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Abstract

Background: Measurements on gene level are widely used to gain new insights in
complex diseases e.g. cancer. A promising approach to understand basic biological
mechanisms is to combine gene expression profiles and classical clinical parameters.
However, the computation of a correlation coefficient between high-dimensional
data and such parameters is not covered by traditional statistical methods.

Methods: We propose a novel index, the Normalized Tree Index (NTI), to compute a
correlation coefficient between the clustering result of high-dimensional microarray
data and nominal clinical parameters. The NTI detects correlations between
hierarchically clustered microarray data and nominal clinical parameters (labels) and
gives a measurement of significance in terms of an empiric p-value of the identified
correlations. Therefore, the microarray data is clustered by hierarchical agglomerative
clustering using standard settings. In a second step, the computed cluster tree is
evaluated. For each label, a NTI is computed measuring the correlation between that
label and the clustered microarray data.

Results: The NTI successfully identifies correlated clinical parameters at different
levels of significance when applied on two real-world microarray breast cancer data
sets. Some of the identified highly correlated labels confirm the actual state of
knowledge whereas others help to identify new risk factors and provide a good basis
to formulate new hypothesis.

Conclusions: The NTI is a valuable tool in the domain of biomedical data analysis. It
allows the identification of correlations between high-dimensional data and nominal
labels, while at the same time a p-value measures the level of significance of the
detected correlations.

Background
Hierarchical agglomerative clustering is the basis for most visual data mining tasks in

microarray applications [1-3]. Compared to non-hierarchical cluster algorithms, it has

the advantage that the number of clusters does not have to be specified in advance.

This property is of utmost importance since the number of clusters is usually unknown

making a precise a priori prediction of the number of clusters impossible. A second

reason for the frequent application of hierarchical agglomerative clustering is its visua-

lization ability [4]. The intrinsic hierarchical cluster structure of the data becomes

visually accessible at once in the computed cluster tree. The visualization ability of
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computed cluster trees is especially valuable to analyze complex biomedical data, con-

sisting of primary data and secondary data. The primary data is obtained in the main

experiment whereas the secondary data includes all supplementary data about the ana-

lyzed subjects. In the context of gene expression analysis, the primary data is the gene

expression data from the microarray experiments. The corresponding secondary data

consists of clinical data, disease outcome, information about the applied treatments

and therapies, as well as gene annotations. It is common practice to visualize the com-

puted cluster tree in combination with the clustered microarray data (the primary

data) and the secondary data available for the clustered samples (Figure 1).
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Figure 1 Visualization of clustered microarray data and clinical data. The gene expression data
(primary data) is displayed by colored squares, each one representing a specific gene and sample. A green
square represents an up-regulation, a black square an unchanged expression and a red square a down-
regulation compared to reference. The microarray data is clustered both with respect to subjects and
genes (a). The hierarchical clustering result is displayed as a tree on the top and on the left side of the
data (b and c). The rows and columns are permuted according to the leaves of the cluster trees. Clinical
data (secondary data) available for the subjects is displayed between the top cluster tree and the
microarray data (d).
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Microarray technology is currently entering the field of medicine [5,6]. In order to

identify molecular factors for macroscopic observations and diseases, recent medical

studies often incorporate both gene expression data as well as a high number of clini-

cal parameters [7]. Most mechanisms for development and proliferation of complex

diseases (e.g., cancer) are still unknown. It is supposed that many new insights into

the mechanisms of diseases can be obtained when the microarray data (primary data)

is analyzed in combination with the clinical data (secondary data) consisting of mas-

ter data, vital data, laboratory data and outcomes (with respect to diseases of interest)

that is available for each subject. In few cases, a single gene directly determines the

macroscopic phenotype (e.g., eye color). However, most macroscopic phenotypes ori-

ginate from a set of genes, denoted as gene profiles or metagenes [8]. Clinical data

can be considered as a set of observations on the phenotypic level. There are observa-

tions on the molecular level (e.g., protein expression), macroscopic observations (e.g.,

skin color, tumor size, outcome) as well as behavioral observations (e.g., nutrition,

alcohol consumption, sport). One issue of interest to the researcher is the identifica-

tion of clinical parameters (labels) that are correlated with the microarray data.

