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Abstract 

Purpose: Epistasis, the interaction between two or more genes, is integral to the study 
of genetics and is present throughout nature. Yet, it is seldom fully explored as most 
approaches primarily focus on single-locus effects, partly because analyzing all pairwise 
and higher-order interactions requires significant computational resources. Further-
more, existing methods for epistasis detection only consider a Cartesian (multiplicative) 
model for interaction terms. This is likely limiting as epistatic interactions can evolve 
to produce varied relationships between genetic loci, some complex and not linearly 
separable.

Methods: We present new algorithms for the interaction coefficients for standard 
regression models for epistasis that permit many varied models for the interaction 
terms for loci and efficient memory usage. The algorithms are given for two-way 
and three-way epistasis and may be generalized to higher order epistasis. Statistical 
tests for the interaction coefficients are also provided. We also present an efficient 
matrix based algorithm for permutation testing for two-way epistasis. We offer a proof 
and experimental evidence that methods that look for epistasis only at loci that have 
main effects may not be justified. Given the computational efficiency of the algorithm, 
we applied the method to a rat data set and mouse data set, with at least 10,000 loci 
and 1,000 samples each, using the standard Cartesian model and the XOR model 
to explore body mass index.

Results: This study reveals that although many of the loci found to exhibit significant 
statistical epistasis overlap between models in rats, the pairs are mostly distinct. Fur-
ther, the XOR model found greater evidence for statistical epistasis in many more pairs 
of loci in both data sets with almost all significant epistasis in mice identified using 
XOR. In the rat data set, loci involved in epistasis under the XOR model are enriched 
for biologically relevant pathways.

Conclusion: Our results in both species show that many biologically relevant epistatic 
relationships would have been undetected if only one interaction model was applied, 
providing evidence that varied interaction models should be implemented to explore 
epistatic interactions that occur in living systems.
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Background
Epistasis is challenging to detect yet likely widespread and integral in biology. Evidence 
for epistasis has been discovered in a host of biological systems and phenotypes includ-
ing mandible size in mice [1], cardiovascular disease susceptibility [2], coronary artery 
restenosis [3], cystic fibrosis [4, 5], and sporadic breast cancer [6] in humans, and most 
recently and robustly in two studies investigating non-additive genetic effects in yeast 
[7, 8]. The yeast studies have collectively identified thousands of epistatic two-way 
and three-way interactions that vary across lineages and growth conditions. Addition-
ally, these studies identify large epistatic hubs that are involved in most interactions 
detected. In the most recent study in yeast, non-additive effects accounted for one-third 
of the broad-sense heritability [8]. These studies provide strong evidence that epista-
sis accounts for a large portion of the non-additive genetic variation observed across 
biology.

Since loci may contribute to phenotypes through non-linear interactions, epistasis 
may account for genetic variation not explained by single-locus approaches. Indeed, 
it has been shown that the main effect of one single nucleotide polymorphism (SNP) 
can significantly change when the allele frequencies in a second SNP are altered [9]. 
Examples of where epistasis may have a crucial role include biomolecular interac-
tions in gene regulation, signal transduction, and biochemical networks [10–12]. 
Thus, many phenotypes can be viewed as the result of vast interconnected biologi-
cal networks and systems [13–15]. These biological systems likely arise to form com-
pensatory networks that aid in buffering against genetic and environmental change 
(i.e., canalization) [16–19]. It is likely that, at the core of these networks, interactions 
among polymorphisms from multiple pathways exist and are integral to organismal 
development, homeostasis, and survival [17].

Robust methodologies aimed at detecting and describing statistical epistasis are 
required to investigate genotype-phenotype associations and disease susceptibility [11]. 
Since experiments that could biologically validate detected statistical epistatic interac-
tions are rare [13–15], the development of these methodologies will assist in initiating 
further scientific exploration. In this work, we examine how to efficiently compute lin-
ear regression models for epistasis that permit varied encodings of the interactions of 
loci and provide statistical evidence for epistasis. Recent computational and theoretical 
work has presented a new way to calculate each of the coefficients of a linear regression 
model [20]. In this work, we aim to demonstrate the usefulness and practical signifi-
cance of the closed forms in general and more specifically in genetic studies and in par-
ticular, epistasis. We present algorithms for providing statistical evidence for two-way 
and three-way epistasis using standard models for epistasis using these closed forms. 
These algorithms may be used efficiently on subsets of loci or genome-wide, are entirely 
parallelizable, provide statistical tests, and permit flexibility in encoding the interaction 
models of loci. Many methods for interaction terms only consider the Cartesian model 
that multiplies the genotype vectors at two loci. In our method, any function may be 
applied to interacting genotypes and we demonstrate this using both the Cartesian 



Page 3 of 37Batista et al. BioData Mining            (2024) 17:7  

interaction model and the exclusive-or (XOR) interaction model. We also discuss how 
these algorithms may be generalized for higher order interactions. Permitting many 
types of encodings for interaction models allows for complexity to be included in the 
traditional statistical models for epistasis and for biologists to use a variety of interac-
tion models to investigate epistasis.

As specific examples, we apply our algorithms to detect statistical evidence for two-
way and three-way interactions using the Cartesian and XOR interaction models on 
the phenotype of body mass index (BMI) in real data sets from rats (Rattus norvegi-
cus) from a genome-wide association study (GWAS) [21–23] investigating obesity-
related traits and from mice (Mus musculus) from Wellcome Trust [24, 25]. For both 
data sets we use approximately 10,000 SNPs for two-way epistasis detection using 
both interaction models.

