clinically serve as diagnostic and prog-

nostic disease biomarkers [11].

Recent advances in systems biology have made a great breakthrough by illustrating

the cell-wide map of complex molecular interactions with the aid of the literature-

based knowledgebase of molecular pathways [12]. The logically arranged molecular net-

works construct the whole system characterized by robustness, which maintains the

proper function of the system in the face of genetic and environmental perturbations

[13]. Actually, miRNAs play an active role in conferring robustness to various biological

systems by reinforcing the transcriptional machinery to reduce random fluctuations in

gene expression [14]. In the scale-free molecular network, targeted disruption of lim-

ited numbers of critical components designated hubs, on which the biologically import-

ant molecular interactions concentrate, efficiently disturbs the whole cellular function

by destabilizing the network [15]. Importantly, an individual miRNA often targets the

hub gene in the human protein-protein interaction (PPI) network [16]. Therefore, the

identification and characterization of hub molecules in the miRNA targetome network

would help us to elucidate biological roles of individual miRNAs.

Until recently, the question remains unanswered whether the miRNA targetome

regulated by an individual miRNA generally constitutes the biological network of

functionally-associated molecules or simply reflects a random set of functionally-

independent genes. To address this issue, we attempted to characterize the molecular

network of the whole human miRNA targetome [17]. We found that the set of highly

reliable targets for approximately 20% of all human miRNAs constructed biologically

meaningful molecular networks, supporting the view that the miRNA targetome gener-

ally constitutes the biological network of functionally-associated molecules in human

cells. Notably, we identified a collaborative regulation of gene expression by transcrip-

tion factors and miRNAs in cancer-associated miRNA targetome networks, indicating

that the human miRNAome plays a specialized role in regulation of oncogenesis [17].

More recently, we have characterized the molecular network of experimentally vali-

dated targets for hundreds of miRNAs whose expression is downregulated in AD brains
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[18]. We found that aberrant cell cycle progression owing to deregulation of miRNA

targetome networks plays a central role in the pathogenesis of AD.

The present review focuses on the workflow of an in silico approach how to effect-

ively identify biological roles of individual miRNAs through molecular network analysis

of the miRNA targetome. Here, we would show its application to representative data-

sets of cancers and AD.
Workflow of molecular network analysis of MicroRNA targetome
Preparation of MicroRNA dataset

First of all, we prepare the list of miRNAs whose function we attempt to characterize

(Figure 1). For the whole human miRNAome, we could retrieve the complete list from

miRBase Release 19 (www.mirbase.org), as described previously [17]. For the selection

of focused miRNAome, we could download microRNA expression profiling datasets

from Gene Expression Omnibus (GEO) repository (www.ncbi.nlm.nih.gov/geo). They

are derived from experimental data performed on microarray, quantitative RT-PCR

(qPCR), and high-throughput sequencing. In the next step, we extract a set of differen-

tially expressed miRNAs (DEMs), either upregulated or downregulated among distinct

samples and/or different experimental conditions, following statistical evaluation with

Bioconductor on R statistical package (www.r-project.org), and so on.
MicroRNA target prediction

In general, miRNAs could form an energetically stable Watson-Crick base pair with

target mRNAs [2]. In most occasions, the seed sequence located at positions 2 to 8
MicroRNA Expression Profiling Dataset (microarray, qPCR, NGS)

Differentially Expressed miRNAs (DEMs)

Statistical Evaluation (R, T-test, ANOVA)

Validated Target mRNAs

miRTarBase, miRWalk, miRecords

Predicted Target mRNAs

TargetScan, PicTar, MicroCosm, Diana-microT

Cell and Tissue-Specific Expression of DEM-Targets

UniGene, BioGPS, HPRD

KEGG, Panther, Reactome, IPA, KeyMolnet

Molecular Networks and Pathways of DEM-Targets 

Experimental Validation of Biological Implications

Loss-of-function or Gain-of-function Analysis

Figure 1 The workflow of molecular network analysis of microRNA targetome. First, differentially
expressed miRNAs (DEMs) among distinct samples and experimental conditions are extracted from
microRNA expression profiling datasets based on microarray, qPCR, and next-generation sequencing (NGS)
experiments by the standard statistical evaluation. Next, predicted targets and/or validated targets for DEMs
are obtained by using target prediction programs, such as TargetScan, PicTar, MicroCosm and Diana-microT
3.0, or by searching them on databases of experimentally validated targets, such as miRTarBase, miRWalk,
and miRecords. The expression of DEM targets in the cells and tissues examined is verified by searching
them on UniGene, BioGPS, and HPRD. Molecular networks and pathways relevant to DEM targets are
identified by using pathway analysis tools, such as KEGG, IPA, and KeyMolnet. Finally, the functionally
inverse relationship between miRNAome and targetome is validated by loss-of-function or gain-of-function
experiments in an in vitro and/or in vivo model.

http://www.mirbase.org
http://www.ncbi.nlm.nih.gov/geo
http://www.r-project.org
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from the 50 end of the miRNA serves as an essential scaffold for recognizing the target

mRNA in the condition of a perfect seed match with miRNA recognition element

(MRE) sequences of mRNA. Target sites often avoid the sequences immediately after

the stop codon, which have the possibility of falling into the ribosome shadow [19].

The thermodynamic rule and the evolutional conservation of MRE sequences make it

possible to fairly accurately predict miRNA target mRNAs by computational

approaches [2]. Open source miRNA target prediction programs, including TargetScan

version 6.2 (www.targetscan.org), PicTar (pictar.mdc-berlin.de), MicroCosm version 5

(www.ebi.ac.uk/enright-srv/microcosm), miRanda (www.microrna.org), and Diana-

microT version 3.0 (diana.cslab.ece.ntua.gr/microT), are mostly armed with unique

algorithms that survey MRE sequences in the 30UTR of target mRNAs. As a result, the

predicted targets vary greatly among the distinct programs utilized [20]. Increasing evi-

dence suggests that MRE sequences are located occasionally in the 50UTR or coding

sequences (CDS) [21,22], both of which are ignored by the conventional prediction pro-

grams. Furthermore, predicted targets are usually cell- and tissue-type non-specific.