A high correlation between a label and the microarray data indicates that there might

be a common underlying mechanism or pathway. This provides a good basis to for-

mulate new hypothesis and to obtain new insights into the complex mechanisms of

diseases.

The visual inspection of cluster trees allows the estimation of the correlation

between the label and the clustered microarray data. However, this approach becomes

infeasible for studies with large numbers of samples and a high number of different

labels. Furthermore, the number of labels available for each subject is continuously

increasing, since hospital information systems store large amounts of laboratory and

vital data as well as radiological and microbiological findings in huge databases [9].

Therefore, an automated and objective computation of the correlation between labels

and microarray data is needed to identify correlated clinical parameters.

The canonical way to compute the correlation between a label and the microarray

data is to compute the correlation between the label (first variable) and every single

gene (second variable), and to combine the results in a final correlation coefficient.

Depending on the type of variables, statistics provides various methods to compute the

correlation between two variables. For interval data, Pearson’s correlation coefficient r

[10] computes the correlation between two variables whereas each variable is normal-

ized to zero mean and unit variance beforehand. For ordinal data, the correlation

between two variables can be computed using Spearman’s rank correlation coefficient

r [11]. This robust measure can even be applied on small sample sizes, but it requires

that the original data of any two successive ranks has to be approximately equidistant.

In cases where this can not be assumed, Kendall’s τ [12] should be used instead. For

nominal data, the chi-square test, Pearson’s contingency coefficient, or the corrected

contingency coefficient measure the correlation between any two variables [11].

A major drawback of the different correlation and contingency coefficients is that

they can only be used to compute the correlation between a label and a single gene.

Information contained in metagenes or gene profiles cannot be assessed this way.

Thus, a direct computation of the correlation between a label and single genes in

order to identify correlated labels does not capture the major trend of information
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hidden in the data. Microarray data rather has to be considered in its entirety, and an

analysis always has to be done in an holistic way.

In this paper, we propose a novel index, the Normalized Tree Index (NTI), which is

an extension of the Tree Index (TI) proposed in [13]. The NTI computes a correlation

coefficient between the clustering result (tree structure) of high-dimensional primary

data (here: microarray data) and associated nominal labels of secondary data (here:

clinical parameters). Due to a normalization procedure it is bounded by [0, 1]. A high

NTI indicates a high correlation between the label and the clustered data and vice

versa.

Furthermore, an empirical p-value is derived which measures the level of significance

of the detected correlations between labels and clustered microarray data. In a first

step, the microarray data is clustered by hierarchical agglomerative clustering using

standard settings (Figure 2). Thereby, the complete microarray data is taken into

account. In a second step, the computed cluster tree is evaluated using the NTI. For

each label, one NTI is computed measuring the correlation between that label and the

clustered microarray data. By this approach the microarray data is considered in its

entirety and labels that are correlated with the microarray data can be identified. The

NTI extends the TI in many respects: First, the normalization procedure increases the

interpretability of the correlation result considerably. The TI has been biased with

respect to the number of classes of the label, the number of elements of each class,

and the number of missing values. This unwanted feature prevents an objective corre-

lation analysis with different labels whose number of classes vary. Second, the compu-

tation of the p-value: The p-value is a valuable parameter for the biomedical researcher
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Figure 2 Computing the correlation between clinical parameters and microarray data. The
Normalized Tree Index (NTI) is used to compute a correlation coefficient between the clustering result
(tree structure) of high-dimensional primary data (microarray data) and associated nominal labels of
secondary data (clinical parameters). In a first step, the microarray data is clustered by hierarchical
agglomerative clustering using standard settings. In a second step, the computed cluster tree is evaluated
using the NTI. For each label, a NTI is computed that measures the correlation between that label and the
clustered microarray data. This permits the identification of labels that are highly correlated with the
microarray data, while analyzing the microarray data in its entirety.
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since it measures the level of significance of any detected correlation. Both the normal-

ization and the p-value enables us to automatically detect correlations between clus-

tered genomic data (primary data) and many different clinical parameters (secondary

data). Thus, the scope of this paper is far beyond that of [13], which was to improve

the clustering process for one fixed clinical parameter by detecting the most appropri-

ate parametric setting to obtain the best clustering result. In this paper, we aim to dis-

cover new relationships between genomic data and macroscopic observations. We

rather focus on knowledge discovery in data bases (KDD) than on a pure data mining

task.