Computational challenges in detecting epistasis

Methods to explore genotype-phenotype associations and detect epistatic interactions 
are often computationally intensive and may completely ignore non-additive effects. Sin-
gle-locus analyses like GWAS can detect strong main effects, but face difficulties when 
applied to combinations of variables for many reasons [14, 15]. The first is that multi-
locus genotype (MLG) combinations have smaller representative samples compared to 
the original data set due to low minor allele frequencies in some loci. Second, in most 
approaches that attempt to model interactions using linear models, interactions are only 
considered when significant main effects of variables are identified [14, 15]. Although it 
is tempting to expect loci with significant main effects to also be involved in interactions, 
there is no statistical justification for this. Third, while linear models are efficient in 
detecting and estimating the main effects of variables, they are typically less effective at 
identifying interaction effects, which often require more complex modeling approaches 
[26–28]. Fourth, many linear model approaches construct interaction terms using the 
Cartesian product for ease of computation whereas other models of interaction may also 
be plausible. We expand more on this in a following section. Finally, when considering 
higher order interactions, as the number of loci in k-wise combinations increases, the 
number of variables in the standard regression models increases exponentially and the 
total number of sets of loci of size k to consider of all n possible loci increases poly-
nomially as more loci are considered. This exhaustive search space creates issues with 
computational tractability as investigating pairwise and higher-order interactions 
becomes extremely difficult to achieve efficiently. Given these challenges, some of which 
are inherent in exhaustively considering all possible subsets for k-wise interactions in a 
set of n loci, many methods apply various techniques to reduce this search space or to 
exploit parallelism in underlying matrix libraries for computational efficiency.

There are many techniques to reduce the search space for epistasis algorithms. 
One example, the multifactor dimensionality reduction (MDR) technique finds 
MLGs that have high or low association with disease and defines new variables that 
explain the relationship of both loci [6, 29, 30]. MDR can be combined with other 
machine learning methods and has been extended to handle population structure 
[31]. In an approach that bypasses the conventional search space of epistasis algo-
rithms, Crawford et  al. developed the “MArginal ePIstasis Test” (MAPIT) method 
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that measures the marginal epistatic effect of a single loci against all other loci all 
at once [32]. MAPIT can be used as a way to screen for all loci that have signifi-
cant marginal epistastic effects for subsequent tests to see which pairs of loci may 
be involved in epistasis. More comprehensive recent surveys on epistasis are offered 
by Ogbunugafor and Scarpino on higher order epistasis [33], Niel et al. on statistical 
and computational challenges of varied approaches [34], and Russ et al. for perfor-
mance comparison of many varied epistasis detection methods [35].

In exhaustive methods for statistical epistasis for discrete (case/control) pheno-
types, a common approach to make the problem more computationally tractable is 
to use contingency tables for approximating pairwise epistasis. One of the most com-
monly used software packages for applying the standard pairwise epistasis regres-
sion models is PLINK [36]. In PLINK, pairs of loci are scanned using an approximate 
method that evaluates the Z-scores for the odds ratio at the loci between cases and 
controls or BOOST that uses bitwise operations for calculating the likelihood ratio 
test [37]. It is then possible to apply the entire regression to the pairs of loci that 
pass the screening stage. Zhang et al. use minimum spanning trees to update contin-
gency tables for test statistics for evaluating pairs of loci for epistasis in the TEAM 
algorithm [38]. These aforementioned approaches work for pairwise epistasis. Bayat 
et  al. offer the BitEpi method for handling up to four-way epistasis using bit effi-
cient counting for contingency tables, an entropy metric to calculate the interaction 
effect, and permutations for p-value calculations [39].

Another approach to ease the computational burden for exhaustive methods for 
statistical epistasis is to exploit the parallelism from hardware architectures or 
underlying matrix operations. Schupbach et  al. present FastEpistasis as an exten-
sion to PLINK that for quantitative phenotypes calculates the interaction term for a 
pair of loci by using the QR decomposition to solve the ordinary least squares [40]. 
The efficiency from their method is from the parallelism of the calculations and the 
hardware architectures. Zhu and Fang offer the method MatrixEpistasis that evalu-
ates the standard regression model for epistasis for the interaction term by comput-
ing the residuals of the linear regression model between the phenotype and loci and 
the residuals for the regression model between the interaction and loci [41]. Like our 
method, some of the efficiency of MatrixEpistasis is achieved by only focusing on 
the interaction term and corresponding test statistic, but the effectiveness of their 
method also relies on the efficiency of underlying matrix operations and accordingly 
the method can only handle Cartesian model encoding of the interaction term. The 
work of Zhu and Fang also considered covariate adjustment, but that may be done 
before applying our algorithm as is essentially done in their implementation and 
commonly done in practice as well. Unlike these other methods, our method per-
mits many different encodings for the interaction model, thus potentially introduc-
ing some non-linearity. Our method also explicitly deals with higher order epistasis. 
The method we present is the result of new computational and algorithmic insight 
for solving the ordinary least squares that expresses the estimates in closed forms. 
As a result, our method is also very efficient in terms of memory and entirely paral-
lelizable for testing each subset of loci for epistasis.
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Methods
Models for epistasis

At the center of modeling epistasis is regression and we may now consider whether 
locus i and locus j have an epistatic interaction, Ii,j , affecting the phenotype, p, by 
considering their interaction effect term, β3 :

We may remove the intercept and simplify the computation of the model by sub-
tracting off the means of the variables, i.e. g̃i = gi − ḡi , p̃ = p− p̄ and Ii,j = Ii,j − Īi,j:

We are only concerned with β3 , the coefficient for the interaction term, Ĩi,j  , in the 
model because it represents the partial correlation between the phenotype and the 
interaction term given both loci. It is important to note that there is flexibility in 
this model in how the interaction is encoded. Although it is common to multiply 
values of the loci for each sample as is commonly done for the Cartesian model for 
ease of computation, many different encoding models may be used as we demon-
strate for the XOR model (snp1  mod  2 + snp2  mod  2)mod  2)  (S2 File). While the 
Fisher t-statistics for hypothesis testing can be applied (e.g. [41]), a direct T test for 
a regression coefficient may also be applied instead.