These drawbacks confer a substantial risk for detecting numerous false positive and

negative ones. The integration of the results from several prediction programs, along

with examination of tissue-specific interactions, might provide an advantage for redu-

cing unreliable targets to some extent [23,24].

Recently, several databases of experimentally validated miRNA targets are established

to overcome the unreliability of target prediction (Figure 1). The miRecords database

(mirecords.biolead.org) includes 2,286 records of experimentally validated interactions

between 548 miRNAs and 1,579 target genes derived from 9 species extracted after

thorough literature curation, accompanied with the storage of predicted targets col-

lected from datasets of 11 established miRNA target prediction programs [25]. The

miRTarBase (mirtarbase.mbc.nctu.edu.tw) represents the collection of 4,270 manually

curated miRNA-target interactions validated experimentally between 669 miRNAs and

2,533 target genes among 14 species [26]. It is followed by a clear description of experi-

mental methods for target validation on each interaction, such as luciferase reporter

assay, western blot, quantitative RT-PCR, and microarray experiments. The miRWalk

database (www.umm.uni-heidelberg.de/apps/zmf/mirwalk) contains both predicted and

validated information on miRNA-target interactions focused on 449 human biological

pathways and 2,356 disorders of Online Mendelian Inheritance in Man (OMIM) [27].

Predicted targets are originated based on its own algorithm that covers MRE sequences

located both inside and outside the 30UTR of target mRNAs, and are also collected

from datasets of 8 established miRNA target prediction programs. Validated targets are

identified by an automated text-mining search on PubMed to extract experimentally

validated miRNA-target interactions, including those involved in miRNA processing,

followed by PubMed article identifiers (PMID).
In silico validation of tissue-specific expression of MicroRNA target mRNAs

Although experimentally validated targets represent a source of reliable candidates, it is

worthless when they are not expressed in the cells and tissues examined. Most simply,

we could verify the expression of target mRNAs in specified tissues and cells by analyz-

ing them on UniGene (www.ncbi.nlm.nih.gov/unigene), an organized view of the

http://www.targetscan.org
http://www.ebi.ac.uk/enright-srv/microcosm
http://www.microrna.org
http://www.umm.uni-heidelberg.de/apps/zmf/mirwalk
http://www.ncbi.nlm.nih.gov/unigene
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transcriptome that evaluates semi-quantitatively the expression sequence tag (EST) cal-

culated as the number of transcripts per million (TPM) (Figure 1) [18]. We could in-

vestigate mRNA expression levels based on microarray data in specified tissues and

cells by searching them on a gene annotation resource named BioGPS (biogps.org)

[28]. Similarly, H-Invitational Database (H-InvDB) (www.h-invitational.jp) includes the

Human Anatomic Gene Expression Library (H-ANGEL) that provides gene expression

data from microarray experiments and EST profiles determined on a panel of normal

adult human tissues [29]. Human Protein Reference Database (HPRD) (www.hprd.org)

linked to NCBI Entrez is also useful to identify the tissue-specific expression of proteins

and their subcellular location.
Genome-wide analysis of MicroRNA target mRNAs

The simultaneous assessment of miRNA and mRNA expression profiles provides a ra-

tional approach to identify a set of miRNAs whose expression levels are negatively cor-

related with the levels of their target mRNAs [30-32]. However, it is often difficult to

determine the optimum experimental time required for miRNA-induced degradation of

target mRNAs, because time lags exist in expression changes between miRNAs and tar-

get mRNAs. Time course-dependent profiles of miRNA-mRNA expression make it

possible to more exactly identify the inverse relationship between relevant miRNAs and

mRNAs [33]. However, the interaction of a miRNA with a target mRNA does not al-

ways cause mRNA degradation. Instead, it often leads to reduction in protein expres-

sion levels by translational repression.

Recently, the methods of quantitative proteomics are established to overcome the dif-

ficulties attributable to the dissociation of miRNA and mRNA dynamics. They include

stable isotope labeling with amino acids in culture (SILAC), isobaric tag for relative and

absolute quantitation (iTRAQ), and two-dimensional difference gel electrophoresis

(2D-DIGE), all of which are combined with miRNA expression profiling [34-36].

Nevertheless, these techniques could not exclude indirect alterations of protein expres-

sion. To enrich a class of mRNAs directly bound to the RISC complex, the method

designated as ribonucleoprotein immunoprecipitation (IP) followed by GeneChip (RIP-

Chip) has been established. By this advanced technique, a previous study has character-

ized miRNA target mRNAs recovered from the Ago2-IP fraction of Hodgkin lymphoma

cells [37]. They found that approximately 40% of miRNA target transcripts are derived

from targets for abundantly co-expressed miRNAs in the cells, although this technique

could not specify the exact pair of miRNAs and their target mRNAs.

A recent progress in the next-generation sequencing (NGS) technology has revolutio-

nized the field of genomic research. Currently, we could efficiently identify endogenous

miRNAs and target mRNAs on a genome-wide scale at one time by using the method

named as high-throughput sequencing of RNAs isolated by crosslinking immuno-

precipitation (HITS-CLIP-Seq) or alternatively by the improved version designated as

the photoactivatable-ribonucleoside-enhanced crosslinking immunoprecipitation (PAR-

CLIP-Seq) [38,39]. In both of them, the RISC complex components comprising

miRNAs, mRNAs, and RISC proteins are crosslinked by ultraviolet (UV) prior to

immunoprecipitation with an antibody specific for the RISC component protein. Then,

deep sequencing data are processed for target prediction programs to identify interaction

http://www.h-invitational.jp
http://www.hprd.org
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sites between miRNAs and target mRNAs. By these techniques, a previous study showed

that MRE sequences are located in 30UTR (40%), 50UTR (1%), CDS (25%), intron (12%),

intergenic regions (6%), and non-coding RNA (4%), respectively, in the postnatal mouse

neocortex [38]. A different study revealed that the GCACUU motif, enriched in 30UTR and

CDS of target mRNAs, matches the seed of a miRNA family that constitutes 68% of entire

miRNAs in mouse embryonic stem cells (mESCs) [40].
Molecular network analysis of MicroRNA target mRNAs

