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Abstract

Background: Gene-centric analysis tools for genome-wide association study data are being
developed both to annotate single locus statistics and to prioritize or group single nucleotide
polymorphisms (SNPs) prior to analysis. These approaches require knowledge about the
relationships between SNPs on a genotyping platform and genes in the human genome. SNPs in the
genome can represent broader genomic regions via linkage disequilibrium (LD), and population-
specific patterns of LD can be exploited to generate a data-driven map of SNPs to genes.

Methods: In this study, we implemented LD-Spline, a database routine that defines the genomic
boundaries a particular SNP represents using linkage disequilibrium statistics from the International
HapMap Project. We compared the LD-Spline haplotype block partitioning approach to that of the
four gamete rule and the Gabriel et al. approach using simulated data; in addition, we processed
two commonly used genome-wide association study platforms.

Results: We illustrate that LD-Spline performs comparably to the four-gamete rule and the
Gabriel et al. approach; however as a SNP-centric approach LD-Spline has the added benefit of
systematically identifying a genomic boundary for each SNP, where the global block partitioning
approaches may falter due to sampling variation in LD statistics.

Conclusion: LD-Spline is an integrated database routine that quickly and effectively defines the
genomic region marked by a SNP using linkage disequilibrium, with a SNP-centric block definition
algorithm.

Background genetic effects for a multitude of human disease pheno-
Recent advances in high-throughput genotyping technol-  types [2]. The underlying philosophy of this research
ogy have ushered in the era of genome-wide association  approach is that a dense panel of single nucleotide poly-
(GWA) studies [1]. The GWA approach has seen much  morphisms (SNPs) can mark broader genomic regions by
success over the last few years, identifying many novel  exploiting patterns of linkage disequilibrium.
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Linkage disequilibrium (LD), a term first coined by
Lewontin and Kojima in the field of population genetics
to describe the non-random association of alleles at mul-
tiple loci [3], arises when a mutation occurs near a marker
on a common haplotype background [4]. If there is no
recombination between the marker and the mutation, the
pair is passed together to offspring in subsequent genera-
tions. When assayed, the mutation and the marker always
appear together in the population, and over time the hap-
lotype carrying the mutation can become common. Even-
tually, through multiple generations and recombination
events, the marker and the mutation are separated by a
recombination event in some individuals. As this occurs
more and more over successive generations, the LD
decays, or approaches linkage equilibrium, when the
marker and the mutation appear to be independent in the
population. The decay of LD, similar in concept to radio-
active decay, is directly related to the genetic distance
between the two markers (the frequency of recombina-
tion events expected between the two).

Numerous phenomena in population genetics and evolu-
tionary biology can impact LD structure [5]. Patterns of
mating, geographic subdivision, natural selection, and
mutation can all change LD. Genetic drift, for example,
can create LD between nearby markers simply by over-
sampling a multi-marker haplotype. Similarly, popula-
tion bottlenecks or subdivisions effectively resample an
LD structure from the larger population, producing
chance haplotype effects, thereby increasing LD [6,7].
Along these lines, various attributes of LD have been
exploited to identify regions of positive selection [8].

LD has recently become of great interest to genetic epide-
miologists, as patterns of LD first proved useful for fine
mapping of disease genes and later for large-scale surveys
of much of the human genome. These patterns, which
manifest in SNP data as correlations between genotypes of
nearby SNPs in the panel, are generally caused as these
SNPs on a common genomic background are transmitted
through human subpopulations. In such gene mapping
studies, associations are classified either as indirect or
direct [9]. An indirect association occurs if an influential
polymorphism is located on the larger genomic region
surveyed by genotyping other SNPs that mark the region.
Any genotyped SNPs on the same genomic background as
the influential polymorphism would appear associated to
the disease being studied. If the influential variant itself is
genotyped in the study, it would have a direct association
to the phenotype. Generally when a SNP is associated and
then sufficiently replicated, the genomic region surround-
ing this SNP is re-sequenced to identify the true influential
variation.