The NTI is successfully applied on two breast cancer data sets to compute correla-

tions between microarray data and clinical data. Some of the identified highly corre-

lated labels confirm the actual state of knowledge in breast cancer research (i.e.

progesterone IHC, estrogen IHC). Others are helpful to identify new risk factors and

provide a good basis to formulate new hypothesis and to obtain new insights into the

complex mechanisms and pathways of diseases.

Methods
Cluster indices are cluster validation techniques that provide an objective measure of a

clustering result. They can be grouped into internal and external ones [14-16]. Internal

cluster indices evaluate the quality of a clustering result by using only intrinsic informa-

tion of the data. In contrast to that, external cluster indices permit an entirely objective

evaluation by making use of the knowledge of an external class label, denoted as label in

the following. The Tree Index (TI) is an external cluster index for cluster trees [13]. It is

used to identify the algorithm and parameterization yielding the clustering that is best

suited for visualization. However, the TI has the drawback that it is biased with respect

to the number of classes of the label, the number of elements of each class, and the

number of missing values. This unwanted feature prevents an objective correlation ana-

lysis with different labels whose number of classes vary. To overcome this problem, an

extension to the TI, the Normalized Tree Index (NTI), is developed. The Normalized

Tree Index (NTI) computes a normalized correlation coefficient between hierarchically

clustered primary data (microarray data) and nominal labels of secondary data (clinical

parameters). Furthermore, a p-value is derived that measures the level of significance of

the detected correlation between labels and clustered data. The NTI and the corre-

sponding p-value are computed for each label of the secondary data.

The Tree Index (TI)

Let the primary data be a dataset  of d samples of length g:  = {x1, ..., xi, ..., xd},

length (xi) = g. In the context of microarray data analysis,  can be a preprocessed

microarray data set with d tissue samples and g genes. A label c (dim (c) = d) is

selected from the secondary data for correlation analysis (e.g., grading), with

ci ∈{ ,...., } 1  , i = 1, ..., d and � the number of classes (e.g., the number of gradings).

Let  be clustered by hierarchical agglomerative clustering. After the clustering, the

TI is computed for each label on the resulting cluster tree.

The Tree Index (TI) considers the cluster tree as a result of a statistical splitting pro-

cess. It is based on the evaluation of probabilities of every single split in the tree start-

ing from the root (i.e. the entire dataset is one cluster). In a first step, a splitting score
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is computed for every single split in the tree based on the probability of the split. In a

second step, all splitting scores are combined to compute the final TI.

Step 1 Let the cluster of the r-th split (the splits are numbered arbitrarily) contain N

elements. Let the cluster be split into l (usually l = 2) smaller subclusters. The ele-

ments of the main cluster belong to � different categories whereas nl, l Î {1, ..., �}

specifies the number of elements belonging to class  . The i-th subcluster contains

mi elements with mil elements belonging to class  . The primary objective is to

compute the probability of such a particular split by taking the observed class distribu-

tions in the clusters into account. It is assumed that mi, i Î {1, ..., l} elements are

drawn from the N elements by sampling without replacement. Thereby each element

is drawn with the same probability. The probability of the observed class distribution

in the splitted clusters is given by a generalized form of the polyhypergeometric distri-

bution or multivariate hypergeometric distribution [17]. Let M = {mil}, n = {nl}, and

m = {mi} with 1 ≤ i ≤ l and 1 ≤ l ≤ �.
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geneity of the subclusters. The splitting score Sr of the r-th split is defined by its nega-

tive logarithmic probability.