To identify biologically relevant molecular networks and pathways extracted from high-

throughput data, we could analyze them by using a battery of bioinformatics tools for

analyzing molecular interactions on the comprehensive knowledgebase (Figure 1). They

include Kyoto Encyclopedia of Genes and Genomes (KEGG) (www.kegg.jp), Panther

(www.pantherdb.org), Reactome (www.reactome.org), Ingenuity Pathways Analysis (IPA)

(Ingenuity Systems, www.ingenuity.com), and KeyMolnet (Institute of Medicinal Molecu-

lar Design, www.immd.co.jp). KEGG, Panther, and Reactome are open sources, whereas

IPA and KeyMolnet are commercial ones, all of which are updated frequently. After July

1, 2011, the KEGG FTP site for academic users has been transferred from GenomeNet at

Kyoto University to NPO Bioinformatics Japan. Therefore, the FTP access is currently

available only to paid subscribers, although the publicly funded domain is freely accessible

at GenomeNet. This review focuses on the application of KEGG, IPA, and KeyMolnet to

molecular network analysis.

KEGG includes manually curated reference pathways that cover a wide range of

metabolic, genetic, environmental, and cellular processes, and human diseases [41].

Currently, KEGG contains 198,560 pathways generated from 428 reference pathways.

When importing of Entrez Gene IDs into the Functional Annotation tool of Database

for Annotation, Visualization and Integrated Discovery (DAVID) version 6.7 (david.

abcc.ncifcrf.gov), DAVID identifies the most relevant KEGG pathway and gene ontology

(GO) categories, composed of the genes enriched in the given set, followed by an out-

put of statistical significance evaluated by the modified Fisher’s exact test [42].

IPA is a knowledgebase that contains approximately 3,000,000 biological and chemical

interactions and functional annotations with definite scientific evidence, curated by expert

biologists. By uploading the list of Gene IDs and expression values into the Core Analysis

tool, the network-generation algorithm identifies focused genes integrated in a global mo-

lecular network. IPA calculates the score p-value that reflects the statistical significance of

association between the genes and the networks by the Fisher’s exact test.

KeyMolnet contains knowledge-based contents on 150,500 relationships among

human genes and proteins, small molecules, diseases, pathways and drugs, curated by

expert biologists [12,17]. They are categorized into the core contents collected from

selected review articles and textbooks with the highest reliability or the secondary con-

tents extracted from PubMed abstracts and Human Reference Protein database

(HPRD). By importing the list of Gene IDs and expression values, KeyMolnet automat-

ically provides corresponding molecules as a node on networks. The neighboring

network-search algorithm selects one or more molecules as starting points to generate

the network of all kinds of molecular interactions around starting molecules, including

direct activation/inactivation, transcriptional activation/repression, and the complex

http://www.kegg.jp
http://www.pantherdb.org
http://www.reactome.org
http://www.ingenuity.com
http://www.immd.co.jp
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formation within the designated number of paths from starting points. The generated

network is compared side by side with 484 human canonical pathways, 892 diseases,

and 219 pathological events of the KeyMolnet library (the April 2012 version). The al-

gorithm counting the number of overlapping molecular relations between the extracted

network and the canonical pathway makes it possible to identify the canonical pathway

showing the most significant contribution to the extracted network [12,17].
Experimental validation of biological implications

Molecular network analysis enables us to characterize the most relevant networks and

pathways involved in the miRNA targetome in silico. When the expression of DEMs is

downregulated, theoretically, the targetome is predicted to be upregulated, and presum-

ably hyperactivated under pathological conditions. In contrast, when the expression of

DEMs is upregulated, the targetome is predicted to be downregulated, and possibly

hypoactivated under disease conditions. The functionally inverse relationship between

miRNAs in the miRNAome and mRNAs in the targetome should be validated by loss-of-

function or gain-of-function experiments by introducing antagomirs (anti-sense miRNAs)

or premir oligonucleotides in an in vitro and/or in vivo model in an adequate setting

(Figure 1). This step is highly important but often labor intensive. For example, a recent

study by using microarray and qPCR showed that the expression of a set of miRNAs, most

robustly miR-206, are upregulated in Tg2576 AD transgenic mice and human AD brain

samples [43]. Importantly, intraventricular injection of a miR-206 antagomir restored

decreased levels of brain-derived neurotrophic factor (BDNF), a highly likely target of

miR-206, followed by a remarkable improvement of memory function.
Molecular network of MicroRNA targetome
Human MicroRNAome plays a specialized role in oncogenesis

Recently, we studied the molecular network of the whole human miRNA targetome

[17]. The complete set of human miRNAs was downloaded from miRBase Release 16.

Among 1,223 human miRNAs examined, Diana-microT 3.0 predicted the targets from

532 miRNAs (43.5%). This program calculates the miRNA-targeted gene (miTG) score

that reflects the weighted sum of the scores of all conserved and non-conserved MRE

sequences on the 30UTR of the target mRNA [44]. To optimize the parameter of

miRNA-target interaction, we considered target genes with a cutoff of the miTG

score ≥ 20 as highly reliable targets. Among 532 miRNAs, we identified 273 miRNAs

with highly reliable targets. Among 273 miRNAs, KeyMolnet successfully extracted tar-

getome networks from 232 miRNAs that consist of 19% of the whole human miR-

NAome. Thus, these results supported the view that the human miRNA targetome

regulated by an individual miRNA generally constitutes the biological network of

functionally-associated molecules [17]. Therefore, it is possible that even small changes

in the expression of a single miRNA could affect a wide range of signaling pathways

and networks involved in diverse biological functions.