Many measures of LD have been proposed [10], though
all are ultimately related to the frequency difference
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between a two-marker haplotype and the frequency
expected assuming that the two markers are independent.
The two commonly used measures of linkage disequilib-
rium are D' and r2[10,11] shown in equations 1 and 2. In
these equations, m, is the frequency of the ab haplotype,
7, . is the frequency of the a allele, and =, . is the frequency
of the b allele.
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D' is a population genetics measure that is related to
recombination events between markers and is scaled
between 0 and 1. A D' value of 0 indicates complete link-
age equilibrium, which implies frequent recombination
between the two markers and statistical independence
under principles of Hardy-Weinberg equilibrium. A D' of
1 indicates complete linkage disequilibrium, indicating
no recombination between the two markers. Alterna-
tively, r2is the square of the correlation coefficient, and is
a more statistical measure of shared information between
two markers. The 12 measure is commonly used to deter-
mine how well one SNP can act as a surrogate for another.
There are multiple dependencies between these two statis-
tics [5,10], but most notably 2 is sensitive to the allele fre-
quencies of the two markers, and can only be high in
regions of high D'.

LD measures are based (at some level) on a two-marker
haplotype frequency. One often forgotten issue associated
with LD measures is that current technology does not
allow direct measurement of these frequencies from a
sample because each SNP is genotyped independently,
and the phase, or chromosome of origin for each allele, is
unknown. Many well developed and documented meth-
ods for inferring haplotype phase and estimating the sub-
sequent two-marker haplotype frequencies exist [12], and
generally lead to reasonable results [13].

The International HapMap Project cataloged distinct pat-
terns of LD in four human sub-populations: Yoruba, Cau-
casian, Han Chinese, and Japanese [11]. Phase I of this
project examined 2.5 million SNPs across the human
genome, computing pair-wise D' and r? statistics in 500
KB windows. These values were made publicly available as
flat-file downloads from the HapMap project, release 21.
Phase III of the HapMap project expands the available
populations to include Toscans from Italy, Luhya and
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Maasai from Kenya, and US individuals with African and
Mexican ancestry.

Enrichment analysis of GWA single marker results is a
common procedure to examine the functional relation-
ships between genes in the significant marker set. This
approach, and many new bioinformatics and statistical
techniques, take a gene-centric approach to analysis.
Aubert et al. proposed a gene-based local false discovery
rate (FDR) procedure [14]. Li et al. proposed prioritizing
SNPs within candidate genes in genome-wide scans to
improve power, using an FDR analysis on result subsets
[15]. Lewinger et al. and Province and Borecki proposed
elegant pathway-based Bayesian approaches to GWA
analysis, incorporating gene information into SNP analy-
sis [16,17]. Because these techniques require relating
SNPs on a genotyping platform to genes in the genome, a
systematic and user-controlled method for mapping SNPs
to the broader genomic regions they mark - and ultimately
to genes - is needed.

While the simplest approach for generating SNP-gene
relationships is to determine if a SNP lies within the
exonic or intronic region outlined by an annotated
genomic build, some approaches pad the gene boundaries
with a user-defined region (50 KB for example) upstream
and downstream to account for possible linkage disequi-
librium and/or regulatory regions (see methods of [18]).
There are also several approaches for generating LD statis-
tics that can then be used to partition genomic regions
captured by genotyping platforms. The popular PLINK
software has two options for generating LD information
[19,20]. r2 descriptive statistics can be determined quickly
and simply by computing correlations between geno-
types. Inferential statistics such as population estimates of
D' and 12 can also be computed by PLINK, but this proce-
dure is much more computationally costly as it requires
phasing haplotypes. LdCompare is another approach that
can rapidly compute pair-wise 12 values from genotype
data, generating multi-marker correlations when given
phased data [21]. While these approaches provide valua-
ble information about the redundancy of information
captured by a genotyping platform, they do not readily
relate a single SNP from the platform to the larger
genomic region it potentially represents - that must be
accomplished by a post-processing step.