S N p N

N n m m

r

i i

( ; , , ) ln ( ; , , )

ln ! ln ln ln

M n m M n m= −

= − − −
= =

∑ ∑










1 1

! ! !!
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

=
∑
i

l

1

(2)

Step 2 The TI combines the complete set of splitting scores to a parameter-free

index by computing the standard deviation of splitting scores:
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and R being the number of splits in the cluster tree. The higher the index for a given

label, the higher the correlation between that label and the clustered primary data (Fig-

ure 3). As stated earlier in this section, the TI is biased with respect to the number of

classes of the label. If the number of classes of the label increases, the TI also

increases. This is due to the fact, that p(M; N, n, m) decreases if the number of classes

and thus the number of possible class distributions increases. This leads to higher

splitting scores and thus a higher TI. For a more detailed description of the TI, please

refer to [13].

The Normalized Tree Index (NTI)

The Normalized Tree Index (NTI) computes a normalized correlation coefficient

between nominal parameters and hierarchically clustered data. In order to avoid biases

with respect to the number of classes and the distribution of cluster sizes [14,15], the
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TI is normalized as suggested in [15]. It should be noted that this normalization proce-

dure does not lead to an unbiased correlation coefficient in a strong statistical sense.

The distribution of the TI for different number of classes and cluster sizes is not taken

into account. After the normalization, the expectation E[NTI] is still unknown. We

propose to empirically calculate TImin and (TImax) for each considered label by using a

Monte Carlo simulation (Figure 4):

To compute TImin, the labels are permuted r ≥ 10000 times (Figure 4b), whereas the

cluster tree remains unchanged. For each randomly permuted label and each random

cluster tree, a TI is computed. The lowest TI is an empirical estimation for TImin.

To compute TImax, r ≥ 10000 ordered labels and ordered cluster trees are generated

(Figure 4c). An ordered cluster tree consists of � pure subtrees, each one containing

all items belonging to one class. The internal structure of each pure subtree is of no

importance and is chosen arbitrary. Based on the � pure subtrees, the ordered tree is

constructed by merging two randomly selected subtrees in � - 1 agglomerative steps.

The ordered label is constructed respectively. For each ordered label and each ordered

cluster tree, a TI is computed. The highest TI is an empirical estimation for TImax.

With the estimations for TImin and TImax, the NTI is defined by

NTI
TI TI

TI TImax

= −
−

min

min
(4)

The NTI is bounded by [0, 1]. However, the empirical computation of TImin and

TImax implies that there might be a TI < TImin or a TI > TImax. In such a case, the

NTI should be set to 0 or 1, respectively. To reduce the probability for such events, r

should be set sufficiently large.

A high NTI indicates a high correlation between the label and the clustered data and

vice versa.

Computation of p-value

Natural fluctuation in the data can lead to constellations in which the clustered data

seems to be correlated with external labels, but in fact the correlation has occurred by

microarray data (primary data)

a) low correlation b) moderate correlation c) high correlation

TI = 0.77 TI = 2.07 TI = 4.59label

hierarchical agglomerative clustering

Figure 3 Correlation between different microarray data sets and a label. The correlation between
three different microarray data sets and a label is analyzed using the TI. In (a), there is only a low
correlation between the microarray data and the label, resulting in a TI of 0.77. A TI of 2.07 indicates a
moderate correlation in (b), whereas a high correlation (TI = 4.59) is shown in (c).
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chance. The computation of a p-value allows the detection of such false identifications

of correlations. This approach has already been successfully applied for the biological

homogeneity index (BHI) and the biological stability index (BSI) [18].

Let H0 be the null hypothesis that there is no correlation between the microarray

data and a clinical parameter. A p-value lower than a significance level of 5%, 1%, or

0.1% means a rejection of H0. The p-value can either be derived analytically or empiri-

cally. Here, a Monte Carlo simulation is used to compute an empirical p-value for the

TI and NTI. For simplicity, the computation of the p-value is derived for the TI.