Next, the generated network was compared side by side with human canonical net-

works of the KeyMolnet library, composed of 430 pathways, 885 diseases, and 208

pathological events (the July 2010 version). When top three pathways, diseases, and

pathological events were individually totalized, the most relevant pathway was
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‘transcriptional regulation by retinoblastoma (Rb) protein/transcription factor E2F’

(n = 39; 6.8% of total), followed by ‘TGF-beta (TGFb) family signaling pathway’ (n = 32;

5.6%) and ‘transcriptional regulation by POU domain factor’ (n = 24; 4.2%), the most

relevant disease was ‘adult T cell lymphoma/leukemia’ (n = 68; 12.1%), followed by

‘chronic myelogenous leukemia’ (n = 65; 11.5%) and ‘hepatocellular carcinoma’ (n = 51;

9.1%), and the most relevant pathological event was ‘cancer’ (n = 97; 24.7%), followed by

‘adipogenesis’ (n = 46; 11.7%) and ‘metastasis’ (n = 36; 9.2%) (Figure 2) [17]. Thus, we

found that the human miRNAome plays a specialized role in regulation of oncogenesis.

The protooncogene c-myb is a key transcription factor for development of normal

hematopoietic cells and neoplasms. Recent evidence indicates that miR-15a targets c-

myb, while c-myb binds to the promoter of miR-15a, providing an autoregulatory
Figure 2 The whole human microRNAome plays a specialized role in oncogenesis. Among 1,223
miRNAs of the whole human miRNAome, Diana-microT 3.0 identified the set of reliable targets from 273
miRNAs. Among them, KeyMolnet extracted molecular networks from 232 miRNAs. The generated network
was compared side by side with human canonical networks of the KeyMolnet library, composed of 430
pathways, 885 diseases, and 208 pathological events to identify the canonical network showing the most
statistically significant contribution to the extracted network. After top three pathways, diseases, and
pathological events were individually totalized, the cumulated numbers of top 10 of (a) pathway, (b)
disease, and (c) pathological event categories are expressed as a bar graph. The figure is cited from our
study [17].
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feedback loop in human hematopoietic cells [45]. Consistent with these observations, we

found ‘transcriptional regulation by myb’ as the most relevant pathway to the miR-15a tar-

getome network [17]. These results propose a scenario that miR-15a synchronously down-

regulates both c-myb itself and downstream genes transcriptionally regulated by c-myb,

resulting in more effective inactivation of the whole miR-15a targetome network governed

by the hub gene c-myb.

The Rb/E2F pathway acts as a gatekeeper for G1/S transition in the cell cycle. The

Rb/E2F-regulated G1 checkpoint control is frequently disrupted in cancer cells. A pre-

vious study showed that miR-106b directly regulates E2F1 at a posttranscriptional level

[46]. E2F1 activates transcription of miR-106b, while miR-106b targets E2F1, constitut-

ing a negative feedback loop in gastric cancer cells. Consistent with these observations,

we identified ‘transcriptional regulation by Rb/E2F’ as the most relevant pathway to the

miR-106b targetome network [17]. Again, it is possible that miR-106b simultaneously

downregulates both E2F family transcription factors and downstream genes transcrip-

tionally regulated by E2F, resulting in efficient inactivation of the whole miR-106b tar-

getome network governed by the hub molecule E2F. Thus, there exists a complex

crosstalk between miRNAs and E2F family proteins, and it plays a crucial role in regu-

lation of oncogenic signaling [47].

These results suggest an existence of collaborative regulation of gene expression by

transcription factors and miRNAs in cancer-associated miRNA targetome networks.

This concept is supported by a recent study showing that the collaborative regulation

of gene expression involves a feedforward loop of coordinated regulation by miRNAs

and transcription factors [48]. The crosstalk between miRNAs and transcription factors

in the human protein interaction network is categorized into four regulatory modules,

comprising single-regulation, co-regulation, crosstalk, and independent [49]. Further-

more, co-expressed miRNAs often share transcription factors and function in a co-

operative manner to regulate common biological processes [50].

To protect the cells from oncogenic insults, the transcription factor p53 acts as “the

guardian of the genome” by regulating a battery of target genes involved in cell cycle

arrest, apoptosis, senescence, and DNA repair. Therefore, deregulation of tumor sup-

pressor function of p53 is closely associated with oncogenesis. We found ‘transcrip-

tional regulation by p53’ as the most relevant pathway to the target network of all let-7

family members except for let-7d [17]. p53 regulates the expression of a panel of miR-

NAs and the components of the miRNA-processing machinery, such as Drosha,

DGCR8, Dicer, and TARBP2, all of which have p53-reponsive elements in their promo-

ters [51,52]. Furthermore, Dicer and TARBP2, along with p53, serve as a target for the

let-7 family miRNAs, suggesting a pivotal interplay between p53 and let-7 in miRNA

biogenesis. The expression of let-7 family members was greatly reduced in a panel of

cancer cells [53].

Zinc finger transcription factors ZEB1 and ZEB2 act as a transcriptional repressor of

E-cadherin. The expression of miR-200b, which targets both ZEB1 and ZEB2, was

downregulated in the cells that undergo TGFb-induced epithelial-mesenchymal transi-

tion (EMT), and was lost in invasive breast cancer cells [54]. EMT represents a mor-

phological marker of tumor progression, characterized by loss of cell adhesion,

repression of E-cadherin expression, and an enhancement of cell mobility and invasive-

ness. We identified ‘transcriptional regulation by ZEB’ as the third-rank significant
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pathway and ‘EMT’ as the third-rank significant pathological event relevant to the miR-

200b targetome network [17].
MicroRNA targetome plays a pathological role in Alzheimer’s disease

AD is the most common cause of dementia worldwide, affecting the elderly population,

characterized by the hallmark pathology of amyloid-β (Aβ) deposition, neurofibrillary

tangle (NFT) formation, and extensive neuronal degeneration in the brain. Aβ is

derived from the sequential cleavage of amyloid precursor protein (APP) by beta-site

APP-cleaving enzyme 1 (BACE1) and the γ-secretase complex. The hyperphosphory-

lated tau protein is concentrated in NFT. Although the precise pathological mechan-

isms underlying AD remain largely unknown, increasing evidence indicates that

deregulation of miRNA targetome plays a key role in Aβ production, NFT formation,

and neurodegeneration [9,18].