Currently, haplotype blocks are generally identified using
two approaches, the Gabriel et al. method and the four
gamete rule. These two approaches are implemented in
Haploview software, and produce a global haplotype
block partition for a given set of SNP genotypes. Both pro-
cedures are sequential, beginning with the first SNP in the
dataset and defining non-overlapping blocks upstream.
While these approaches provide the general haplotype
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structure of a given genomic region, they are global rather
than SNP-centric procedures. These approaches could mis-
represent the genomic region a particular SNP marks
based on the global sequential nature of the partitioning
strategy.

In this work, we present an algorithm that systematically
relates SNPs to genes or genomic regions by processing
pair-wise LD statistics. This algorithm is implemented as a
MySQL aggregate function and performs genomic region
and gene assignments for collections of SNPs, such as
GWAS SNP marker lists, using locally stored LD informa-
tion from the International HapMap Project.

Results

Algorithm

To execute the LD-Spline function, a user specifies the fol-
lowing: the LD statistic to be used (D' or 12), an LD statistic
threshold value (ranging between 0 and 1), and a refer-
ence sequence (RS) SNP identifier. The RS ID is used to
query the specified LD statistic for all pair-wise values that
exist in the HapMap data that include the specified SNP.
The procedure is illustrated in figure 1 and outlined in
algorithm 1, and can be applied to LD values correspond-
ing to any population.

Algorithm |
Input: RS number of the SNP to map (rs_id), table or
matrix of pair-wise LD values

1. Initialize the upper and lower bounds of the marked
genomic region with the position of the input SNP.

2. Retrieve the value of the selected LD measure corre-
sponding to the input SNP and the next downstream
SNP, SNP X.

3. If the LD value is greater than the threshold value,
change the lower bound of the marked genomic
region to the position of SNP X.

4. Repeat 3 and 4 to extend the lower bound until the
retrieved LD value is less than the threshold value.

5. Repeat 2 - 4 to define the upper bound.

Testing

An overview of the linkage disequilibrium present in our
simulated population is shown in figure 2. The parame-
ters used in this simulation recapitulate reasonable pat-
terns of linkage disequilibrium, similar to those seen in
Hapmap data [22]. A more detailed view of two simulated
haplotype blocks on chromosome 1 is shown in figure 3.
The blocks selected for evaluation ranged in SNP density
from 5 SNPs to 2 SNPs.
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Figure |
Overview of the LD-Spline Algorithm. A matrix of all HapMap-based pair-wise LD values (D' or r2) is retrieved from the
database. Using this matrix, the lower bound is incrementally extended to downstream SNPs while the pair-wise LD value

between the downstream SNP and the input SNP is greater than the user-defined threshold (in this case r2> 0.8). The process
is repeated for the upper bound to define the marked genomic bounds for the input SNP.

Haplotype block partitioning of 100 datasets from the  ten gray vertical lines represent the true haplotype blocks
simulated region of chromosome 1 using each of the eval- ~ simulated in the data (indexed across the top of the fig-
uated algorithms is shown in figure 4 and chromosome  ure).

18 in figure 5. Each horizontal line on these figures repre-

sents a called haplotype block, with the x-axis represent-  For chromosome 1 (figure 4), note the differences for
ing the index position of the SNP and the y-axis denoting  blocks 3 and 4. The four gamete rule (4a) and the Gabriel
the dataset for which the block partition was called. The et al. method (4b) call these two blocks as one larger
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Figure 2

