
BioMed CentralBioData Mining

ss
Open AcceResearch
Fast approximate hierarchical clustering using similarity heuristics
Meelis Kull*1,2 and Jaak Vilo*1,2

Address: 1Institute of Computer Science, University of Tartu, Liivi 2, 50409 Tartu, Estonia and 2Quretec Ltd. Ülikooli 6a, 51003 Tartu, Estonia

Email: Meelis Kull* - Meelis.Kull@ut.ee; Jaak Vilo* - Jaak.Vilo@ut.ee

* Corresponding authors

Abstract
Background: Agglomerative hierarchical clustering (AHC) is a common unsupervised data
analysis technique used in several biological applications. Standard AHC methods require that all
pairwise distances between data objects must be known. With ever-increasing data sizes this
quadratic complexity poses problems that cannot be overcome by simply waiting for faster
computers.

Results: We propose an approximate AHC algorithm HappieClust which can output a biologically
meaningful clustering of a large dataset more than an order of magnitude faster than full AHC
algorithms. The key to the algorithm is to limit the number of calculated pairwise distances to a
carefully chosen subset of all possible distances. We choose distances using a similarity heuristic
based on a small set of pivot objects. The heuristic efficiently finds pairs of similar objects and these
help to mimic the greedy choices of full AHC. Quality of approximate AHC as compared to full
AHC is studied with three measures. The first measure evaluates the global quality of the achieved
clustering, while the second compares biological relevance using enrichment of biological functions
in every subtree of the clusterings. The third measure studies how well the contents of subtrees
are conserved between the clusterings.

Conclusion: The HappieClust algorithm is well suited for large-scale gene expression visualization
and analysis both on personal computers as well as public online web applications. The software is
available from the URL http://www.quretec.com/HappieClust

Background
Various types of biological data resulting from high-
throughput experiments require analysis, often consisting
of many steps. The first steps tend to be unsupervised and
require little or no input from the user, while the further
steps need more human-computer interaction. One possi-
ble starting point of interaction is showing an overview of
the data to the user, frequently achieved using clustering.

Partitioning-based clustering methods like K-means split
the data into non-overlapping clusters [1]. In this article,

we concentrate on hierarchical methods that model the
data in a tree structure and thus leave more freedom to the
user.

Probably the most well-known hierarchical clustering
method is agglomerative hierarchical clustering (AHC).
To begin with, AHC treats each data object as a separate
cluster. The following agglomeration steps iteratively
merge the two nearest clusters. Simultaneously, the clus-
tering tree (dendrogram) is built from leaves towards root,
where merging of clusters is depicted as a common parent

Published: 22 September 2008

BioData Mining 2008, 1:9 doi:10.1186/1756-0381-1-9

Received: 8 April 2008
Accepted: 22 September 2008

This article is available from: http://www.biodatamining.org/content/1/1/9

© 2008 Kull and Vilo; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 14
(page number not for citation purposes)

http://www.biodatamining.org/content/1/1/9
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18822115
http://www.quretec.com/HappieClust
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BioData Mining 2008, 1:9 http://www.biodatamining.org/content/1/1/9
for two subtrees. Finally, the user is shown the dendro-
gram, possibly together with data objects visualized at
each leaf. There are different versions of AHC, depending
on how the distance between clusters is measured. It can
be defined as the distance between the closest or furthest
objects, resulting in single or complete linkage AHC,
respectively. Other known strategies include UPGMA
(unweighted pair-group method using arithmetic aver-
ages) and WPGMA (weighted pair-group method using
arithmetic averages) clustering. For a more detailed expo-
sition refer to Legendre & Legendre [2].

AHC is often used to visualize microarray gene expression
data. Originally suggested by Eisen et al. [3], there now
exist many tools for performing AHC of gene expression
data, e.g. Cluster 3.0 [4] coupled with Java Treeview [5],
MultiExperiment Viewer (MeV 4.0) [6], and EP:NG [7]
with clustering tools from EPCLUST 1.0 [8]. An important
issue of using this simple and intuitive procedure is its
speed. Some of the best implementations can achieve
quadratic speed in the number of data objects [9]. At least
quadratic running time is required for general distance
measures, as exemplified by the need of first finding a sin-
gle closest pair of objects from all possible candidate
pairs.

As will be shown in the Results section, full AHC of genes
in medium-sized expression datasets can be performed in
a couple of minutes on a workstation computer. Cluster-
ing large datasets with 20000+ genes and several thou-
sands of conditions can already take several hours. One
possible workaround involves decreasing the size of the
dataset by filtering out the genes that change too little over
the conditions. However, dropping a large set of data in a
very early stage of study might be undesirable. Secondly,
when the number of experimental conditions is large,
almost all genes show some differential expression.
Another possibility is to first run K-means and then apply
AHC on the centers of obtained clusters. The downside is
that K-means is inherently limited in the choice of the dis-
tance measure. K-medoids is free from this constraint, but
has quadratic complexity [10].

To our knowledge, significant speedups to AHC have only
been achieved in specialized computational environ-
ments, such as parallel computing [11] and graphics hard-
ware acceleration [12]. Another direction of research has
involved the development of hierarchical clustering meth-
ods in a different framework, such as DIANA [10] or SOTA
[13]. Both of these are divisive hierarchical clustering
algorithms as opposed to AHC. There is a clear need for
fast AHC for interactive tools, web services and other
applications, running on personal and workstation com-
puters or servers with many simultaneous users.