The levels of miR-107 that targets BACE1 are reduced in the temporal cortex not

only of AD but also of the patients affected with mild cognitive impairment (MCI), a

prodrome of AD, indicating that downregulation of miR-107 begins at the very early

stage of AD [55]. The expression of miR-107 is also decreased in the brains of trans-

genic mice overexpressing human APP carrying familial AD mutations [56]. The ex-

pression of miR-29a/b-1 that targets BACE1 is reduced in the anterior temporal cortex

of AD, inversely correlated with BACE1 protein levels [57]. A follow-up study showed

that the levels of miR-106b that targets APP are also decreased in the anterior temporal

cortex of AD [58]. The levels of expression of a noncoding BACE1-antisense (BACE1-

AS) RNA that enhances BACE1 mRNA stability are elevated in the brains of Tg19959

APP transgenic mice [59]. Furthermore, BACE1-AS masks the miR-485-5p binding site

located within the CDS of BACE1 mRNA, and thereby counteracts miR-485-5p-

mediated repression of BACE1 mRNA translation [60]. Actually, the levels of expres-

sion of miR-485-5p are reduced but those of BACE1-AS are elevated in the entorhinal

cortex and the hippocampus of AD. All of these observations suggest the view that ab-

normal downregulation of several key miRNAs accelerates β production via overexpres-

sion of BACE1, the enzyme and/or APP, the substrate in AD brains [61].

Previously, we found that miR-29a whose levels are decreased in the frontal cortex of

AD brains targets neuron navigator 3 (NAV3), a putative axonal guidance regulator

[62]. NAV3 immunoreactivity is greatly enhanced in NFT-bearing pyramidal neurons in

the cerebral cortex of AD brains, suggesting a compensatory response against NFT-

generating neurodegenerative events in neurons. The conditional deletion of Dicer, a

master regulator of miRNA processing, induces neurodegeneration accompanied by

hyperphosphorylation of tau in the adult mouse forebrain and the hippocampus [63].

Extracellular signal-regulated kinase 1 (ERK1) is identified as a candidate kinase regu-

lated by the miR-15 family responsible for tau phosphorylation. The levels of miR-15a

are substantially reduced in AD brains [63].

Recently, we attempted to characterize the miRNA targetome for a battery of

miRNAs aberrantly expressed in AD brains [18]. For this purpose, we focused on the

currently available most comprehensive dataset of miRNA expression profiling of

pathologically validated AD brains [64]. Hierarchical clustering analysis categorized

AD-relevant 171 miRNAs into five groups named A to E [64]. We combined them into
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the set of upregulated miRNAs consisting of groups A and B and the set of downregu-

lated miRNAs consisting of groups C, D, and E. We explored the targets for 171

miRNAs on the miRTarBase [26]. After omitting the mRNAs undetectable in the

human brain on UniGene, we extracted 852 theoretically upregulated targets for the set

of miRNAs downregulated in AD brains [18].

Next, we studied molecular networks of 852 targets by using KEGG, IPA, and

KeyMolnet. We found a significant association of the targetome with GO terms related

to regulation of cell proliferation, cell death, apoptosis, and cell cycle, and KEGG path-

ways related to cancer, cell cycle, focal adhesion, and signaling pathways of ErbB, p53,

MAPK and TGFb [18]. The targetome also showed a significant relationship with IPA

functional networks of cancer, cell growth, proliferation, development, and death, and

cell cycle, and KeyMolnet pathways of transcriptional regulation by Rb/E2F, cAMP re-

sponsive element biding protein (CREB), glucocorticoid receptor (GR), vitamin D re-

ceptor (VDR), nuclear factor-kappaB (NF-κB), hypoxia inducible factor (HIF), p53, and

AP-1. Collectively, we concluded that the set of miRNAs downregulated in AD brains

upregulate the targetome involved in cell cycle progression. The AD-relevant network

is characterized by synchronous upregulation of multiple cell cycle regulators, such as

cyclins, cyclin-dependent kinases (CDKs), cyclin-dependent kinase inhibitors (CDKIs),

Rb/E2F family proteins, and p53 (Figure 3). Our conclusion agrees with previous stud-

ies showing that cyclins, CDKs, and CDKIs are aberrantly expressed in AD brains

[65,66]. Abnormal reentry into the cell cycle is deleterious for terminally differentiated

neurons, and it is identified as an early event in neurons of AD brains, which precedes

Aβ deposition and NFT formation [67].
Case study
Molecular network of MicroRNA targetome in adult T cell leukemia

Finally, we would apply the workflow of molecular network analysis of miRNA targe-

tome to two representative datasets of miRNA expression profiling. As described above,

we found that the whole human miRNA targetome network is most closely associated

with the disease of adult T cell lymphoma (ATL)/leukemia [17]. Therefore, we focused

on a role of miRNA targetome in the pathogenesis of ATL, a highly aggressive T-cell

neoplasm caused by human T cell leukemia virus type 1 (HTLV-1). We selected the data-

set GSE31629 retrieved from GEO. It contains miRNA expression profiling of peripheral

blood mononuclear cells (PBMC) derived form ATL patients (n= 40) and CD4+ T

cells from healthy control subjects (n = 22). The original study showed that miR-31

that targets NF-κB inducing kinase (NIK) is silenced in ATL cells by an epigenetic

mechanism controlled by Polycomb group proteins, leading to persistent activation

of NF-κB pathway that plays a central role in ATL leukemogenesis [68]. In their

study, PBMCs derived from ATL patients and healthy volunteers were a part of those

collected with an informed consent as a collaborative project of the Joint Study on

Prognostic Factors of ATL Development (JSPFAD). The project was approved by the

Institute of Medical Sciences, the University of Tokyo (IMSUT) Human Genome

Research Ethics Committee.