Linkage disequilibrium (D') of chromosome | (top) and chromosome 18 (bottom) simulated using genomeS-
IMLA. Haploview-style correlation plots illustrate the LD structure (in D'). Each black line above the correlation plot indicates
a haplotype block generated by the simulation, and the height of the bar above the horizontal line indicates SNP density.
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Figure 4

a-e: Haplotype block partitioning for simulated chromosome |. Ten haplotype blocks were selected from the simula-
tion of chromosome | for algorithm assessment. Blocks are identified by an integer ID shown across the top of the figure, indi-
cating relative position within the 1000 SNPs simulated. The true bounds for each block are shown as gray vertical lines, with
the thickness of the line indicating the block size. Each horizontal line represents a haplotype block called by the four gamete
rule(a), Gabriel et al. method(b), or LD-Spline using a D' threshold of I(c), 0.8(d), or 0.6(e) with the length of the line repre-
senting the number of SNPs included in the haplotype block call. The x-axis illustrates the upper and lower SNP index in the

dataset for each block, and the y-axis indicates the dataset for which each block is called.
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Figure 5

a- e: Haplotype block partitioning for simulated chromosome 18. Ten haplotype blocks were selected from the simu-
lation of chromosome |8 for algorithm assessment. Blocks are identified by an integer ID shown across the top of the figure,
indicating relative position within the 1000 SNPs simulated. The true bounds for each block are shown as gray vertical lines,
with the thickness of the line indicating the block size. Each horizontal line represents a haplotype block called by the four gam-
ete rule(a), Gabriel et al. method(b), or LD-Spline using a D' threshold of I(c), 0.8(d), or 0.6(e), with the length of the line rep-
resenting the number of SNPs included in the haplotype block call. The x-axis illustrates the upper and lower SNP index in the
dataset for each block, and the y-axis indicates the dataset for which each block is called.
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block, and the four gamete rule seems more prone to pro-
duce a truncated block that does not include both the sim-
ulated blocks. LD-Spine (4c-4e) does a better job of
separating these two blocks, but is more likely to combine
blocks 5 and 6 than Gabriel et al. and the four gamete rule.
For chromosome 18 (figure 5), the general block calling
from the four gamete rule (5a) and Gabriel et al. (5b) is
sparse across datasets, indicating that for this particular
simulated chromosome, sampling variability between
datasets reduces the ability to find blocks consistently.

Weighted Kappa statistics for inter-rater agreement were
calculated pair-wise to compare all algorithms to each
other and to the true simulated block bounds. Results for
chromosome 1 and chromosome 18 are shown in table 1.
All algorithms had statistically significant agreement with
each other and with true bounds by z-test [23]. The four-
gamete rule performed best, with a weighted kappa near
0.95 for both simulations. The Gabriel et al. approach per-
formed nearly as well. Of the three D' thresholds evalu-
ated in this simulation, using a threshold of 1 best
matched the two established algorithms and the true
block bounds in the simulation. While the LD-Spline
approach does not outperform either of the established
algorithms, it performs nearly as well, and still shows
excellent agreement with true block bounds.

The LD-Spline algorithm using a D' threshold of 1 was
found to best recapitulate true haplotype block bounda-
ries and best match established algorithm block calls. We
used these parameters to execute the LD-Spline procedure
on two common GWA genotyping platforms, the Affyme-
trix Genome-Wide SNP Array 6.0 and the Illumina
HumanlM-Duo BeadChip. Block boundaries were
mapped to NCBI genome build 36 using the Ensembl

Table I: Weighted kappa statistics for algorithm agreement.

http://www.biodatamining.org/content/2/1/7

database [24]. Density histograms of haplotype block
sizes marked by each genotyping platform are shown in
figure 6.