The speed problem is caused by the fact that all pairwise
comparisons have to be performed between the data
objects. Each comparison involves a distance calculation
using the distance measure specified by the user, where
short distances correspond to more similar objects. Not a
single pair can be omitted, because already in the first iter-
ation AHC uses each of the pairwise distances to find the
closest pair. In the following we take the only route to a
significant speedup and drop the requirement of calculat-
ing all pairwise distances. This certainly affects the den-
drogram and the conclusions that can be drawn from it. In
this article, we present a fast approximate hierarchical
clustering algorithm which uses similarity heuristics to
retain high quality of clustering.

Our approximate hierarchical clustering algorithm first
calculates a subset of pairwise distances and then per-
forms agglomerative clustering based on these distances.
The logic of the agglomeration part is straightforward –
make merging decisions based on the known distances
only. The quality of the resulting clustering depends heav-
ily on the subset of distances chosen in the first step.
Therefore, we use heuristics to rapidly find pairs of similar
data objects. The heuristics are based on the observation
that if two objects are close enough to each other then the
distance to any third object from both of these is approx-
imately the same. We turn this observation upside down
and look for pairs of objects which are approximately at
the same distance from several other objects (which we
refer to as pivots). These pairs are more probably similar
and form the subset of pairs for which the distance is cal-
culated. Experiments show that adding a random set of
pairs to the pool further raises the quality of clustering.
Pivots have earlier been used in the database community
for several similarity search algorithms [14].

The running time of the HappieClust algorithm can be
easily controlled by choosing the number of distances that
are to be calculated and used in the clustering. Such a fea-
ture is very useful in web-based applications where users
expect fast response time.

The experiments to evaluate speed and quality of Happie-
Clust have been carried out using two datasets: DNA
microarray survey of gene expression in normal human
tissues [15] and human gene expression atlas of public
microarray data [16] (accession E-TABM-185 of ArrayEx-
press [17]).

Methods
Approximate hierarchical clustering
Suppose we have a dataset X with n data objects, X = (x1,
x2,...,xn) and a user-defined distance measure d(xi, xj) to
state how similar the two objects xi and xj are, for any i and
j. We assume the distance measure to be a semi-metric, i.e.
Page 2 of 14
(page number not for citation purposes)

BioData Mining 2008, 1:9 http://www.biodatamining.org/content/1/1/9
it must be non-negative and symmetric and the distance
from an object to itself must be 0:

The dataset can have duplicate objects and we do not
require the triangle inequality d(xi, xj) ≤ d(xi, xk) + d(xk, xj).

Standard agglomerative hierarchical clustering starts off
clustering this data by putting each of the data objects xi in

a singleton cluster C{i} = {xi} and then keeps on joining

the closest pair of clusters C{i} ∪ C{j} = C{i, j} until there is

only one large cluster C{1,2,...,n}. The distance between clus-

ters and can be measured

in several ways. Three popular methods are single, com-
plete and average linkage:

where |C| denotes the number of objects in cluster C. It is
seen that the distance between clusters is the minimum
(or maximum or average) of the distances between one
object from the first and another from the second cluster.

It is important to note that the distances to a newly
merged cluster C' ∪ C" can be easily calculated using dis-
tances to the clusters C' and C":

Standard agglomerative hierarchical clustering algorithm
can be translated into the language of graphs by represent-
ing clusters as nodes and distances between them as edges.
When put this way, hierarchical clustering starts off with a
complete graph with all the possible pairwise distances,
looks for the shortest edge (pair of most similar clusters),
and joins the end nodes (clusters) of this edge. While
doing so, the distances to other nodes are recalculated
using the formulas given above. The algorithm keeps on
finding the shortest edge and joining respective nodes
until there is only one node left.

Our approximate hierarchical clustering works exactly the
same way except that the graph is not required to be com-
plete, i.e. the algorithm works even if only a subset of pair-
wise distances is known. This is a clear advantage in case
of large datasets and/or complex distance measures.
Therefore, we redefine the distance between clusters to be
the minimum (or maximum or average) of only the
known distances measured between the objects of the two
clusters. If no distances are known at some point in the
algorithm, i.e. the distance graph is not connected, two
randomly chosen clusters are joined. This situation can be
avoided by calculating enough distances because almost
all graphs with n nodes and at least n log n edges are con-
nected [18]. When all distances are known, approximate
hierarchical clustering coincides with the standard hierar-
chical clustering.

We have developed a simple algorithm (see Algorithm 1)
for performing approximate hierarchical clustering. Step 1
of this algorithm takes (m) time, steps 3, 8, 9 take

(log m) time [19], and steps 4, 6, 12 take (1) time,
where m is the number of known distances. As steps 8 and
9 are repeated at most m times, the overall time complex-
ity is (m log m). The largest data structure which needs
to be stored by the algorithm is the heap H, so the
required memory is (m).

Algorithm 1 Approximate hierarchical clustering using a
given subset of pairwise distances

Require: m distances between n data objects (a graph with
n nodes and m edges), linkage method.