First, we extracted the set of 4 upregulated and 24 downregulated miRNAs in ATL

cells versus normal CD4+ T cells in the condition of p < 0.0001 by Welch’s t-test that



Figure 3 MicroRNA targetome suggests aberrant upregulation of cell cycle regulators in AD brains.
The targets for the set of miRNAs downregulated in AD brains were identified by searching them on the
miRTarBase [18]. The expression of targets in the human brain was verified by searching them on UniGene.
Overall, 852 theoretically upregulated target genes for the set of miRNAs downregulated in AD brains were
imported into the Core Analysis tool of IPA. The canonical pathway defined by “Cyclins and Cell Cycle
Regulation” showing a significant relationship with the targetome (p = 2.18E-19) is shown. The red nodes
represent cell cycle regulators theoretically upregulated in AD brains.
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corresponds to false discovery rate (FDR) = 0.0085. In ATL cells, upregulated miRNAs

include miR-144-5p, 183, 451, and 509-3p, while downregulated miRNAs include let-7b,

7c, 7e, miR-17, 26a, 31-3p, 31-5p, 95, 99a, 99b, 125a-5p, 125b, 146b-5p, 148b, 151-3p,

151-5p, 181a, 181c, 215, 222, 328, 423-5p, 571, and 874. Among the set of 28 miRNAs,

23 miRNAs (82.1%), including miR-31, showed an agreement with the list of deregulated

miRNAs reported by the original study [68]. Hierarchical clustering analysis of the set of

28 miRNAs completely separated the cluster of ATL samples from the cluster of normal

CD4+ T cells (Figure 4).

Next, we searched validated targets for 28 miRNAs on miRWalk [27] and their expres-

sion in leukemia on UniGene. Consequently, we identified 932 targets for downregluated

miRNAs and 128 targets for upregulated miRNAs in ATL cells (Additional file 1: Table S1

and Additional file 2: TableS2). Thus, the targets for downregulated miRNAs greatly out-

numbered those of upregulated miRNAs. Thereafter, we focused on the molecular



Figure 4 Differentially expressed microRNAs separate the cluster of ATL cells from normal CD4+ T
cells. We studied the dataset GSE31629 that contains miRNA expression profiling of peripheral blood
mononuclear cells (PBMC) derived form ATL patients (n = 40) and CD4+ T cells from healthy control subjects
(n = 22). Hierarchical clustering analysis of the set of 4 upregulated and 24 downregulated miRNAs in ATL
cells versus normal CD4+ T cells separated the cluster of ATL samples from the cluster of normal CD4+ T
cells. Hierarchical clustering analysis was performed by using Cluster 3.0 (bonsai.ims.u-tokyo.ac.jp/
~mdehoon/software/cluster) and TreeView 1.1.5r2 (sourceforge.net/projects/jtreeview).
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network of 932 targets theoretically upregulated in ATL cells. By importing them into the

Functional Annotation tool of DAVID, we found that cancer-related pathways, including

the pathway named chronic myeloid leukemia (p= 3.81E-15), were accumulated in the list

of top 10 most relevant KEGG pathways. Notably, the T-cell receptor (TCR) signaling

pathway was ranked within top 15 (p= 1.31E-5) (Figure 5).

By using IPA, we found that the network defined by “Infectious Disease, Protein

Synthesis, Cancer” (p = 1.00E-82) represented the network most closely related to 932

targets (Additional file 3: Table S3; Figure 6). By importing 932 genes into KeyMolnet,

the neighboring network-search algorithm identified a highly complex network com-

posed of 3,904 molecules and 8,423 molecular relations, showing a significant relation-

ship with canonical pathways of transcriptional regulation by p53 (p = 9.898E-266), Rb/

E2F (p = 1.032E-247), CREB (p = 5.084E-203), and SMAD (p = 7.510E-179). Among

them, it is well known that CREB acts as a critical regulator of HTLV-1 tax-mediated

oncogenesis [69]. These observations suggest that the miRNA targetome aberrantly

expressed in ATL cells is shifted to promotion of oncogenesis, possibly triggered by de-

fective TCR signaling attributable to persistent infection of HTLV-1, although this hy-

pothesis awaits experimental validation.

Molecular network of MicroRNA targetome in Alzheimer’s disease

By combination of miRNA and mRNA expression profiling of the parietal cortex of AD

patients (n = 4) and age-matched controls (n = 4), a recent study showed that the levels

of several miRNAs are not only negatively but also positively correlated with those of

potential target mRNAs [30]. The expression of miR-211 shows a negative correlation

with mRNA levels of BACE1, RAB43, LMNA, MAP2K7, and TADA2L, whereas the

bonsai.ims.u-tokyo.ac.jp/~mdehoon/software/cluster
bonsai.ims.u-tokyo.ac.jp/~mdehoon/software/cluster
sourceforge.net/projects/jtreeview


Figure 5 MicroRNA targetome suggests aberrant upregulation of T cell receptor signaling pathway
molecules in ATL cells. The set of 932 targets for 24 downregluated miRNAs in ATL cells versus normal
CD4+ T cells (GSE31629) were imported into the Functional Annotation tool of DAVID to identify relevant
KEGG pathways. The T-cell receptor (TCR) signaling pathway (hsa04660) (p = 1.31E-5) is shown. The orange
nodes represent the genes theoretically upregulated in ATL cells.
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expression of mir-44691, a poorly characterized miRNA, exhibits a positive correlation

with mRNA levels of CYR61, CASR, POU3F2, GGPR68, DPF3, STK38, and BCL2L2 in

AD [30]. We retrieved the dataset of their study numbered GSE16759 from GEO. In

their study, postmortem human brain samples were obtained from the University of

Southern California (USC) Alzheimer’s Disease Research Center (ADRC), which assures

written informed consent from all subjects. The USC Institutional Review Board

approved the use of the samples for the study.

First, we extracted the set of 16 upregulated and 22 downregulated miRNAs in AD

brains versus normal brains in the condition of p < 0.05 by Welch’s t-test and fold

change greater than 3. In AD brains, upregulated miRNAs include miR-122-5p, 134,

188, 198, 206, 320a, 486-5p, 498, 572, 575, 601, 602, 617, 659-3p, 671-5p, and 765,

while downregulated miRNAs include miR-20b-5p, 30e-3p, 30e-5p, 95, 101-3p, 148b-

3p, 154-3p, 181c-5p, 186-5p, 219-5p, 301a-3p, 374a-5p, 376a-3p, 376c, 380-3p, 424-5p,

499a-5p, 551-3p, 580, 582-5p, 655, and 656. Hierarchical clustering analysis of the set

of 38 miRNAs separated the cluster of AD samples from the cluster of normal control

(NC) subjects, except for one NC sample classified as an intermediate between AD and

NC groups (Figure 7).