The model for epistasis may be generalized to higher order interactions. For k−
order interactions between a set of k loci, gi for 1 ≤ i ≤ k , we must consider the 
interactions of all subsets of the loci from the empty set to the entire set of all k in 
a manner reminiscent of applying the binomial theorem where the coefficient is the 
interaction rather than binomial coefficient. For the epistatic interaction of a subset, 
we will use the variable Is where s is the subset. An appropriate function, f, for the 
interaction model encoding, such as XOR or Cartesian, may be applied to the sets as 
well as the interaction term of the entire set of k loci. All variables may then also be 
centered by subtracting off the means. The model for the epistatic interactions affect-
ing phenotype p may be expressed as follows:

The model that we will consider for 3-way epistasis for loci g1, g2, g3 is accordingly 
after centering the variables:

For detecting epistasis, the interaction term of interest is β{1,2,3} for 3-way epista-
sis and β{g1,...,gk } for k-way epistasis. It is important to note that for k−way epistasis 
the regression must include O(2k) variables for each set of k loci and that to check 
for all possible k−wise interactions between n loci, there are O(nk) sets that must be 

p = β0 + β1gi + β2gj + β3Ii,j

p̃ = β1g̃i + β2g̃j + β3 Ĩi,j

�p =



k−1�

i=1

�

s⊂{g1,...,gk },|s|=i

βsf ( �Xs)


+ β{g1,...,gk } ˜I{g1,...,gk }

p̃ = β1g̃1 + β2g̃2 + β3g̃3 + β{1,2} Ĩ{1,2} + β{1,3} Ĩ{1,3} + β{2,3} Ĩ{2,3} + β{1,2,3} Ĩ{1,2,3}
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checked for the given model. For a given set of k loci, we explore how it is not neces-
sary to find the interaction coefficients for all 2k − 1 variables and may focus only on 
the final coefficient of interaction along with more efficient and powerful statistical 
tests of interaction. We give algorithms explicitly for k = 2, 3 and consider how these 
may be generalized.

Estimation and statistical tests for interaction

The conditional association between the phenotype, p, and the interaction term, 
I, while conditioning upon the main effects of the loci, Z = {gi, gj} , is the epistasis 
interaction. This may be computed in multiple ways. The first way is to compute the 
partial correlation coefficient between p and I, as the dot product between two stand-
ardized residuals: the residuals for the regression model between the phenotype and 
the loci and the residuals for the regression model between the interaction and loci. 
This approach requires the computation of two vectors of residuals estimated by 
two linear regression models. The first linear regression model is between the phe-
notype and loci, p ∼ β0 + Z and the second model is between the interaction and 
loci, I ∼ β0 + Z , as was done in the work of Zhu and Zhang [41]. The standardized 
residual of the linear regression model between the phenotype and loci, p ∼ β0 + Z , 
is residp = p− β̂∗

0 − β̂∗
1 gi − β̂∗

2 gj where the β̂∗ are the estimates from the model. The 
standardized residual of the regression between the interaction and loci, I ∼ β0 + Z , 
is residI = I − β̂∗∗

0 − β̂∗∗
1 gi − β̂∗∗

2 gj where again the β̂∗∗ are the estimates from the 
model. This means two separate regression models are applied as was done in the 
work of Zhu and Zhang [41]. The partial correlation coefficient between p and I is 
thus r :

The second way is to compute a single regression coefficient, the corresponding regres-
sion coefficient, β̂3 in the model between the phenotype, loci, and interaction term: 
p ∼ β0 + β2g1 + β2g2 + β3I . Both measures are variants of each other, as a computed 
r = 0 will necessarily imply a computed β̂3 = 0 and vice versa. This is due to Yule’s equiva-
lence formula [42],

We know now that < residp, residI >=< p, residI > and know a direct way to estimate 
β̂3 and each of the other coefficients that is the crux of our algorithm [20]. Consider the 
estimation of the model assuming all variables are mean centered:

r =
〈

residp√
< residp, residp >

,
residI√

< residI , residI >

〉

β̂3 = r ·
√

< residp, residp >√
< residI , residI >

or the equivalent form β̂3 =
< residp, residI >

< residI , residI >

p̃ = β1g̃i + β2g̃j + β3Ĩ
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We have by considering the residuals of each loci with the interaction term an expression 
for the interaction effect term, β3:

In particular, we may write the vector of partial residuals of the interaction term with 
each loci, residI , directly as

while in a similar way we may write the vector of partial residuals of the phenotype with 
each loci, residp , directly as

As a result we may rewrite the interaction effect term, β̂3 . It may be expressed in terms 
of the ratio of two dot products between the dependent variable and the partial residuals 
and between the independent variable I and partial residuals as follows:

As for hypotheses test, we test the null hypotheses

against the alternative

This calls for multiple testing correction to protect against the inflated Type I error 
and we use the Benjamini Hochberg false discovery rate (FDR) controlling procedure for 
this. The statistical test will be a T-test with n− v − 1 as degrees of freedom where n is 
the number of samples and v is the number of parameters in the model.

Zhu and Zhang address the partial correlation between the interaction term I and 
the phenotype p, and compute it using the dot product of the residuals [41]. As for a 

β̂3 =

〈
p̃, Ĩ−

〈
g̃i ,̃I

〉

�g̃i ,g̃i� g̃i

〉
−

〈
Ĩ,g̃j−

〈
g̃i ,g̃j

〉

�g̃i ,g̃i� g̃i

〉

�g̃j ,g̃j�−
〈
g̃i ,g̃j

〉2

�g̃i ,g̃i�

〈
p̃, g̃j − �g̃i ,g̃j�

�g̃i ,g̃i� g̃i
〉

〈
Ĩ, Ĩ

〉
−

〈
g̃i ,̃I

〉2

�g̃i ,g̃i� −

(〈
g̃j ,̃I

〉
−

〈
g̃i ,g̃j

〉

�g̃i ,g̃i�
〈
g̃i ,̃I

〉)2

�g̃j ,g̃j�−
〈
g̃i ,g̃j

〉2

�g̃i ,g̃i�

residI = Ĩ−

〈
Ĩ, g̃i

〉

〈
g̃i, g̃i

〉 g̃i −

〈
Ĩ, g̃j − �g̃i ,g̃j�

�g̃i ,g̃i� g̃i
〉

〈
g̃j , g̃j

〉
− �g̃i ,g̃j�2

�g̃i ,g̃i�

(
g̃j −

〈
g̃i, g̃j

〉
〈
g̃i, g̃i

〉 g̃i
)

residp = p̃−
〈
p̃, g̃i

〉
〈
g̃i, g̃i

〉 g̃i −

〈
p̃, g̃j − �g̃i ,g̃j�

�g̃i ,g̃i� g̃i
〉

〈
g̃j , g̃j

〉
− �g̃i ,g̃j�2

�g̃i ,g̃i�

(
g̃j −

〈
g̃i, g̃j

〉
〈
g̃i, g̃i

〉 g̃i
)