1: build a heap H of all edges

2: while H is not empty do

3: (u, v) ⇐ H {take the shortest edge from the heap}

4: swap u and v if u has more outgoing edges than v

5: for all edges (u, x) going out from u do

6: change (u, x) into (v, x), keep the same length

7: if (v, x) is a duplicate edge then

8: calculate new length of (v, x) from old lengths

9: remove the duplicate from graph and heap

10: end if

11: end for

d x x i j n

d x x d x x i j n

d x x i

i j

i j j i

i i

(,) , , , ;

(,) (,) , , , ;

(,)

≥ = …
= = …
=

0 1

1

0 == …1, , .n

C C i i ir
= …{ , , , }1 2

′ = …C C j j js{ , , , }1 2

d C C d x y

d C C
x C y C

x C y C

min
,

max
,

(,) min (,) ()

(,) max

′ =

′ =
∈ ∈ ′

∈ ∈ ′

single

dd x y

d C C
C C

d x y
x C y C

(,) ()

(,)
| || |

(,)
,

complete

(averaave ′ =
⋅ ′

∈ ∈ ′
∑1

gge),

d C C C d C C d C C

d C C C
min min min

max

(,) min((,), (,))

(,) m

′ ∪ ′′ = ′ ′′
′ ∪ ′′ = aax((,), (,))

(,)
| | (,)

max maxd C C d C C

d C C C
C d C C

′ ′′

′ ∪ ′′ =
′ ⋅ ′ +

ave
ave || | (,)

| |
.

′′ ⋅ ′′
′∪ ′′

C d C C
C C

ave


 





Page 3 of 14
(page number not for citation purposes)

BioData Mining 2008, 1:9 http://www.biodatamining.org/content/1/1/9
12: remove node u

13: end while

Similarity heuristics
Not all distances are of equal importance to the result of
hierarchical clustering. Many distances can be omitted
from the distance graph while the dendrogram structure
will remain exactly the same. But, for example, removing
the shortest distance will unavoidably lead to a different
choice at the first join and thus to a different dendrogram.
This gives a clear hint that if we cannot afford to calculate
all pairwise distances, the distances we choose should be
biased towards shorter distances. At the same time, some
long distances should be known, in order to have the "big
picture" of data. For example, in case of several large clus-
ters we still need to know which of these are closer to each
other, in order to get the dendrogram right. In the follow-
ing, we calculate some of the distances randomly and
some using the similarity heuristics which we describe
next.

The main idea of our heuristics is the following. Suppose
that two objects are similar to each other, d(xi, xj) <δ. It is
now quite natural to assume that any third object xk is of
similar distances to xi, xj, e.g. |d(xk, xi) - d(xk, xj)| <ε. Note
that due to the triangle inequality, the above holds for
metric distance measures with ε = δ. Let us now fix xk,
which we call a pivot, and look at all the pairs (xi, xj) for
which |d(xk, xi) - d(xk, xj)| <ε. In Figure 1 (1 pivot) we have
chosen ε so that there are 1 million pairs with |d(xk, xi) -
d(xk, xj)| <ε. The smoothened histogram of these distances
is compared with a random sample of 1 million pairwise
distances, illustrating the basic property required for our
heuristics – pairs that are of similar distances to the pivot
are biased towards shorter distances.

In our similarity heuristics we first choose q pivots p1,
p2,...,pq randomly from the dataset X. Next we calculate all
the n × q distances dik = d(xi, pk) from each of the data
objects to each of the pivots. We then seek object pairs (xi,
xj) which are of similar distances from each of the pivots,
i.e. |d(pk, xi) - d(pk, xj)| <ε for each pivot pk. Figure 1 con-
firms our hypothesis that taking more pivots introduces

Effect of similarity heuristicsFigure 1
Effect of similarity heuristics. Distribution of 1 million pairwise Pearson correlation distances in the Shyamsundar05 data-
set (described in the Results) chosen randomly vs. obtained with similarity heuristics using 1 or 20 pivots.
Page 4 of 14
(page number not for citation purposes)

BioData Mining 2008, 1:9 http://www.biodatamining.org/content/1/1/9
stronger bias towards shorter distances. The conditions
|d(pk, xi) - d(pk, xj)| <ε can be rewritten as

On the left side of the inequality we can recognize the
Chebyshev distance between q-dimensional vectors di =
(di1,...,diq) and dj = (dj1,...,djq). We denote this distance by
c(di, dj). Thus we can rewrite the inequality as c(di, dj) <ε.
To avoid confusion, we refer to d(xi, xj) as the distance and
c(di, dj) as the pseudo-distance between objects xi and xj. Our
similarity heuristic requires all pairs (xi, xj) for which the
pseudo-distance is less than ε. These pairs can be fetched
using a similarity join, for which we use the algorithm
Epsilon Grid Order (EGO) [20]. EGO splits the q-dimen-
sional space into hypercubes of side-length ε – any two
objects in the same hypercube are similar, any two objects
more than one hypercube apart are dissimilar, and objects
in neighbouring hypercubes can be either. The hyper-
cubes are sorted in a specific manner called epsilon grid
order in order to prune the search tree.

HappieClust
We now have the required notions to describe our approx-
imate hierarchical clustering algorithm HappieClust
(Algorithm 2). It requires 5 input parameters: distance
measure; joining linkage method (single, average or com-
plete); number of pivots, 0 ≤ q; number of distances to cal-
culate, 0 ≤ m ≤ (n - 1)n/2; and the proportion of similarity
heuristics based distances, 0 ≤ s ≤ 1. The proportion s is
achieved by HappieClust only approximately, using the
estimation of ε in step 1d of Algorithm 2.

Algorithm 2 HappieClust – approximate hierarchical
clustering using similarity heuristics

Require: dataset (size n), distance measure, linkage
method, number of pivots (q), proportion of similarity
heuristics based distances (s), number of distances to cal-
culate (m).