Next, we searched validated targets for 38 miRNAs on miRWalk and their expression in

brain on UniGene. Overall, we identified 662 targets for downregluated miRNAs and 265



Figure 6 MicroRNA targetome shows a significant relationship with infection and cancer-related
network in ATL cells. The set of 932 targets for 24 downregluated miRNAs in ATL cells versus normal CD4+

T cells (GSE31629) were imported into the Core Analysis tool of IPA in the display setting of 70 molecules
per network. The first rank molecular network defined by “Infectious Disease, Protein Synthesis, Cancer”
(p= 1.00E-82) is shown in the subcellular location layout. The red nodes represent the genes theoretically
upregulated in ATL cells.
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targets for upregulated miRNAs in AD brains (Additional file 4: Table S4 and Additional

file 5: Table S5). The analysis of mRNA expression data corresponding to miRNA expression

profiling identified 53 differentially expressed mRNAs. However, only three transcripts, such

as Ras homolog enriched in brain (RHEB) with a 0.47-fold change, chemokine (C-X-C motif)

ligand 12 (CXCL12) with a 2.06-fold change, and podocalyxin-like (PODXL) with a 2.05-fold

change, showed an agreement with those in the list of miRNA targets, being consistent with

the view that the miRNA-target mRNA interaction often causes translational repression

without changing mRNA levels. Thereafter, we focused on the molecular network of 662 tar-

gets theoretically upregulated in AD brains. By importing them into the Functional Annota-

tion tool of DAVID, we found that several cancer-related pathways, MAPK signaling

pathway, and cell cycle pathway (p=1.51E-5) (Figure 8) were accumulated in top 10 most

relevant KEGG pathways (Table 1).

By using IPA, we identified molecular networks with functional categories defined by

“Cancer, Reproductive System Disease, Cell Cycle” (p= 1.00E-76) and “Gene Expression,



Figure 7 Differentially expressed microRNAs separate the cluster of AD brains from normal
controls. We studied the dataset GSE16759 that contains miRNA expression profiling of the parietal cortex
of AD patients (n = 4) and age-matched normal controls (NC) (n = 4). The Braak staging for AD pathology
ranking from 0 to VI is shown in individual cases. Hierarchical clustering analysis of the set of 16
upregulated and 22 downregulated miRNAs in AD versus NC separated the cluster of AD samples from the
cluster of NC, except for one NC sample classified as an intermediate between AD and NC groups.
Hierarchical clustering analysis was performed by using Cluster 3.0 and TreeView 1.1.5r2.
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Cell Cycle, DNA Replication, Recombination, and Repair” (p= 1.00E-72) as the networks

most closely related to 662 targets. By importing 662 genes into KeyMolnet, the neighbor-

ing network-search algorithm identified a highly complex network composed of 3,255

molecules and 6,133 molecular relations, showing a significant relationship with canonical

pathways of transcriptional regulation by p53 (p= 1.136E-283), SMAD (p=1.167E-252),

CREB (p= 6.075E-222), and Rb/E2F (p= 2.173E-199), all of which play a pivotal role in cell

cycle regulation. These observations suggest that the miRNA targetome aberrantly

expressed in AD brains is shifted to deregulation of cell cycle that plays a central role in

the pathogenesis of AD, being consistent with our recent observations [18]. Therefore, this

hypothesis warrants experimental validation.



Figure 8 MicroRNA targetome suggests aberrant upregulation of cell cycle regulators in AD brains.
The set of 662 targets for 22 downregluated miRNAs in AD brains versus normal control brains (GSE16759)
were imported into the Functional Annotation tool of DAVID to identify relevant KEGG pathways. The cell
cycle pathway (hsa04110) (p = 1.51E-5) is shown. The orange nodes represent the genes theoretically
upregulated in AD brains.
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Concluding remarks
A single miRNA concurrently downregulates hundreds of target mRNAs [2,4]. Such

fuzzy miRNA-mRNA interactions contribute to the complexity and the redundancy of

miRNA-regulated targets and their networks. Recently, we found that the miRNA tar-

getome regulated by an individual miRNA generally constitutes the biological network

of functionally-associated molecules in human cells, closely linked to pathological

events involved in cancers and neurodegenerative diseases [17,18]. Increasing evidence

supports this view. Interacting proteins in the human PPI network often share

restricted miRNA target-site types than random pairs [70]. A computational method

named mirBridge, which assesses enrichment of functional sites for a given miRNA in

the annotated gene set, showed that various miRNAs coordinately regulate multiple

components of signaling pathways and protein complexes [71].

We identified a coordinated regulation of gene expression by transcription factors and

miRNAs at transcriptional and posttranscriptional levels in cancer-associated miRNA tar-

getome networks [17]. Positive and negative transcriptional coregulation of miRNAs and

their targets plays a crucial role in conferring robustness to the gene regulatory networks

in mammalian genomes [14,72]. For example, the protooncogene c-myc directly activates

transcription of E2F1, but at the same time limits its translation by upregulating expres-

sion of miR-17-5p and miR-20a, both of which negatively regulate E2F1 [73]. Importantly,

the genes with more transcription factor-binding sites have a higher probability of being

targeted by miRNAs and have more miRNA-binding sites [74].



Table 1 Top 10 KEGG pathways associated with 662 miRNA targets theoretically
upregulated in AD brains

Rank Category Genes Bonferroni-Corrected
p-Value

FDR

1 hsa05200:Pathways in
cancer

ACVR1B, ACVR1C, AKT1,
APC, BCL2, BCR, CASP3,
CCND1, CCNE1, CCNE2,
CDK6, CDKN1A, CDKN1B,
CDKN2A, CEBPA, CTNNB1,
CUL2, E2F1, E2F3, EGFR,
EP300, EPAS1, ERBB2,
ETS1, FGF13, FGF2,
FGFR1, FH, FLT3, FOS,
FOXO1, HGF, HIF1A,
HRAS, IL6, ITGA2,
ITGA2B, JUN, KRAS,
LAMC1, MAP2K1, MAPK8,
MAPK9, MET, MMP9,
MTOR, MYC, PDGFA,
PIAS1, PIK3CA, PML,
PPARG, PRKCA, PTEN,
PTGS2, RARA, RASSF1,
RUNX1, RXRA, SHH,
SMAD2, SMAD3, SMAD4,
STAT1, STAT3, TGFB1,
TGFBR1, TGFBR2, TP53,
TPM3, VEGFA, WNT5A,
XIAP