β̂3 =
〈
p̃, residI

〉
〈
Ĩ, residI

〉

H0 : The conditional association between I and p = 0

H1 : The conditional association between I and p �= 0
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statistical test to test for null value for the association, the Fisher approximate test is 
then used [43, pp. 26 ]:

The T test statistic for testing the null hypothesis against the alternative will be in 
terms of successive residuals: the partial residual, residp aforementioned, and the global 
residual, resid = p− β̂0 − β̂1gi − β̂2gj − β̂3I , for p ∼ β0 + β2g1 + β2g2 + β3I after add-
ing I to the model. We observe that we may calculate the mean sum of squares or the 
mean square error, MSE, using the global residual, that is,

As a result we may calculate the test statistic as well:

Both of the T-tests above require the computation of the < p̃, residp > (=< residp, residp >) 
or the MSE (for modeling p) or where it is possible to verify that

Algorithms for epistasis detection

We may now give an algorithm for computing the interaction coefficient and test 
statistic for epistasis for two loci, gi and gj . We may encode their interaction, Ii,j 
using any type of epistasis that may be suspected and often by default the Cartesian 
encoding (or product) is used. We will use the centered variables for our algorithm 
where the means have been subtracted, i.e. g̃i = gi − ḡi , p̃ = p− p̄ and ˜Ii,j = Ii,j − Īi,j . 
The algorithm residualizes the first locus from the second and then each loci from 
their interaction in order. The algorithm does the same in residualizing each loci 
from the phenotype in order. Finally to calculate the residuals of the entire model, 
we residualize the interaction from the phenotype. In the case of pairwise epista-
sis, the algorithm only requires the centered variables to calculate several vector dot 
products and vector additions (subtractions). In the exposition given below, we cal-
culate the direct t-test statistic for the regression coefficient. Let the number of sam-
ples for each loci and the phenotype be m.

TFisher =
√
n− v − 1

r√
1− r2

MSE = < resid, resid >

(n− v − 1)
= < p̃, resid >

(n− v − 1)

T (β3) = β̂3 ·

√
< Ĩ, residI >

MSE

T (β3) =
√
n− v − 1

< p̃, residI >√
< Ĩ, residI > · < p̃, resid >

MSE · (n− v − 1) =< p̃, resid >=< p̃, residp > −β̂3· < p̃, Ĩ > .
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Algorithm 1 Interaction Coefficient for Pairwise Epistasis

The algorithm is linear in the number of samples m. However, if the aim is to test 
all possible pairwise epistasis for n loci, this will still be an O(n2m) algorithm. The 
flexibility here is to test any pair of loci for epistasis with a variety of test statistics 
and a variety of possible interaction model encodings. There is also the practical con-
cern regarding floating point representation in implementations if any of the vector 
norms or norms squared, such as the norm of the residuals (in line 10), are close to 
zero. In some implementations this could raise an error because of division by zero, 
for example, because of limitations in floating point representations. In this case we 
recommended that any such errors that arise, while not errors in the algorithm or 
implementation themselves, but merely limitations of floating point representations, 
be logged for further inspection as we have done in our experiments.

We will now consider the algorithm for 3-way epistasis for a set of loci. While tech-
nically the algorithm is still linear in the number of samples since k = 3 is a constant, 
we begin to see more of the effects on the complexity of the number of variables in 
the model. For the case of 3-way epistasis, there are only 7 variables, but more gen-
erally there are O(2k) variables in models for k−way epistasis. Also, the algorithm is 
quadratic in the number of variables while linear in the number of samples. Thus, the 
more general case has complexity O(22km) for a single set of k loci. The models them-
selves introduce a number of variables exponential in k and for all possible sets of k 
loci from n the complexity is O(nk22km) , so there is a need to prune the space of loci 
to check and variables in the models.

However, first we present the algorithm for 3-way epistasis detection, and for the 
sake of exposition, mention how it can be generalized to k−wise epistasis with the 
caveats we have given for its time complexity. For the encoding of all interaction mod-
els, we assume that a Cartesian encoding (or product of the loci) are used. We assume 
that we have three loci, g1, g2, g3 and the phenotype, p as well as their encodings and 
they are all centered (with their means subtracted from them). First, we construct an 
8 by m matrix Q that will be used to residualize each variable against each other in the 
order given. For ease of exposition, we will index the columns of Q for each variable 
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starting at 1 where 1 will be the index for g̃1 , 7 for ˜I{1,2,3}and 8 for p̃ . It is important 
to note that we are overwriting Q. This is important to mention since it clarifies not 
only the correctness of the algorithm, but highlights the space efficiency of these algo-
rithms. Once the intermediate matrix for the 8 (or more generally 2k ) variables for 
the model is constructed, for which only read only access of the entire data matrix is 
required, no additional access to the data matrix is needed. Additionally, only addi-
tional constant space for several dot products and to hold the interaction coefficient 
and test statistic are needed.