Let t be the TI of the tree obtained by a hierarchical cluster algorithm (e.g., hierarch-

ical agglomerative clustering). The empirical p-value is defined by the fraction of TIs

obtained from trees with randomly permuted labels (Figure 4b) that is equal or higher

than t (Figure 5):

p du
u t

=
≥

∞

∫ (5)

For practical use, p can be approximated by

p
r

i
t t

r

i

≈
=
>

∑1
1

1
(6)
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TI = 4.287TI = 4.590

a) cluster tree obtained by
   hierarchical agglomerative
   clustering

b) create cluster trees with
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Figure 4 Lower and upper bound for the TI. The cluster tree that is obtained when applying
hierarchical agglomerative clustering to the primary data is shown in (a). The branches and leaves of the
cluster tree are colored according to the given label. Missing values are colored in black. In (b) the labels
are permuted r times. The cluster tree with the lowest TI (underlined) is an empirical estimation for TImin.
The TIs are also used to compute the respective p-value. In (c) r ordered cluster trees and ordered labels
are generated. The cluster tree with the highest TI (underlined) is an empirical estimation for TImax.
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with ti being the TI of the clustered tree with the i-th randomly permuted label. A

p ≥ 0.05 means that H0 (no correlation) cannot be rejected. A p < 0.05 (0.01, 0.001)

means that the rejection of H0 is statistically significant at the 5% (1%, 0.1%) level. The

number r of randomly permuted labels has to be sufficiently large to obtain a statistical

significant rejection of H0 at the 5% (1%, 0.1%) level. r > 1000 random trees are

required to theoretically achieve a statistical significant rejection of H0 at the 0.1%

level. Therefore consider the extreme example that r random trees are computed and

that each ti is lower than t. This results in the empirical p-value of 1/r. Thus, r > 1000

random trees are required to achieve a p-value of less than 0.001 and a rejection of H0

at the 0.1% level.

There is no need to use random trees instead of the clustered tree when computing

the p-value. If random trees and randomly permuted labels were used, two variables

would be randomized at the same time. This would lead to an artificially inflated

search space. With the computation of the p-value, we measure the significance of the

correlation between the clustering and the categorical clinical classes. The intention is

not to determine if there is both a significant correlation between the clustering and

the categorical clinical classes and a significant clustering.

The p-value is not altered by the normalization. It is equal for the TI and the NTI.

This is due to the fact that the tree indices are only shifted and scaled in Equation 4.

Thereby, the fraction of ti >t remains unchanged.

Example Let us assume that hierarchical agglomerative clustering of some primary

data leads to a TI of t = 0.688 (Figure 5). Let us further assume that the Monte Carlo

simulation reveals that 18.46% of TIs obtained from ordered cluster trees and ran-

domly permuted labels are higher than t. The resulting p-value of 0.1846 indicates that

H0 (no correlation) cannot be rejected at the 5% level of significance.

Results
The NTI and p-value is applied on two microarray breast cancer data sets. The first

data set is the breast cancer data set of van de Vijver [19] (downloadable at [20]),

TI = 0.649
fre

qu
en

cy

p = 0.1846

TI distribution of random trees

1.51.00 0.5
TI

Figure 5 Computation of an empirical p-value for the TI and NTI. An empirical p-value for the TI (as
well as for the NTI) is obtained using a Monte Carlo simulation: A TI is computed r ≥ 10000 for the same
clustered tree but randomly permuted labels. The p-value is defined by the fraction of TIs that is equal or
higher than the TI obtained from the original label and cluster tree (here: p =18.46%). The resulting p-value
of 0.1846 ≥ 0.05 indicates that there is no significant correlation between the clustered data and the label.
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which is an extension to the study of van’t Veer [7]. For each of the 295 subjects,

24496 genes are analyzed and six nominal clinical parameters are available (Table 1).

The clustering of subjects is performed on logarithms of a set of 231 marker genes

(identified in [7]). The second data set is a preliminary data set taken from the Biele-

feld breast cancer project (BBCP) [21,22]. In the BBCP, a set of 201 marker genes is

analyzed for 87 samples taken from 49 patients. One main feature of the BBCP, in

contrast to other microarray breast cancer studies, is the high number of clinical para-

meters that has been collected for each of the patients. As summarized in Table 2 (left

column), 29 clinical parameters are selected for correlation analysis. Some of these

parameters are interval parameters. To apply the NTI, they have to be converted to

nominal parameters by parameter-specific transformations (e.g., the values of the body

mass index (BMI) are divided into the three categories normal (18.5 to 25), overweight

(25 to 30), and obese (> 30). Moreover, if reasonable, the categories of some nominal

variable are merged (e.g., the categories of the parameter progesterone receptor IHC are

transformed to the categories negative (for values 0 to 1), intermediate (for values 2

to 8) and high positive (for values 9 to 12)). All specific transformations are listed in

Table 2 (right column).