The average block size captured by the Affymetrix 6.0 is 43
KB, and the average block size captured by the Illumina
Human1M-Duo is 38 KB. To quantify the number of
genes captured by each platform, we used the Ensembl
database to identify gene regions (defined as the start of
the 5' UTR to the end of the 3' UTR), and to determine
whether SNPs lie within this region.). We then identified
SNPs from genotyping platforms that fall directly within
these gene boundaries. Using this process, 17,418 genes
were captured by the Affymetrix 6.0 platform, and 21,024
genes were captured by the [llumina Human 1M platform.
Using the marked genomic regions generated by LD-
Spline (using a D' threshold of 1), we declare a gene "cap-
tured" if the marked region starts, ends or lies completely
within the genic region, or alternatively, if the marked
region completely encompasses the gene region. Using
LD-Spline, the Affymetrix 6.0 captures 29,421 genes and
the Illumina Human 1M captures 29,611 genes. Thus,
using LD-Spline leads to a 69% and 41% increase in the
number of genes covered by Affymetrix and Illumina,
respectively.

Implementation

The LD-Spline algorithm was implemented in C++ as an
aggregate function for the MySQL database management
system. The aggregate function, Idspline is executed twice;
once to define the upper bound and once to define the
lower bound. These results are joined to produce the full
mapped genomic region for a SNP or set of SNPs. The
ldspline function accepts four arguments: a SNP index, an
LD measure (either dprime (D') or rsquared (12), a thresh-

Chromosome |
Four Gamete Rule Gabriel et al. LD-Spline 0.6 LD-Spline 0.8 LD-Spline |
True Bounds 0.9512 0.9514 0.9092 0.9089 0.9383
Four Gamete Rule 0.9762 0.9123 09163 0.9498
Gabriel et al. 0.8931 0.9054 0.9412
LD-Spline 0.6 0.9681 0.9335
LD-Spline 0.8 0.9479
Chromosome 18
Four Gamete Rule Gabriel et al. LD-Spline 0.6 LD-Spline 0.8 LD-Spline |
True Bounds 0.9566 0.9271 0.9377 09153 0.9374
Four Gamete Rule 0.9740 0.9400 0.9379 0.9495
Gabriel et al. 0.9226 0.9208 0.9292
LD-Spline 0.6 0.9864 0.9635
LD-Spline 0.8 0.9671
Page 8 of 14

(page number not for citation purposes)



BioData Mining 2009, 2:7

Affymetrix Genome-wide SNP Array 6.0

Density
2.0e-06 3.0e-05 4.0e-05
1 ' L

1.0e-06
L

0

200000 300000 400000

Block Size (bp)

0 100000

Ilumina Human1M-Duo

Density
3.0e-05 4.0e-05
L

2.0e-05
1

1.0e-05
: |

0

0 100000 200000 300000 400000
Block Size (bp)

Figure 6

Frequency histogram of LD-Spline called haplotype
block sizes. The Affymetrix Genome-wide SNP Array 6.0
(top) and the lllumina Human IM -Duo (bottom) genotyping
platforms were processed using the LD-Spline algorithm. The
density distribution of haplotype block sizes is shown by fre-
quency histograms.

old value (between 0 and 1), and a flag value to indicate
an upper bound (0) or lower bound (1) search. Let us
define a table 'CEU' that contains pair-wise D' and r2 sta-
tistics downloaded, inserted, and indexed by a composite
key - a pair of indices that reference the two SNPs for
which the LD values apply. Let us also define a table
'index_2_rs' that relates a SNP index to an RS number, and
a single value, 'PlatformSNP' as the RS number of a SNP
on a genotyping platform that we wish to relate to a

http://www.biodatamining.org/content/2/1/7

genomic region. The SQL statement to map this SNP using
an r2 threshold of 0.8 would be:

SELECT lower_bound, position, upper_bound FROM

(SELECT Idspline(A.pos2, A.rsquared, 0.8, 0, A.posl) as
upper_bound, A.pos1 AS position FROM

(SELECT * FROM CEU inner join

(select pos from index_2_rs on 1s_id = PlatformSNP) as f
where CEU.pos1 = f.pos

) AS A GROUP BY position) AS C

NATURAL JOIN

(SELECT Idspline(B.pos1, B.rsquared, 0.8, 1, B.pos2) as
lower_bound, B.pos2 AS position FROM