Algorithm 2 Interaction Coefficient for 3-way Epistasis

To generalize the 3-way epistasis algorithm to be a k−wise epistasis algorithm, we 
need to first enumerate the 2k variables of the model and center them by subtracting 
off their means to construct Q . Then it is necessary to residualize the variables by 
changing 8 to the value 2k on line 3. To get the interaction coefficient for all k loci, 
β{1,...,k} , on line 7 checks that i == 2k and j = 2k − 1 . To calculate the t-test statistic, 
on line 13 set v = Q[:, 2k − 1] and on line 14 resid = Q[:, 2k ] and adjust the degrees of 
freedom on line 15. If we have a set of loci of interest, this algorithm and its generali-
zation can calculate their interaction coefficient and test statistic efficiently. However, 
as we noted if we do not have a known set of loci a priori, then there is work to be 
done to prune what would be the exhaustive search space as we will consider in the 
next section.

The extension of the algorithms for permutation tests can be easily done by permu-
tations of the dependent variable p while computing residI , residp and in the case of a 
pairwise epistasis, β̂3 as

β̂3 =
〈
p̃, residI

〉
〈
Ĩ, residI

〉



Page 11 of 37Batista et al. BioData Mining            (2024) 17:7  

and

They may be used in order to obtain the test statistic

In the case of pairwise epistasis

Note that residp , the dot product of the permuted phenotype, and the interac-
tion term needs to be updated for each permutation. The interaction term and its 
residual may be reused for all permutations. The extension of the pairwise epistasis 
algorithm with permutation testing follows in Algorithm 3. The interaction coeffi-
cient, β3 , and T statistic are computed as in Algorithm 1. Algorithm 3 calculates the 
interaction coefficient and test statistic for each permuted phenotype. The p-value 
is the percentage of permuted phenotypes with test statistics at least as large as 
the test statistic for the original phenotype. We present the algorithm using matrix 
calculations on the permuted phenotype matrix, P, an m by K matrix, where m is 
the number of samples and K is the number of permutations. Each column of P is 
a permutation of the original phenotype vector, p̃ . There are several advantages 
to this approach in that calculating P once for all permutation tests permits effi-
cient parallelization of the permutation testing. The permuted phenotype matrix 
may be divided into submatrices of columns of permutations if need be, especially 
for memory limitations. In this case, the calculation of the p-value would be modi-
fied to be done across the divisions (i.e., return the number of tests at least as large 
as original t-test in absolute value and calculate p-value after all computations are 
done). Second, using matrix operations permits implementations of the algorithm 
to exploit underlying parallelization and efficiency of matrix libraries such as BLAS 
and LAPACK used by NumPy in Python.

residI = Ĩ−

〈
Ĩ, g̃i

〉

〈
gi, g̃i

〉 g̃i −

〈
Ĩ, g̃j − �g̃i ,g̃j�

�g̃i ,g̃i� g̃i
〉

〈
g̃j , g̃j

〉
− �g̃i ,g̃j�2

�g̃i ,g̃i�

(
g̃j −

〈
g̃i, g̃j

〉
〈
g̃i, g̃i

〉 g̃i
)

residp = p̃−
〈
p̃, g̃i

〉
〈
gi, g̃i

〉 g̃i −

〈
p̃, g̃j − �g̃i ,g̃j�

�g̃i ,g̃i� g̃i
〉

〈
g̃j , g̃j

〉
− �g̃i ,g̃j�2

�g̃i ,g̃i�

(
g̃j −

〈
g̃i, g̃j

〉
〈
g̃i, g̃i

〉 g̃i
)

T (β3) =
√
n− 4

< p̃, residI >√
< Ĩ, residI > · < p̃, resid >

〈
p̃, resid

〉
=

〈
p̃, residp

〉
− β̂3 ·

〈
p̃, Ĩ

〉
=

〈
p̃, residp

〉
−

〈
p̃, residI

〉
〈
Ĩ, residI

〉 ·
〈
p̃, Ĩ

〉
.



Page 12 of 37Batista et al. BioData Mining            (2024) 17:7 

Algorithm 3 Permutation Test P-value for Pairwise Epistasis

It should be noted that permutation tests offer a robust alternative statistical test which 
is preferred in case there is suspicion that the required linear regression assumptions of 
nonlinearity or nonnormality fail to hold. Permutation tests are also known to control 
better the family wise error rate in the scope of the specific model under testing. As each 
permutation test is performed under a specific epistasis model, when considered alto-
gether, for all pairs, the control of the global inflation of the Type I error is not assured. 
To determine if permutation tests notably affect our results compared to FDR correction 
alone, we implemented Algorithm  3 and applied it to perform 1000 permutations for 
pairwise epistasis detection using the XOR interaction model on the rat data set.

Screening for higher order epistasis

We consider whether there is any mathematical justification from the models for 
epistasis to prune the search space of higher order interactions from lower order 
interactions or vice versa. For example, a common heuristic is to search the main 
effects for the pairwise epistasis and pairwise epistasis for 3-way epistasis. A variant 
of an approach that uses stages like this is used, for example, by Laurie et. al. [44].

Without loss of generality we are considering k + 1 loci, g1, . . . gk+1 and their interac-
tions are all encoded using the Cartesian (product) model. If such justification exists, 
we may be able to show claims such that if there is a significant k + 1-way interaction 
among k + 1 loci, then all k interactions in the set of k + 1 loci are significant. The con-
trapositive of this claim is more practically useful: If any k-wise interaction is not signifi-
cant from the set of loci, then k + 1-wise interaction is also not significant. The converse 
(i.e., if for a set of k + 1 loci, all k−wise epistasis exist, then the loci have k + 1−wise 
epistasis) is less plausible still. There is empirical evidence in the rat data set in this study 
(and many others) against both claims in considering only main effects and pairwise 
epistasis. Namely, there are main effect loci that are not in pairwise epistasis with each 
other; there are main effect loci in pairwise epistasis with a loci that is not a main effect, 
and there exists pairwise epistasis between loci that are not main effects.
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Nevertheless we examine why these claims do not hold for the models used in epistasis. 
To do so, we consider two loci and their staged models for main effects and pairwise epista-
sis. Here we express the models simultaneously assuming the variables are centered. First 
we consider main effects:

and pairwise epistasis

In terms of the coefficients in the models, the first claim is that at least one loci not being 
a main effect implies no pairwise epistasis: if β̂1i = 0 or β̂1j = 0 , then β̂ij = 0 . The concern 
here is really the inference needed regarding the coefficients of the pairwise model given 
knowledge of the coefficients in the main effects model. While having evidence β̂ij = 0 does 
not give us implications about β̂2j or β2i , knowing that either is 0 would give an implication 
regarding β̂ij = 0 . In general, without loss of generality, recent closed forms for the ordinary 
least squares coefficients [20] give extensions to the formula of Yule [42],

and for the pairwise epistasis model

In the numerator for β̂ij , we note there are components that may be expressed in terms of 
the main effect coefficients, β̂1i and β̂1j . These will be the following two components: 〈
p̃, g̃j − �g̃i ,g̃j�

�g̃i ,g̃i� g̃i
〉
=

〈
g̃j , g̃j

〉
β̂1j −

〈
g̃i, g̃j

〉
β̂1i and 

〈
p̃, Ĩij −

〈
g̃i ,Ĩij

〉

�g̃i ,g̃i� g̃i

〉
=

〈
p̃, Ĩij

〉
−

〈
g̃i, Ĩij

〉
β1i

As a result, in terms of the main effect coefficients, β̂1i and β̂1j , we may write the pairwise 
epistasis interaction term as

p̃ = β1ig̃i or p̃ = β1j g̃j

p̃ = β2ig̃i + β2j g̃j + βij Ĩi,j

β̂1i =
< p̃, g̃i >

< g̃i, g̃i >
and β̂1j =

< p̃, g̃j >

< g̃j , g̃j >

β̂ij =

〈
p̃, Ĩij −

〈
g̃i ,Ĩij

〉

�g̃i ,g̃i� g̃i

〉
−

〈
Ĩij ,g̃j−

〈
g̃i ,g̃j

〉

�g̃i ,g̃i� g̃i

〉

�g̃j ,g̃j�−
〈
g̃i ,g̃j

〉2

�g̃i ,g̃i�

〈
p̃, g̃j − �g̃i ,g̃j�

�g̃i ,g̃i� g̃i
〉

〈
Ĩij , Ĩij

〉
−

〈
g̃i ,Ĩij

〉2

�g̃i ,g̃i� −

(〈
g̃j ,Ĩij

〉
−

〈
g̃i ,g̃j

〉

�g̃i ,g̃i�
〈
g̃i ,Ĩij

〉)2

�g̃j ,g̃j�−
〈
g̃i ,g̃j

〉2

�g̃i ,g̃i�

β̂ij =

〈
p̃, Ĩij

〉
−

〈
g̃i, Ĩij

〉
β1i −

〈
Ĩij ,g̃j−

〈
g̃i ,g̃j

〉

�g̃i ,g̃i� g̃i

〉

�g̃j ,g̃j�−
〈
g̃i ,g̃j

〉2

�g̃i ,g̃i�

(〈
g̃j , g̃j

〉
β̂1j −

〈
g̃i, g̃j

〉
β̂1i

)

〈
Ĩij , Ĩij

〉
−

〈
g̃i ,Ĩij

〉2

�g̃i ,g̃i� −

(〈
g̃j ,Ĩij

〉
−

〈
g̃i ,g̃j

〉

�g̃i ,g̃i�
〈
g̃i ,Ĩij

〉)2

�g̃j ,g̃j�−
〈
g̃i ,g̃j

〉2

�g̃i ,g̃i�
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From this we observe that the numerator of β̂ij is determined upon the numerical value 
of the product 

〈
p̃, Ĩij

〉
 and zero values for β̂1i and β̂1j do not imply β̂ij = 0 . So insignifi-

cant interaction terms, or value of β̂ij = 0 does not imply β̂1i = 0 or β̂1j = 0 and on the 
other hand β̂1i = 0 or β̂1j = 0 does not imply β̂2i = 0 , β̂2j = 0 or β̂ij = 0 . This may be 
considered a warning that we may not be justified only searching main effects for pair-
wise epistasis. Rather a biological reason for pruning loci, such as pruning of SNPs in 
linkage disequilibrium (LD), for epistasis may be more justified. For example, in the rat 
data set we applied the epistasis algorithms to loci screened from a previous GWAS 
study because of biological interest in those loci for the phenotype of BMI [21–23]. In a 
recent study in yeast, Ang et al. observed that epistasis most often occurred between loci 
with minor allele frequency between five and ten percent [45], so pruning loci for epista-
sis based on minor allele frequency may be another strategy for pruning the search space 
for epistasis detection for biological reasons.

Exclusive detection of interactions by respective interaction terms

It is not fully understood how epistatic interactions evolve, are maintained, or are struc-
tured in biological systems considering that methodologies specifically designed to 
systematically identify non-Cartesian interactions are not common [13–15]. As exam-
ples of the possible complexity of epistasis, Li and Reich propose over a hundred full 
penetrance interaction models, some of which are not linearly separable [46]. To test 
our methodology’s capability of supporting multiple interaction models when detecting 
epistasis, we select the exclusive-or (XOR) penetrance model (model M170 in Li and 
Reich) in addition to the Cartesian product (S2 File). We choose XOR because of its 
extreme difference compared to the standard Cartesian model in that the phenotype is 
entirely dependent on the MLG. Therefore, assuming full penetrance, XOR is not lin-
early separable or detectable using any single-locus analyses like GWAS. Due to these 
aspects, the XOR model is commonly considered to not be biologically plausible, with 
some noted exceptions [47, 48].