2.84E-21 2.20E-20

2 hsa05212:Pancreatic
cancer

ACVR1B, ACVR1C, AKT1,
CCND1, CDK6, CDKN2A,
E2F1, E2F3, EGFR, ERBB2,
KRAS, MAP2K1, MAPK8,
MAPK9, PIK3CA, SMAD2,
SMAD3, SMAD4, STAT1,
STAT3, TGFB1, TGFBR1,
TGFBR2, TP53, VEGFA

3.06E-10 2.37E-09

3 hsa05210:Colorectal
cancer

ACVR1B, ACVR1C, AKT1,
APC, BCL2, CASP3,
CCND1, CTNNB1, EGFR,
FOS, JUN, KRAS, MAP2K1,
MAPK8, MAPK9, MET,
MYC, PIK3CA, SMAD2,
SMAD3, SMAD4, TGFB1,
TGFBR1, TGFBR2, TP53

1.25E-08 9.70E-08

4 hsa05220:Chronic
myeloid leukemia

ACVR1B, ACVR1C, AKT1,
BCR, CCND1, CDK6,
CDKN1A, CDKN1B,
CDKN2A, E2F1, E2F3,
HRAS, KRAS, MAP2K1,
MYC, PIK3CA, RUNX1,
SMAD3, SMAD4, TGFB1,
TGFBR1, TGFBR2, TP53

4.51E-08 3.50E-07

5 hsa05215:Prostate
cancer

AKT1, BCL2, CCND1,
CCNE1, CCNE2, CDKN1A,
CDKN1B, CREB1, CTNNB1,
E2F1, E2F3, EGFR, EP300,
ERBB2, FGFR1, FOCO1,
HRAS, KRAS, MAP2K1,
MTOR, PDGFA, PIK3CA,
PTEN, TP53

2.83E-07 2.19E-06

6 hsa05219:Bladder
cancer

CCND1, CDKN1A, CDKN2A,
E2F1, E2F3, EGFR, ERBB2,
HRAS, KRAS, MAP2K1,
MMP9, MYC, RASSF1,
THBS1, TP53, VEGFA

1.66E-06 1.29E-05
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Table 1 Top 10 KEGG pathways associated with 662 miRNA targets theoretically
upregulated in AD brains (Continued)

7 hsa05218:Melanoma AKT1, CCND1, CDK6,
CDKN1A, CDKN2A, E2F1,
E2F3, EGFR, FGF13, FGF2,
FGFR1, HGF, HRAS, KRAS,
MAP2K1, MET, PDGFA,
PIK3CA, PTEN, TP53

4.12E-06 3.19E-05

8 hsa04010:MAPK
signaling pathway

ACVR1B, ACVR1C, AKT1,
ATF2, BDNF, CACNA1C,
CACNA2D1, CACNB1,
CASP3, DUSP1, DUSP16,
EGFR, FGF13, FGF2,
FGFR1, FOS, GADD45A,
HRAS, HSPA1A, HSPA1B,
JUN, KRAS, MAP2K1,
MAP3K12, MAPK14, MAPK8,
MAPK9, MAPKSP1, MEF2C,
MYC, NLK, PDGFA, PPP3CA,
PPP3R1, PPP5C, PRKCA,
RASA1, STMN1, TGFB1,
TGFBR1, TGFBR2, TP53

1.17E-05 9.03E-05

9 hsa04110:Cell cycle ATM, CCND1, CCND2,
CCND3, CCNE1, CCNE2,
CDC14A, CDC25A, CDK6,
CDKN1A, CDKN1B, CDKN2A,
CHEK1, E2F1, E2F3, EP300,
GADD45A, MYC, PLK1,
SMAD2, SMAD3, SMAD4,
TGFB1, TP53, TTK, WEE1

1.51E-05 1.17E-04

10 hsa05214:Glioma AKT1, CAMK2G, CCND1,
CDK6, CDKN1A, CDKN2A,
E2F1, E2F3, EGFR, HRAS,
KRAS, MAP2K1, MTOR,
PDGFA, PIK3CA, PRKCA,
PTEN, TP53

1.99E-05 1.54E-04

By importing Entrez Gene IDs of 662 miRNA target genes theoretically upregulated in AD brains (GSE16759) into the
Functional Annotation tool of DAVID, top 10 most relevant KEGG pathways were identified. They are listed with
Category, Genes, Bonferroni-corrected p-value of the modified Fisher’s exact test, and false discovery rate (FDR).
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We found that the most relevant pathological event in the whole human miRNA targe-

tome is ‘cancer’, supporting the general view that the human miRNAome plays a specia-

lized role in regulation of oncogenesis [17]. Many miRNA gene loci are clustered in

cancer-associated genomic regions [75]. Furthermore, miRNA expression signatures

clearly discriminate different types of cancers with distinct clinical prognoses [76]. By

miRNA expression profiling of thousands of human tissue samples, a recent study showed

that diverse sets of miRNAs constitute a complex network composed of coordinately

regulated miRNA subnetworks in both normal and cancer tissues, and they are often dis-

organized in solid tumors and leukemias [77]. During oncogenesis, various panels of

miRNAs act as either oncogenes named oncomir or tumor suppressors termed anti-oncomir,

or both, by targeting key molecules and their networks involved in apoptosis, cell

cycle, cell adhesion and migration, chromosome stability, and DNA repair [8].

In the present review, we applied the workflow of molecular network analysis of miRNA

targetome to two representative datasets of miRNA expression profiling, such as ATL and

AD. The results supported the view that miRNAs act as a central regulator of both onco-

genesis and neurodegeneration. Therefore, the miRNA-based therapy designed to target

simultaneously multiple cancer-associated or neurodegenerative networks and pathways

might provide a rational and effective approach to treating and preventing cancers and AD.
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upregulated in ATL cells.
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