(SELECT * FROM LD.CEU inner join

(select pos from index_2_rs on rs_id = PlatformSNP) as g

where LD.CEU.pos2 = g.pos

) AS B GROUP BY position) AS D;
Instead of mapping a single SNP, we could instead choose
to map the entire platform of SNPs with one statement. In
this case, let us define a table 'Genotyping_Platform' that
contains an indexed set of RS IDs. The SQL statement to
map the entire table of SNPs using a D' threshold of 0.9
would be:

SELECT lower_bound, position, upper_bound FROM

(SELECT Idspline(A.pos2, A.dprime, 0.9, 0, A.posl) as
upper_bound, A.pos1 AS position FROM

(SELECT * FROM CEU inner join

(select pos from Genotyping Platform a inner join
LD.index_2_rs b on a.rs_id = b.rs_id) as f

where CEU.pos1 = f.pos
) AS A GROUP BY position) AS C
NATURAL JOIN

(SELECT ldspline(B.pos1, B.dprime, 0.9, 1, B.pos2) as
lower_bound, B.pos2 AS position FROM
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(SELECT * FROM LD.CEU inner join

(select pos from Genotyping_Platform a inner join
LD.index_2_rs b on a.rs_id = b.rs_id) as g

where LD.CEU.pos2 = g.pos
) AS B GROUP BY position) AS D;

Processing a table of approximately 600,000 SNPs using
the user-defined aggregate function has a runtime of
approximately 36 hours on a dual Xeon 3.06 GHz
machine with 2 GB of RAM.

For ease of evaluation, we also produced a command-line
version of this algorithm using the Perl scripting language.
This version is functionally equivalent to the MySQL
aggregate function, but rather than accessing a database
table of pair-wise LD values, it reads LD values from a flat
file.

Discussion

In this work, we introduce LD-Spline, an efficient data-
base procedure for establishing genomic regions that a
SNP potentially represents by mining linkage disequilib-
rium statistics available from the International Hapmap
Project. The two established block-calling algorithms [25]
and four gamete rule) function by producing a global hap-
lotype block partitioning, starting at the first SNP and
sequentially defining blocks upstream. The LD-Spline
approach is SNP-centric, in that it uses LD statistics
between a user-provided SNP (such as one from a geno-
typing platform) and surrounding SNPs in the genome to
define the region the specified SNP marks. This SNP-cen-
tric approach also has a computational advantage, since
only relevant haplotype blocks (the region surrounding
SNPs of interest) are called by the algorithm. Gabriel et al.
and the four gamete rule would require processing and
partitioning the entire human genome to determine the
regions marked by a genotyping platform. LD-Spline also
has the great advantage of running as a fast and efficient
self-contained procedure within the database manage-
ment system, allowing seamless integration with existing
database queries and operations.

We compared the LD-Spline algorithm to the Gabriel et al.
and four gamete rule methods, and then compared all
methods to the true simulated haplotype block bounda-
ries. Weighted kappa agreement statistics between LD-
Spline, traditional block calling algorithms, and the true
block partition in simulated data were rather good (> 0.90
in most cases). While none of the block partitioning algo-
rithms perfectly identifies true block boundaries, the LD-
Spline approach using a D' threshold of 1 appears to work
as well as other established algorithms. Reducing this D'

http://www.biodatamining.org/content/2/1/7

threshold below 1.0 effectively maps a SNP to a larger
genomic region, and may be useful for identifying more
extreme bounds of possible haplotype blocks. This would
provide a more liberal interpretation of the region a par-
ticular SNP may represent.