1. Initialization:

(a) choose q pivots p1, p2,...,pq randomly among the data
objects

(b) calculate distances from every data object to all pivots

(c) calculate the pseudo-distances between n randomly
sampled pairs of objects

(d) estimate ε based on the pseudo-distances in the sam-
ple such that approximately s·m out of all (n - 1)n/2 pair-
wise pseudo-distances would be less than ε

2. Distances based on similarity heuristics:

(a) find all pairs with pseudo-distance less than ε (using
EGO)

(b) calculate actual distances between pairs from the pre-
vious step

3. Random distances:

(a) calculate about (1 - s)·m additional distances between
random pairs of objects to achieve m distances in total

4. Approximate hierarchical clustering:

(a) run approximate hierarchical clustering (Algorithm 1)
on distances from steps 2 and 3

The two first parameters are shared with full hierarchical
clustering. As shown in the Results section, values q = 20
and s = 0.5 seem to work well in all conditions and do not
have to be ever changed. Hence, HappieClust has only
one additional parameter compared to full hierarchical
clustering. This parameter m is required to specify the level
of approximation and can be estimated from the given
time constraints. HappieClust gives the best quality
approximation it is able to reach within the given time
frame.

Results
The experimental work of this study is divided into three
parts. First, we examine the running time of three full hier-
archical clustering tools and HappieClust. Next, we show
how the quality of approximation depends on the param-
eters of HappieClust. Finally, we give results of applying
HappieClust on a large gene expression dataset.

As a medium-sized dataset we have chosen a DNA micro-
array survey of gene expression in normal human tissues
[15], hereafter referred to as data=Shyamsundar05. It
involves expression values for 15521 genes in 123 condi-
tions. The large dataset is from a study to build a human
gene expression atlas of public microarray data [16],
data=Lukk08, with 22283 probes in 5896 conditions
(accession E-TABM-185 of ArrayExpress [17]). In both
cases we have chosen to use average linkage hierarchical
clustering with Pearson correlation distance, a common
choice for microarray gene expression data.

Running time experiments
Running time experiments were performed on a laptop
computer (MacBook with 2.0 GHz Intel Core Duo proces-
sor and 2 GB RAM) and a workstation (64-bit Linux com-
puter with four 2.0 GHz AMD dual core processors and 32
GB RAM). Note that our algorithm has not been parallel-

max | | .
k

q

ik jkd d
=

− <
1

ε

Page 5 of 14
(page number not for citation purposes)

BioData Mining 2008, 1:9 http://www.biodatamining.org/content/1/1/9
ised to use multiple processors. We measured separately
the time spent on the distance matrix calculation and the
time spent on agglomeration. Each measurement was
repeated three times and the median was reported.

First, we measured the speed of tools Cluster 3.0 [4], MeV
4.0 [6], and EPCLUST 1.0 [8] in order to later compare
HappieClust with the fastest tool. The agglomeration
times on the laptop with n = 1000, 2000,...,15000 ran-
domly generated vectors are plotted in Figure 2 and show
that MeV 4.0 is slightly faster than EPCLUST 1.0 while
Cluster 3.0 is much slower. Calculation of 100 million
Pearson correlation distances between vectors of length l
took about 5·l seconds with MeV, 1·l seconds with Clus-
ter 3.0, and 0.5·l seconds with EPCLUST 1.0. Summing
up the times of distance calculations and agglomeration
we see that EPCLUST 1.0 is the fastest tool. For example,
hierarchical clustering of 15000 vectors of length 10 takes
about 30 + 0.5·10 = 35 seconds with EPCLUST 1.0 and
about 20 + 5·10 = 70 seconds with MeV 4.0.

Next, the running time of HappieClust using different
parameters with data=Shyamsundar05 and data=Lukk08
was measured on the workstation computer. As a compar-
ison, we ran EPCLUST 1.0, which clustered

data=Shyamsundar05 in 97 + 48 = 145 seconds and
data=Lukk08 in 9580 + 115 = 9695 seconds, where the
two addends stand for distance calculation time and
agglomeration time, respectively. With HappieClust we
experimented with q ∈ {5, 10, 20} pivots and s ∈ {0, 0.5,
1} proportion of similarity heuristics based distances. For
each of the combinations we ran a series of time tests for
different numbers of calculated distances, out of all
approximately 1.2·108 and 2.5·108 pairwise distances in
the two datasets. Figure 3 shows the results for q = 20 and
s = 0.5. The running times for other combinations of
parameters deviated from these by less than 3 seconds or
by less than 30 percent. Our experiments show that the
EGO algorithm used for heuristics is fast enough, spend-
ing less than 10 percent of the total time. In case of
data=Lukk08, most of the time was spent on distance cal-
culations, as the number of conditions in this dataset is
large (5896). Agglomeration was the slowest part for
data=Shyamsundar05, as this dataset has less conditions
(123).

We also tested HappieClust on the laptop. The running
times for data=Shyamsundar05 with the above given
parameter combinations deviated from the ones on the
workstation by less than 3 seconds or by less than 30 per-

Speed of hierarchical clustering toolsFigure 2
Speed of hierarchical clustering tools. Agglomeration times of three hierarchical clustering tools on the laptop computer.
Page 6 of 14
(page number not for citation purposes)

BioData Mining 2008, 1:9 http://www.biodatamining.org/content/1/1/9

Page 7 of 14
(page number not for citation purposes)

Speed of HappieClustFigure 3
Speed of HappieClust. HappieClust running times for q = 20, s = 0.5 on the workstation, (A) data=Shyamsundar05; (B)
data=Lukk08. The running times for full hierarchical clustering using EPCLUST 1.0 are 97 + 48 = 145 seconds and 9580 + 115
= 9695 seconds, respectively.