Before investigating if unique instances of epistasis can be detected in real-world 
systems using Cartesian and XOR models, we test if Cartesian and XOR interaction 
terms detect interactions that follow their respective models with higher fidelity than 
the alternate model in simulated data. To do this, we simulate nine pair-wise interac-
tions under both models using 18 genetic loci from the rat GWAS data [21–23], generat-
ing two datasets - one with Cartesian interactions and one with XOR interactions. We 
generate the interactions using a previously published method [49] in which the BMI 
phenotype is ranked from lowest to highest magnitude and a portion of the observa-
tions are permuted to build interactions using the respective interaction model. Each 
SNP in the dataset is assigned to be in a pair-wise interaction with the adjacent SNP (i.e., 
SNP1 is interacting with SNP2, SNP3 is interacting with SNP 4, and so on and so forth). 
We use our algorithm with both Cartesian and XOR interaction terms and compare the 
assessment of significance of all possible 18 choose 2 (153) pair-wise interactions in both 
datasets in Python v. 3.11. We also develop a standard regression method that assumes 
a Cartesian interaction term by default (representing available standard approaches) to 
determine if the results match those of our model with a Cartesian interaction term.



Page 15 of 37Batista et al. BioData Mining            (2024) 17:7  

Application to body mass index data

We have applied our algorithm to a dataset of an outbred, related rat (Rattus norvegicus) 
population of males and females derived from eight inbred founders (Heterogenous Stock, 
[50]) in order to detect possible epistatic interactions associated with Body Mass Index 
(BMI) as an exploratory analysis for our algorithm. We also use the rat data to showcase 
the extension of our algorithm to higher order epistasis by investigating three-way inter-
actions between putative Quantitative Trait Loci (QTLs) identified via GWAS [21–23]. 
Additionally, we have applied our algorithm to a dataset of an inbred population of mice 
(Mus musculus) derived from 17 mouse strains [24, 25] to compare epistatic interactions, 
both Cartesian and XOR, in a closely related species to rat.

Assessing computational efficiency

To calculate the relative speed our algorithm compared to a standard linear regres-
sion method, we use the same regression method we constructed in the term-specific 
interaction test experiment. We sample from the GWAS data [21–23] to generate thir-
teen datasets of increasing sample size (10, 100, 1,000, 2,000, 3,000, 4,000, 5,000, 6,000, 
7,000, 8,000, 9,000, and 10,000) and use the BMI phenotype as the response variable. 
For sample sizes greater than 5,000, we copy rows of the existing data to generate data-
sets of larger dimension. We also generate three datasets containing 10, 100, and 1,000 
SNPs with a constant sample size (5,566) to determine if the algorithm gains efficiency 
as SNP number increases. We run all algorithms to completion (assess all possible 
pairwise comparisons) in Python v. 3.11 and measure the computation time of both 
methods (assuming the Cartesian interaction term) using standard Python libraries on 
two systems: a Macbook Pro®with the M1 Pro®chip architecture (3.2GHz) and a PC 
with an Intel ®Xeon®Silver 4201R CPU (2.40GHz) and an NVIDIA®RTX A2000 dedi-
cated GPU. For the PC test, we use CuPY to additionally test GPU computation with 
our algorithm. We perform 10 replicate runs for each dataset and calculate the aver-
age time as well as summary statistics (means, variances, standard errors, F-tests, and 
T-tests). The average standard regression time is divided by our algorithm’s time to 
obtain comparative speed ratios.

Detecting epistasis

The GWAS dataset of BMI residuals (corrected for sex and location) in 5,566 rats con-
taining approximately 129,000 autosomal SNPs is used for our rat analysis [21–23]. To 
reduce the dimensionality of the dataset for exploratory purposes, we select the top 
10,000 SNPs (SNPs with the 10,000 lowest p-values) from the original GWAS for fur-
ther analysis because of their biological interest and relevance and to compare findings 
to the previous GWAS and studies investigating obesity-related traits. For mice, we use 
the genotype/phenotype information from the Wellcome Trust Mouse Genomes Project 
[24, 25] found in the BGLR package [51] in R [52]. We did not prune this dataset because 
it is close in dimensionality ( 10,000 SNPs) to the pruned rat dataset. In total, we extract 
the genotype and BMI phenotype data available for 10,347 SNPs for 1,814 mice.

To account for the relatedness of the samples and population structures, the genetic 
relatedness matrices (GRMs) are calculated for the rat data using the method of Yang 
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et al. using the GCTA software tool [53] and the mouse data using the method of Sul 
et al. [54]. We use the GRMs to calculate the variance component analysis for the phe-
notype of BMI for each data set using the methods of Joo et al. [55] and Kang et al. [56, 
57] as implemented in the mmer function with method EMMA of the sommer package 
version 3.2 in R [58]. From the variance component analyses, we obtain the inverses of 
the covariance matrices for both data sets as returned by the sommer package and then 
use the the sqrtm function from the expm package version 0.999-7 in R to obtain their 
square roots [59]. These inverse square root covariance matrices are then used to correct 
for population structure and essentially solve a generalized linear model by performing 
a weighted least squares by multiplying each variable in the model by the half inverse 
matrix before applying our algorithms as a pre-processing step. This “mixed model trick” 
is summarized by Suh et al. [54].

Both Algorithms, 1 and 2, are implemented in Python v. 3.9 for our experiments in 
detecting epistasis under Cartesian and XOR interaction models. To calculate the p-val-
ues for the two-sided T tests for the test statistics returned from our algorithms, the t.sf 
function from the scipy.stats package is used [60]. For two-way epistasis, Algorithm 1 
is applied to all possible pairs of 10,000 SNPs in the rat data set and all possible pairs of 
10,347 SNPs in the mouse data set. This is done as two separate experiments for each 
data set, once for the XOR model and another for the Cartesian (product) model. In 
addition, for the XOR model for all 10,000 SNPs for the rat data set, p-values are also 
calculated using the permutation testing algorithm with 1,000 permutations. (This was 
computationally intensive since we calculate nearly fifty million tests per permutation 
and was done in parallel.) To account for multiple testing, FDR is implemented in the 
fdrcorrection function in the statsmodels package in Python [61] using a p-value thresh-
old of 0.05. For three-way epistasis in the rat data set, we apply Algorithm 2 to the 18 
putative main effect QTLs from the rat GWAS study [21–23] to  determine if any are 
involved in significant three-way epistatic interactions.