As a SNP-centric approach, LD-Spline has the added
advantage of consistently marking a genomic region for
each SNP. The sequential partitioning achieved by the
Gabriel et al. and four gamete rule approaches do not con-
sistently identify a haplotype block for each dataset. For
example with chromosome 18, the four gamete rule and
Gabriel et al. did not define haplotypes for simulated
blocks 0, 2, 5, or 6. For the specific application of deter-
mining what genomic region a typed SNP likely repre-
sents, a SNP-centric approach is advantageous because the
long-range LD patterns specifically related to the typed
SNP are exploited. Since sequential partitioning
approaches generally use a two-SNP sliding window to
define haplotype blocks, they are not robust to situations
where short-range LD is weaker than long-range LD. It is
important to note that the weighted Kappa statistics for
algorithm agreement do not take into account the number
of uncalled haplotype blocks, but do indicate that the
boundaries for the called haplotype blocks are similar.
With this in mind, LD-Spline provides superior perform-
ance when assigning genomic regions to typed SNPs
because of its SNP-centric nature.

Sampling variability may also explain the lack of block
identification for chromosome 18 and the general small
degree of disagreement with the true block boundaries. In
our data simulations, we empirically track recombination
events to produce exact LD statistics and LD block bound-
aries on the population level. Each simulated dataset was
drawn from that population, so sampling variability
could lead to biased LD estimates and subsequent block
partitions. Also, to more closely mimic real data collection
in the HapMap project, datasets were produced as
unphased genotype data. We then used Haploview soft-
ware to estimate two-marker haplotypes using the EM
algorithm to calculate D' and 12 LD statistics. This process
could also introduce bias and error into the haplotype
block calling procedures.

When applied to GWAS genotyping platforms, block sizes
follow the pattern expected based on previous estimates
of block size by the HapMap project [11]. The average
block size does differ slightly between platforms, which
could be because of bias in SNP selection by the genotyp-
ing platform manufacturers, particularly Illumina [26]. If
SNPs are specifically selected that tag larger genomic
regions while SNPs in regions of sparse LD are avoided,
the average block size could become inflated. Also, if SNPs
in genic regions are overrepresented by genotyping plat-
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forms, the higher r2 measures that have been found in
genic versus inter-genic regions [27] could also lead to
inflation. The dramatic increase in the number of genes
"captured" by the Affymetrix 6.0 and [llumina Human 1M
platforms illustrate that these modern products were
designed with linkage disequilibrium patterns in mind,
and gene-centric analysis approaches that do not account
for LD are likely not using data available for large num-
bers of genes.

Conclusion

Overall, we have illustrated the performance of the LD-
Spline routine, and the utility of applying this database-
centric procedure to GWAS platforms. One key advantage
of the database-centric nature of the LD-Spline user-
defined function is its easy incorporation into more
sophisticated queries for information retrieval. Once
established, the database routine can seamlessly extend
the range of data queries to include statistics based on a
broader genomic region, rather than a single base-pair
location.

Methods

Data Simulation

We simulated realistic patterns of linkage disequilibrium
to mimic two human CEU chromosomal regions using
genomeSIMLA (genomeSIM version 2.0.4 software, func-
tionally equivalent to genomeSIMLA 1.0 for LD genera-
tion) [22]. GenomeSIMLA is a forward-time population
simulator that uses random mating, genetic drift, recom-
bination, and population growth to produce SNP geno-
type data with linkage disequilibrium. The general
procedure for generational advancement is shown in fig-
ure 7.

Simulated chromosomes were initialized using random
allele frequencies. 1367 SNPs from chromosome 1 were
selected from 792,429 bp to 9,965,572 bp, and 1146
SNPs from chromosome 18 were selected from
23,719,514 bp to 24,217,521 bp. All simulated SNPs were
included in the HapMap CEU dataset, and HapMap build
35 positional information for each SNP was used. In the
simulation, recombinant gametes are created by sampling
chromosomes with replacement from the population and
crossing over based on intermarker recombination proba-
bilities are determined by the Kosambi function map dis-
tance based on a one centimorgan per one million bases
of physical distance. The number of recombination events
per gamete is drawn from a Poisson distribution. Two
gametes are combined to form a new individual for the
next generation. This mating and recombination process
continues for a user-specified number of generations, the
size of each generation is determined by a logistic growth
model.