BioData Mining 2008, 1:9 http://www.biodatamining.org/content/1/1/9
cent. EPCLUST 1.0 clustered this dataset in 81 + 37 = 118
seconds, which is 20 percent faster than on the worksta-
tion. As data=Lukk08 did not fit in the main memory of
the laptop, times for this dataset were not compared.

In conclusion, the experiments have shown that the run-
ning times of HappieClust (as well as full AHC) depend
almost linearly on the number of calculated distances and
very little on other factors. In order to evaluate the quality
of approximate clustering, we use two different
approaches. The first is a mathematical measure, while the
second evaluates whether we lose any important biologi-
cal information if we cluster gene expression data approx-
imately. The third measure shows how large overlap we
can expect from the subtrees of approximate and full AHC
dendrograms.

Quality estimation by joining distance ratio
Full AHC can be viewed as having the objective of mini-
mizing the sum of joining distances. By this we mean the
sum where for each agglomeration step we take the dis-
tance between the clusters that are merged. Full AHC
attempts to minimize this sum by greedily choosing the
nearest clusters at each step. In the particular case of single
linkage clustering, a minimal spanning tree is constructed
that provably minimizes this sum [21]. The difference of
approximate AHC is that it holds only partial informa-
tion. Therefore, the algorithm sometimes joins two clus-
ters for which the true distance (not the estimation by
approximate clustering) is larger than for some other pair
of clusters. To measure the quality of a dendrogram, we
use full AHC as a reference, and divide the sum of joining
distances for full AHC by the sum of joining distances in
the dendrogram under study. We will refer to this as JDR
(joining distance ratio). Quality of the full AHC dendro-
gram is 1 by definition and smaller values indicate lower
quality. Our task with HappieClust is to obtain a dendro-
gram with quality close to 1 significantly faster than the
running time of full AHC. Figure 4A reflects the quality of
HappieClust on dataset Shyamsundar05 for q = 20 pivots
(see Additional file 1 for different numbers of pivots). We
have varied the proportion of similarity heuristics based
distances, s ∈ {0, 0.1, 0.2,...,0.9, 1}, and the number of
calculated distances. The colors stand for regions of differ-
ent JDR quality, as indicated on the legend. The figure
clearly shows that the more distances are calculated, the
higher is the quality of the result, as the colors change
from lower to higher values when moving from left to
right. Usage of heuristics based distances is definitely jus-
tified because for a fixed number of distances, using no
heuristics results in the poorest quality. The number of
pivots q = 20 outperforms q = 5 and q = 10 [see Additional
file 1], reaching the same JDR quality with smaller
number of calculated distances. For q = 20 (Figure 4A), the
optimal proportion of heuristics based distances varies

from s = 0.1 to s = 0.9 for different numbers of calculated
distances. However, the quality for s = 0.5 is never far from
the optimum. We will use q = 20 and s = 0.5 hereafter as
the default choice for these parameters. Larger numbers of
pivots will be tested in the subsection about subtree con-
tent conservation. Figure 5 shows that for
data=Shyamsundar05, high JDR quality of 0.8 was
achieved more than an order of magnitude faster than the

The influence of parameters on approximation quality with q = 20 pivotsFigure 4
The influence of parameters on approximation qual-
ity with q = 20 pivots. (A) JDR, (B) GO50 and (C) GO25
quality of HappieClust for data=Shyamsundar05 and q = 20
pivots.
Page 8 of 14
(page number not for citation purposes)

BioData Mining 2008, 1:9 http://www.biodatamining.org/content/1/1/9
time of full hierarchical clustering. This required the cal-
culation of about a million distances and calculating
more would raise the quality in small steps compared to
the time spent.

Quality estimation by pathway and Gene Ontology over-
representation
Hierarchical clustering of gene expression microarray data
is often followed by a study to find subtrees with over-rep-
resentation of genes annotated to some specific Gene
Ontology term or pathway [22]. Such over-representation
gives information about which biological processes have
been active during the experiments as well as suggests bio-
logical function for the genes lacking annotations. It
would be desirable for the approximate hierarchical clus-
tering to reveal mostly the same pathways and Gene
Ontology terms. In order to discover over-represented
terms, we used the web-based toolset g:Profiler [23] and
studied how many of the highly over-represented terms
(p-value below 10-10) come up over-represented in the
approximate clustering. We defined the quality measure
GO50, representing the percentage of highly over-repre-

sented terms for which the negative logarithm of the p-
value drops at most by 50 percent (e.g. from p = 10-12 to p
= 10-6). Similarly, GO25 marks the percentage of terms
with maximum drop by 25 percent in the negative loga-
rithm of the p-value (e.g. from p = 10-12 to p = 10-9).

We have carried out experiments for the Shyamsundar05
dataset for the same set of parameters as in the experi-
ments with JDR quality measure. The results for 20 pivots
are presented in Figure 4BC, results for 5 and 10 pivots in
Additional file 1. The analysis of full clustering dendro-
gram revealed 338 highly over-represented Gene Ontol-
ogy terms and pathways in the subtrees (p < 10-10). Figure
4B shows how large percentage of these 338 preserved at
least 50% of the initial p-value (GO50), Figure 4C
presents the same for the 25% limit (GO25).