In this paper, the entire molecular expression signature is used to demonstrate the mer-

its of the NTI and its p-value. Available knowledge about the analyzed genes, i.e. informa-

tion about marker genes, is used anyway since this helps to create well-structured cluster

trees. Both data sets (van de Vijver and BBCP) are preprocessed and clustered as follows:

The logarithms of ratios between the respective gene expression to reference sample are

scaled to [-1, 1]. Let xst be the scaled logarithm of sample s and gene t. The expression

profiles xs are clustered by hierarchical agglomerative clustering using average linkage and

a distance metric (dissimilarity measure) based on the correlation between a pair of sub-

jects. This correlation distance metric dij Î [0, 1] of two expression profiles xi and xj of

length g is defined as

d
gij

ik
k

g

jk
= − =∑1
2 2

1
x x

(7)

By applying the NTI on cluster trees obtained from real-world data sets, we simulate

the scenario where a biomedical researcher is looking for clinical parameters that are

correlated with the microarray data. The NTI and p-value are computed for each clini-

cal parameter listed in Tables 1 and 2. This enables the detection of even unexpected

relations between the variables. By this approach, huge data collections can be

Table 1 Clinical parameters of the van de Vijver data set

clinical parameter num categories

metastasis 2 (1) no (2) yes

positive lymph nodes 2 (1) no (2) yes

event death 2 (1) no (2) yes

estrogen receptor 2 (1) negative (2) positive

National Institute Health criteria 2 (1) 0 (2) 1

St. Gallen consensus criteria 2 (1) 0 (2) 1

conservative flag 3 (1) 0 (2) 1 (3) 2

The clinical parameters and their categorizations in the van de Vijver breast cancer data set.
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screened without the requirement to manually pre-select the clinical parameters.

Nevertheless, the insight gained depends on the parameter, e.g. the parameter intended

operation rather reveals an unexpected relationship than any insight into a biomedical

process.

A summary of all results is shown in Figure 6. For both data sets, the highest NTI

is obtained for the estrogen receptor. The number of asterisks indicates the level of

significance of the correlation. One asterisk means that the rejection of H0 (no

Table 2 Clinical parameters of the BBCP data set

clinical parameter num categories

age 6 (1) <40 (2) 40 to 49 (3) 50 to 59 (4) 60 to 69 (5) 70 to 79 (6) > 79

sample type 3 (1) biopsie before chemotherapy
(2) biopsie after chemotherapy
(3) operation (after chemotherapy)

BMI 3 (1) normal (18.5 to 25) (2) overweight (25 to 30) (3) obese (> 30)

native country 6 (1) Germany (2) Poland (3) Russia (4) Taiwan (5) Sri Lanka (6) Turkey

ethnic group 2 (1) Europe (2) Asia

nursing 2 (1) no (2) yes

nursing period 4 (1) none (2) short (1 to 5 months) (3) intermediate (6 to 14 months) (4) long
(> 14 months)

menopause 2 (1) no (2) yes

smoking 5 (1) always non-smoker (2) sometimes (3) regular (4) often (5) again
non-smoker

alcohol 5 (1) never (2) no longer (3) less than once a month (4) 1 to 3 times a week (5)
daily

sport 3 (1) nothing (0 h/week) (2) little (1 to 4 h/week) (3) plenty (> 5 h/week)

sleep 3 (1) little (< 7 h/day) (2) normal (7-9 h/day) (3) plenty (> 9 h/day)

familial breast cancer 2 (1) No (2) yes

histology 4 (1) ductal (2) lobar (3) not definable (4) mucous ductal

T (tumor dimension) 5 (1) T0 (2) T1 (3) T2 (4) T3 (5) T4

N (lymph nodes) 3 (1) N0 (2) N1 (3) N2

Grading 2 (1) G2 (2) G3

Progesterone receptor
IHC

3 (1) negative (0 to 1) (2) intermediate (2 to 8) (3) high positive (9 to 12)