http://www.biodatamining.org/content/2/1/7

The initial population size was 750, and was advanced
over 454 generations using the Richard's growth curve (A
=750, B=0.02, C=1,200,000, M =500, T = 0.01, Var =
0.03) to produce a final population size of 100,000 chro-
mosomes. These parameters are a slight variation on an
optimal set described in [22]. Once this population was
generated, we produced 100 datasets consisting of 2,000
controls (a null genetic model was used). The random
seed for these simulations was 2,225. For this simulated
population, we manually selected 10 haplotype blocks
and recorded their upper and lower bounding SNPs.
GenomeSIMLA tracks recombination events through gen-
erational advancement of a population, so the exact hap-
lotype blocks are reported by the simulation.
GenomeSIMILA also reports exact D' and 12 statistics com-
puted for the entire population.

Block Definition Algorithms

In addition to the LD-Spline approach, we evaluated two
block calling algorithms implemented in the popular
Haploview software [28]: the Gabriel et. al approach [25]
and the four-gamete rule [28]. Gabriel et al. used the 95%
confidence intervals of D' estimates to establish stretches
of "strong LD" [25]. D' estimates are unstable when sam-
ple size is small or allele frequency is low, so the confi-
dence intervals of the statistic are used. If the D' 95%
confidence upper bound is > 0.98 and the lower bound is
> 0.7, there is little statistical evidence of a historical
recombination event between the two markers, meaning
they form a haplotype block. Alternatively, the four-gam-
ete rule is based on an algorithm described by Wang et al.
where the frequency of the four possible two-marker hap-
lotypes are computed for each pair of SNPs [29]. Rather
than estimating D' confidence intervals, the four-gamete
rule is similar to estimating a confidence interval on the
two-marker haplotype frequencies. If all four haplotypes
are observed with at least a frequency of 0.01, a recombi-
nation event between the two markers likely occurred.
These two algorithms were applied to simulated
unphased datasets, and the resulting haplotype block par-
titioning was recorded.

Block partitions were defined by these two algorithms,
and compared to three parameterizations of the LD-
Spline algorithm: D' threshold of 0.6, D' threshold of 0.8,
and D' threshold of 1. For each data simulation, a SNP
that lies within each of the 10 selected haplotype blocks
was randomly chosen. The LD-Spline approach used these
SNPs as input for the algorithm, and haplotype blocks
were defined around these SNPs. The Haploview-based
algorithms were used to produce a full list of haplotype
blocks for each dataset. Once this list was parsed to iden-
tify haplotype blocks that contain the randomly selected
SNPs, the bounds for those blocks were recorded.
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Algorithm Comparisons

The upper and lower bound SNP indices were compared
to the true block boundaries for each block partitioning
algorithm using weighted Kappa statistics to assess inter-
rater (algorithm) agreement [30]. Weights for the Kappa
statistic were calculated using a standard weighting strat-
egy shown in equation 3, incurring an increased penalty
as the number of SNPs from the correct boundary edges
increased.

R Ll (3)
=

In equation 3, i is a row index and j is a column index of
the boundaries specified by the two algorithms, and  is
the maximum number of possible boundaries the algo-
rithm could call.

The full weighted Kappa statistic is shown in equation 4
[23]. Agreement was evaluated within each of the 10 sim-
ulated haplotype blocks and for the overall block parti-
tioning over 100 datasets. Kappa statistics were calculated
using STATA 10.

S Wijmjj— Y Wijmi.m.j
« = cells cells (4)
Y 1= % wjmin.j
cells

Software Availability

The LD-Spline software is open-source and freely availa-
ble from the following website: http://chgr.mc.vander-
bilt.edu/ritchielab/LD-Spline
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