As with JDR, it is obvious that the two measures rise with
the number of calculated distances, reaching close to
100% in the right edge of figures. It is also beneficial to
mix heuristics based and random distances, with s = 0.5
being fairly good in practice. With more pivots, higher

JDR quality for different running times of HappieClustFigure 5
JDR quality for different running times of HappieClust. HappieClust JDR quality and running time for
data=Shyamsundar05, s = 0.5, q = 20. HappieClust running times for 106 and 107 distances are 6 and 50 seconds, respectively.
The time for full AHC is 145 seconds with EPCLUST 1.0 (marked with a triangle) and 612 seconds with HappieClust. This 4-
fold difference is due to the overhead in HappieClust used for working with incomplete information.
Page 9 of 14
(page number not for citation purposes)

BioData Mining 2008, 1:9 http://www.biodatamining.org/content/1/1/9
quality can be achieved with the same number of dis-
tances. To conclude, these measurements suggest using q
= 20 pivots and s = 0.5 proportion of similarity heuristics
based distances.

Finally, we performed the Gene Ontology and pathways
annotations based quality evaluation on the Lukk08 data-
set for q = 20 and s = 0.5. The analysis of full clustering
dendrogram revealed here 656 terms. Figure 6 shows the
GO50 and GO25 quality measures of HappieClust results
for 105 to 107 calculated distances, taking 4 to 400 seconds
of running time. Figure 7 shows the distribution of
changes in the p-values going from full hierarchical clus-
tering to approximate hierarchical clustering with 107 dis-
tances. The histogram illustrates the facts that only 14 out
of 656 terms have dropped more than 50%, 139 have
dropped 25–50%, 273 have dropped 0–25%, and 230
have become more significant, with the median of the dis-
tribution at -10%. This indicates that we have found most
of the biologically meaningful clusters more than an order
of magnitude faster (9695 seconds for full and 400 sec-
onds for approximate clustering).

Quality estimation by subtree content conservation
analysis
As the third measure of quality, we investigated how well
each subtree T of the full AHC dendrogram was conserved
in the approximate dendrogram D'. The structure of the
subtree was dropped and it was considered as a set of
objects. Conservation was measured using the following
formula:

For instance, a conservation value of 0.7 can be inter-
preted as at least 70 percent of genes in T are part of some
subtree T' in D' such that they form at least 70 percent of
T'. Such percentages are important when working with
gene lists obtained from the subtrees in a dendrogram. In
order to visualize the result for all subtrees, the conserva-
tion values over similar subtree sizes were averaged.

We calculated the conservation values for the HappieClust
dendrogram of the Lukk08 dataset using q = 20, s = 0.5, m
= 107, see Figure 8A. As a comparison, we plotted the con-

conservation T D
T T

TT D
(,) max

| |
max(| |,|

′ = ∩ ′
′ ′ is a subtree of ′′T |)

.

GO50 and GO25 quality for different running times of HappieClustFigure 6
GO50 and GO25 quality for different running times of HappieClust. Gene Ontology and pathways annotations based
quality for data=Lukk08. GO50 and GO25 quality for data=Lukk08 with different running times of HappieClust, whereas the
running time of full hierarchical clustering was 9695 seconds.
Page 10 of 14
(page number not for citation purposes)

BioData Mining 2008, 1:9 http://www.biodatamining.org/content/1/1/9
servation values for a random dendrogram, obtained by
joining randomly chosen clusters at each step. Also, we
took the Lukk08 dataset, removed randomly chosen 10
percent of condition columns, and performed full AHC. A
similar reduction of gene expression profiles was used in
[24]. The difference between full AHC applied to the full
and partial datasets shows the kind of variance we can
expect when 10 percent of the data is missing. Figure 8A
shows that for the clustering of partial data, the conserva-
tion value varied from 0.75 to 0.95, and for HappieClust
with m = 107 it varied from 0.5 to 0.9. For large clusters
with more than 200 elements, HappieClust performed
almost as well as full AHC on the partial data. This indi-
cates that the approximation error of HappieClust is
almost as small as the natural variance in the data.

We also tested different numbers of pivots with a fixed
number of calculated distances. Results in Figure 8B show
that the quality improved while moving from 1 pivot to
10 or 20 pivots but then it levelled off. As the calculations

take longer for more pivots, it once more confirms that q
= 20 is a good choice.

As an example we took the subtree T of the full AHC den-
drogram which had the highest over-representation of
some narrow Gene Ontology term (with less than 300
gene annotations). This term turned out to be muscle con-
traction (GO:0006936). The subtree T and its best match-
ing approximation T' had 593 and 545 probes
corresponding to 496 and 478 genes, respectively. As the
overlap of T and T' was 383 probes, the conservation score
was 383/593 ≈ 0.65. Note that this is slightly below 0.8
which is the average conservation for subtrees of size
501..1000 (Figure 8A). These subtrees T and T' contained
64 and 63 genes out of all 172 genes annotated to muscle
contraction, with p-values 2.22·10-64 and 1.89·10-62,
respectively. The overlap of these 64 and 63 genes was 59,
i.e., almost all of the muscle contraction related genes
were the same in these subtrees of full and approximate
dendrograms, despite the lower conservation score.