Estrogen receptor IHC 3 (1) negative (0 to 1) (2) intermediate (2 to 8) (3) high positive (9 to 12)

Her2-new 3 (1) negative (2) intermediate (3) positive

intended operation 5 (1) ablatio and axilla (2) ablatio and sentinel (3) BET and sentinel (4) ablation
(5) BET

inspection 4 (1) no conspicuity (2) in ammatory mamma-carcinoma (3) plateau
phenomenon (4) other

lateral acoustical
shadow

2 (1) no (2) yes

dorsal acoustic
attenuation

2 (1) no (2) yes

axilla 2 (1) unsuspicious (2) suspicious

tumor size
(mammogramm)

3 (1) small (0 to 9 mm)
(2) intermediate (10 to 25 mm)
(3) large (> 26 mm)

micro lime 2 (1) no (2) yes

chemoregime 5 (1) TAC (2) ACDoc (3) Geparquattro (4) FEC (5) Geparquinto

herceptin treatment 2 (1) no (2) yes

The clinical parameters and their categorizations in the BBCP data set: Interval parameters are converted to nominal
parameters by the indicated transformations in parentheses.
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correlation) is statistically significant at the 5% level, two asterisks at the 1% level,

and three asterisks at the 0.1% level. No asterisk means that H0 cannot be rejected.

On the left of Figure 6, the results for the van de Vijver breast cancer data set are shown.

The highest NTI is obtained for the clinical parameter estrogen receptor (ESR1). The corre-

lation between the clinical parameters metastasis, event death, and estrogen receptor (ESR1)

and the microarray data is statistically significant at the 0.1% level. The StGallen consensus

criteria is statistically significant at the 1% level. On the right of Figure 6, the results for the

BBCP data set are shown. The highest NTI is obtained for estrogen receptor IHC. The cor-

relations between age, BMI, native country, grading, progesterone receptor IHC, and estro-

gen receptor IHC and the microarray data are statistically significant at the 0.1% level. The

correlations of the parameters menopause, smoking, T (tumor dimension), and intended

operation are statistically significant at the 1% level. The correlations of the parameters eth-

nic group, nursing period, alcohol, sleep, N (lymph nodes), Her2-new, inspection, tumor size

(mammogramm) and chemoregime are statistically significant at the 5% level.

The cluster tree of the van de Vijver data set is displayed in Figure 7. It is colored and

evaluated with respect to the clinical parameters positive lymph nodes and estrogen

receptor (ESR1). No correlation is detected between the microarray data and positive

lymph nodes. In contrast to that, the microarray data is highly correlated with estrogen

receptor (ESR1), since the rejection of H0 is statistically significant at the 0.1% level. The

cluster tree of the BBCP data set is displayed in Figure 8. It is colored and evaluated

with respect to the clinical parameters estrogen receptor IHC, progesterone receptor IHC,

grading, and nursing. The p-values < 0.001 indicate that the microarray data is highly

correlated with the first three parameters, whereas there is no correlation with nursing.

Discussion
A novel index, the Normalized Tree Index (NTI), is developed to compute a normal-

ized correlation coefficient between hierarchically clustered primary data (microarray
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data) and nominal labels of secondary data (clinical parameters). The NTI is an exten-

sion to the TI as described in [13], but it is bounded by [0, 1]. A high NTI indicates a

high correlation between the label and the clustered data and vice versa. Furthermore,

an empirical p-value is derived which measures the level of significance of the detected

correlations between labels and primary data.

NTI = 0.0158
p = 0.3022

(TI = 0.6259)

yes
no

positive lymph nodes

positiv
negativ

estrogen receptor (ESR1)

p = 0.0001
NTI = 0.3529

(TI = 3.535)

Figure 7 Cluster tree of the van de Vijver data set. The cluster tree obtained from the van Vijver data
set is colored and evaluated with respect to the clinical parameters positive lymph nodes and estrogen
receptor (ESR1). The p-value of 0.3022 indicates that the microarray data is not correlated with positive
lymph nodes. In contrast to that, the microarray data is highly correlated with estrogen receptor (ESR1).
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Some of the detected correlations reflect common knowledge: The clinical relevance

of the estrogen receptor and the progesterone receptor is unquestioned [23-25]. The

gene expression of these receptors are main criteria to differentiate between genetic

profiles [26-28]. Also, a correlation to metastasis and event death is shown in [7], and

a correlation to grading is reported in [22]. For other detected correlations there is no

clear evidence provided in the literature: The parameters age, BMI, native country,

menopause, smoking, T (tumor dimension) are highly correlated with the genomic data.