Gene Ontology based comparison of a run of HappieClust and full AHCFigure 7
Gene Ontology based comparison of a run of HappieClust and full AHC. Distribution of changes in p-values from full
clustering to HappieClust with s = 0.5, q = 20, m = 107. HappieClust running time was 400 seconds, whereas full hierarchical
clustering spent 9695 seconds.
Page 11 of 14
(page number not for citation purposes)

BioData Mining 2008, 1:9 http://www.biodatamining.org/content/1/1/9

Page 12 of 14
(page number not for citation purposes)

Subtree content conservation analysisFigure 8
Subtree content conservation analysis. Subtree content conservation values for the HappieClust dendrogram of the
Lukk08 dataset using q = 20, s = 0.5 and m = 107 are contrasted with (A) the same values for a random dendrogram and for the
full AHC dendrogram of the Lukk08 dataset with 10 percent of conditions removed; (B) the same values for different numbers
of pivots.

BioData Mining 2008, 1:9 http://www.biodatamining.org/content/1/1/9
Discussion
Our experiments show that HappieClust achieves very
similar results to the full hierarchical clustering more than
an order of magnitude faster. In the following, we discuss
some ideas that may further improve HappieClust.

Pivots are currently chosen randomly. However, there are
two things one could try to avoid. First, if two pivots are
similar to each other, then they filter out about the same
subset of pairs. Therefore, one might try to choose the piv-
ots to be pairwise non-similar. Second, if a pivot is an out-
lier in the dataset, then all the objects in the dataset might
be of similar distance from it and the pivot would not
work as a filter. This encourages to experiment with pivot
choice strategies in the future.

Another point of possible advancement is the choice of
distances. Once a sub-cluster is formed in the hierarchical
clustering process, the distances between the objects
inside the cluster do not matter anymore. This suggests a
different strategy for the whole workflow. Instead of calcu-
lating all the distances at once, the algorithm might inter-
leavingly calculate distances and perform merging steps.
The technique of pivots could also be potentially used
more than once in the process.

Conclusion
Agglomerative hierarchical clustering is a technique often
used in the analysis of large high-dimensional datasets.
Current agglomerative hierarchical clustering algorithms
depend on the calculation of all pairwise distances in the
dataset. For many possible applications this process is too
slow as the number of distances is quadratic in the
number of objects to be clustered.

This inspired us to develop a new approach, approximate
hierarchical clustering, for which we have implemented a
fast algorithm HappieClust. According to our experi-
ments, it achieves very similar results to the full hierarchi-
cal clustering more than an order of magnitude faster.
HappieClust makes use of similarity heuristics to quickly
find many pairs of similar data objects, without calculat-
ing all pairwise distances. The heuristics are based on piv-
ots, a technique which is often used in the similarity
search community [14]. The technique could possibly be
used also for other clustering methods and data analysis
apart from agglomerative hierarchical clustering.

The running time of HappieClust can be easily controlled
and it achieves a better approximation when given more
time. This is useful in interactive and web-based applica-
tions where users expect fast response and unknown run-
ning time is undesirable. The majority of datasets can be
clustered with HappieClust on personal computers, as the
minimal required amount of main memory is the size of

the initial dataset. We measured the quality of Happie-
Clust approximation using three methods. The first, join-
ing distance ratio, showed that approximation gets close
to minimizing the same function that is greedily mini-
mized by the full clustering algorithm. The second applied
to clustering of gene expression data and studied the over-
representation of gene ontology terms and pathways in
the subtrees of the dendrogram. It showed that almost all
highly over-represented terms in the full hierarchical clus-
tering dendrogram are still over-represented in the
approximate dendrogram, whereas the p-values do not
lose strength too much. This indicates that biologically
relevant clusters are formed and biological interest can
still be evaluated. The third measure studied the subtree
content conservation. It pointed out that the subtrees of
approximate and full AHC dendrograms are similar, and
thus, the corresponding gene lists have high overlap.

HappieClust is intuitive and truly unsupervised. The only
new parameter compared to full hierarchical clustering is
m, the number of distances to be calculated. Higher values
of m result in better approximations of full hierarchical
clustering. As the running time of HappieClust is linear in
m, it is possible to choose m according to the given time
constraints. If needed, more elaborate analysis techniques
can be used upon gaining the first insights from approxi-
mate hierarchical clustering.

Competing interests
The authors declare that they have no competing interests.

Authors' contributions
MK developed and implemented the HappieClust algo-
rithm, carried out the computational experiments and
wrote the draft of the article. JV directed the project and
was involved in revising the manuscript. Both authors
read and approved the final manuscript.

Additional material

Acknowledgements
Authors wish to thank Dr. Alvis Brazma, Dr. Sven Laur and Jüri Reimand
for fruitful discussions and Ilja Livenson for technical support. Financial sup-
port has been provided by Estonian Science Foundation ETF 5722 and 5724,
University of Tartu, and EU NoE ENFIN (LSHG-CT-2005-518254). MK

Additional file 1
The influence of parameters on approximation quality. Figures illustrating
the influence of the number of pivots on the JDR, GO50 and GO25 qual-
ity measures.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1756-
0381-1-9-S1.pdf]
Page 13 of 14
(page number not for citation purposes)

http://www.biomedcentral.com/content/supplementary/1756-0381-1-9-S1.pdf

BioData Mining 2008, 1:9 http://www.biodatamining.org/content/1/1/9
Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

acknowledges Estonian Information Technology Foundation for partly
financing his doctoral studies.