These high correlations indicate that there might be common underlying mechanisms

or pathways. The linkages between the phenotypes (the clinical parameters) and the

genotypes (the microarray data) help to formulate new hypothesis and aid to obtain

new insights into the complex mechanisms of diseases. Some of the detected correla-

tions are harder to interpret: The correlations between intended operation, and che-

moregime and the microarray data are probably not based on direct causal

relationships. Interestingly, no significant correlation is reported between the para-

meters familial breast cancer, histology, lateral acoustical shadow, dorsal acoustic

attenuation and the microarray data - an indicator that the genomic information offers

a new approach to access and thus improve the diagnoses of breast cancer.

Even though applied to microarray data in a medical setting, the NTI can be applied

to any complex data, in whose context a cluster analysis of the primary data is reason-

able. Whenever there is the slightest assumption that the internal structure of the pri-

mary data might be correlated with a given label of the secondary data, the NTI

provides an objective measure for this structural relationship.

G2
G3

NTI = 0.1093

(TI = 0.9591)
p = 0.0007

grading

no
yes

NTI = 0.0453
p = 0.5543

(TI = 0.5241)

nursing

high positive (9 to 12)
intermediate (2 to 8)
negative (0 to 1)

NTI = 0.2325
p = 0.0001

(TI = 2.0222)

progesterone receptor IHC

intermediate (2 to 8)
negative (0 to 1)

high positive (9 to 12)

NTI = 0.3438
p = 0.0001

(TI = 2.7173)

estrogen receptor IHC

Figure 8 Cluster tree of the BBCP data set. The cluster tree obtained from the BBCP data set is colored
and evaluated with respect to the clinical parameters estrogen receptor IHC, progesterone receptor IHC,
grading, and nursing. The p-values < 0.001 indicate that the microarray data is highly correlated with the
first three parameters, whereas there is no correlation with nursing.
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The Normalized Tree Index (NTI) is developed to compute a correlation coefficient

between primary data and nominal labels of secondary data. Ordinal and interval labels

have to be converted to nominal labels by label-specific transformations (Table 2). The

correlation result depends on the specific transformation set up by the researcher.

Even though different categorizations for the labels could be tested this way, back-

ground knowledge is required for this step. The transformations also imply a loss of

information. However, a reduction of the data of an ordinal or interval parameter to a

few biological relevant categories can also help to avoid over fitting. In Table 2, the

interval-scaled clinical labels progesterone receptor IHC and estrogen receptor IHC have

been transformed to nominal labels with three categories: negative (0 to 1), intermedi-

ate (2 to 8) and high positive (9 to 12). Nevertheless, strategies for a direct application

of the NTI on ordinal and interval labels need to be developed.

Hierarchical agglomerative clustering and the computation of the NTI are advanta-

geous compared to the following method that is sometimes used to obtain a correla-

tion coefficient: A classifier is trained on the microarray data. A selected label is used

to rate the correlation depending on the ability of a classifier to predict the correct

label in a leave-one-out setting. The higher the classification rate, the higher the corre-

lation between the primary data and the label. The major drawback of this approach is

that a visualization is not provided this way. A high classification rate indicates a high

correlation, but there is no way to retrace how the specific classification rate has been

obtained. Homogeneous clusters, outliers, and other significant patterns cannot be

identified this way.

Conclusion
The Normalized Tree Index (NTI) is the first cluster index that uses the structure of

the hierarchical clustering tree to compute a normalized correlation coefficient

between nominal labels and high-dimensional primary data. Its normalization feature

enables the easy identification of labels that are correlated with the primary data, while

at the same time a p-value measures the level of significance of the detected correla-

tions. Even though applied to microarray data in a medical setting, the NTI can be

applied to any complex data. This general applicability makes it a powerful tool in

diverse domains.
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