References
1. Jain AK, Murty MN, Flynn PJ: Data clustering: a review. ACM Com-

puting Surveys 1999, 31(3):264-323.
2. Legendre P, Legendre L: Numerical ecology Elsevier New York; 1998.
3. Eisen MB, Spellman PT, Brown PO, Botstein D: Cluster analysis

and display of genome-wide expression patterns. Proc Natl
Acad Sci USA 1998, 95(25):14863-8.

4. de Hoon MJL, Imoto S, Nolan J, Miyano S: Open source clustering
software. Bioinformatics 2004, 20(9):1453-4.

5. Saldanha AJ: Java Treeview – extensible visualization of micro-
array data. Bioinformatics 2004, 20(17):3246-8.

6. Saeed A, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J,
Klapa M, Currier T, Thiagarajan M, Sturn A, Snuffin M, Rezantsev A,
Popov D, Ryltsov A, Kostukovich E, Borisovsky I, Liu Z, Vinsavich A,
Trush V, Quackenbush J: TM4: a free, open-source system for
microarray data management and analysis. Biotechniques 2003,
34(2):374-8.

7. Kapushesky M, Kemmeren P, Culhane AC, Durinck S, Ihmels J, Körn-
er C, Kull M, Torrente A, Sarkans U, Vilo J, Brazma A: Expression
Profiler: next generation-an online platform for analysis of
microarray data. Nucleic Acids Res 2004:W465-70.

8. Vilo J, Kapushesky M, Kemmeren P, Sarkans U, Brazma A: The Analysis
of Gene Expression Data: Methods and Software, 2003 chap. Expression
Profiler Springer Verlag, New York, NY.

9. Eppstein D: Fast hierarchical clustering and other applications
of dynamic closest pairs. J Exp Algorithmics 2000, 5:1.

10. Kaufmann L, Rousseeuw P: Finding Groups in Data – An Introduction to
Cluster Analysis New York: J Wiley & Sons; 1990.

11. Du Z, Lin F: A novel parallelization approach for hierarchical
clustering. Parallel Computing 2005, 31(5):523-527.

12. Zhang Q, Zhang Y: Hierarchical clustering of gene expression
profiles with graphics hardware acceleration. Pattern Recogni-
tion Letters 2006, 27(6):676-681.

13. Herrero J, Valencia A, Dopazo J: A hierarchical unsupervised
growing neural network for clustering gene expression pat-
terns. Bioinformatics 2001, 17(2):126-136.

14. Zezula P: Similarity Search: the metric space approach. Springer 2006.
15. Shyamsundar R, Kim YH, Higgins JP, Montgomery K, Jorden M,

Sethuraman A, Rijn M van de, Botstein D, Brown PO, Pollack JR: A
DNA microarray survey of gene expression in normal
human tissues. Genome Biol 2005, 6(3):R22.

16. Lukk M, Nikkila J, Kapushesky M, Parkinson H, Ukkonen E, Brazma A:
Analysis of human gene expression in 5372 samples repre-
senting 363 different biological conditions. 2008 in press.

17. Parkinson H, Kapushesky M, Shojatalab M, Abeygunawardena N,
Coulson R, Farne A, Holloway E, Kolesnykov N, Lilja P, Lukk M, Mani
R, Rayner T, Sharma A, William E, Sarkans U, Brazma A: ArrayEx-
press-a public database of microarray experiments and gene
expression profiles. Nucleic Acids Res 2007:D747-50.

18. Erdös P, Renyi A: The Evolution of Random Graphs. Publ Math
Inst Hungar Acad Sci 1960, 5:17-61.

19. Cormen T, Leiserson C, Rivest R: Introduction to Algorithms MIT Press,
Cambridge, MA; 2001.

20. Böhm C, Braunmüller B, Krebs F, Kriegel H: Epsilon grid order: an
algorithm for the similarity join on massive high-dimensional
data. SIGMOD Rec 2001, 30(2):379-388.

21. Gower JC, Ross GJS: Minimum Spanning Trees and Single
Linkage Cluster Analysis. Applied Statistics 1969, 18:54-64.

22. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM,
Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-
Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M,
Rubin GM, Sherlock G: Gene ontology: tool for the unification
of biology. The Gene Ontology Consortium. Nat Genet 2000,
25:25-9.

23. Reimand J, Kull M, Peterson H, Hansen J, Vilo J: g:Profiler-a web-
based toolset for functional profiling of gene lists from large-
scale experiments. Nucleic Acids Res 2007:W193-200.

24. Datta S, Datta S: Methods for evaluating clustering algorithms
for gene expression data using a reference set of functional
classes. BMC Bioinformatics 2006, 7:397.
Page 14 of 14
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9843981
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9843981
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14871861
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14871861
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15180930
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15180930
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12613259
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12613259
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15215431
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15215431
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15215431
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11238068
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11238068
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11238068
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15774023
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15774023
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15774023
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17132828
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17132828
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17132828
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10802651
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10802651
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17478515
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17478515
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17478515
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16945146
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16945146
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16945146
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Methods
	Approximate hierarchical clustering
	Similarity heuristics
	HappieClust

	Results
	Running time experiments
	Quality estimation by joining distance ratio
	Quality estimation by pathway and Gene Ontology over- representation
	Quality estimation by subtree content conservation analysis

	Discussion
	Conclusion
	Competing interests
	Authors' contributions
	Additional material
	Acknowledgements
	References