Pruning redundant epistatic events

For mice, we map all SNPs to their respective genomic location (assembly GRCm39) and 
retain those that map to the 19 autosomes. This leaves us with 9,525 SNPs for further 
analyses. Although GWAS SNPs were LD-pruned in rats, it is likely that many detected 
pairs are redundant in that one or both epistatic partners of a particular pair are in LD 
with others in close genomic proximity. In fact, many epistatic pairs where in close prox-
imity (within 10 to 100 base pairs (bp)) to one another in both systems (S1File, S3File). 
We choose a conservative threshold of 10 megabases (Mb) upstream or downstream 
to prune redundant pairs in both species. All pruning steps are performed in R [52]. 
Under both Cartesian and XOR models, to prune interchromosomal pairs, four condi-
tions must be met when comparing epistatic pairs: 1.) locus one in pair one and locus 
one in pair two are on the same chromosome, 2.) locus two in pair one and locus two in 
pair two are on the same chromosome, 3.) the absolute value of the difference in chro-
mosomal position (in bp) between locus one in pair one and locus one in pair two is 
less than 10Mb, and 4.) the absolute value of the difference in chromosomal position 
between locus two in pair one and locus two in pair two is less than 10Mb. If all four 
conditions are true, the epistatic pair with the lower FDR-corrected p-value for our 
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epistasis test is retained while the other is omitted. We then check for mirror redundan-
cies where two pairs technically meet the above criteria, but the chromosomal combina-
tion is reversed. The pair that is identified first is retained while the other is omitted. To 
prune intrachromosomal pairs, we check if two pairs exist on the same chromosome and 
then use the same bp criteria as outlined above for to prune pairs. We also take an addi-
tional pruning step for intrachromosomal pairs where the absolute value of the bp differ-
ence between locus one and locus two is less than 10Mb. If this condition is met, the pair 
is omitted. This step removes close-acting cis-regulatory epistatic events as a byproduct 
of controlling for high LD in these model systems. We perform this pruning strategy to 
highlight epistatic hubs in both genomes and only consider the most significant sources 
of epistasis in this exploratory study.

There are nine total MLGs possible under pair-wise epistasis of two biallelic SNPs (S2 
File). We limit our results to only those pairs where all nine MLGs occur. Additionally, 
we remove any significant epistatic pair, both in Cartesian and XOR, that do not have at 
least 10 or 5 observations of all nine MLGs in the datasets in rats and mice, respectively. 
Under Hardy-Weinberg assumptions, if the minor allele frequencies in two loci are 0.10, 
then we only expect to observe a genotype frequency for a double minor homozygote 
of 0.0001. We select the cutoff observations of 10 and 5 in rats and mice, respectively 
to ensure the combinatory genotype frequencies of the MLGs to be sufficiently above 
what would be expected if minor allele frequencies are 0.10 in both epistatic loci under 
Hardy-Weinberg assumptions.

Identifying QTL‑associated and non‑QTL‑associated epistatic events and epistatic hubs

After our initial pruning steps, we determine if a locus was associated with a putative 
QTL for BMI (“BMI with tail” in rats and “BMI” in mice) from the original GWAS stud-
ies [21–25] to observe if most epistatic events occur at or near loci with large main 
effects. To accomplish this, we use lists of the putative single locus QTL from the origi-
nal GWAS studies and their respective genomic locations. We record if either locus 1 or 
locus 2 of a pair is within 10Mb upstream or downstream of a putative QTL to count the 
number of epistatic pairs with one putative GWAS QTL involved. We also note if both 
loci of a pair are associated with a GWAS QTL to record QTL to QTL epistatic interac-
tions. If a locus is within 10Mb upstream or downstream of a GWAS QTL, its identifica-
tion is replaced by the putative QTL’s identification. We also count how many epistatic 
events involve each GWAS QTL. If non-QTL-associated loci are within 10Mb upstream 
or downstream of each other on the same chromosome, the average genomic location 
is calculated and all non-QTL epistatic loci’s bp positions used to calculate the average 
are replaced by the average bp location. This procedure identifies non-QTL-associated 
epistatic loci and hubs. For our analyses, any locus with 10 or more epistatic interactions 
are defined as an epistatic hub (GWAS QTLs included).

Under XOR, we also identify loci that are within 10Mb upstream or downstream of 
a GWAS QTL and replace their identifications with the respective GWAS QTL. For 
non-QTL-associated XOR loci, we determine which loci are within 10Mb upstream 
or downstream of the non-QTL-associated loci identified under the Cartesian 
model and replace their identification with the identification of the Cartesian locus. 
This allows us to determine how many epistatic loci/hubs are shared between both 
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models. For loci that are unique to the XOR model, we apply the same procedure used 
to determine non-QTL-associated loci under Cartesian model where we calculate the 
average genomic location among loci if on the same chromosome and within 10Mb 
upstream or downstream of each other. Thus, we identify loci specific to each interac-
tion model as well as loci shared between models.

Identifying potential phantom epistasis

Phantom epistasis, the phenomenon where significant statistical epistatic events are 
detected between large additive effect loci in strong LD with interacting loci, can occur 
and has been detected [62]. Although our pruning strategy controls for cis LD and the 
zero or small independent effects of each locus expected under the XOR model partially 
control for strong additive effects between two loci [46], trans LD can occur across vast 
genomic distances due to forces including, but not limited to, selection and inbreeding 
[63]. To investigate if phantom epistasis is occurring in our rat data, we calculate LD 
statistics (D’ and  R2) for all pairwise epistatic interactions involving the putative GWAS 
QTL with the largest additive effect (chr1.281788173_G) under both Cartesian and XOR 
models. For this analysis, we use the LD function in the R package, genetics [64].

Gene set enrichment and Kegg pathway analysis

To perform functional annotation for loci involved in epistatic events, we query pro-
tein-coding gene models, non-protein coding gene models, and pseudogene mod-
els from the Rat Genome Database (https:// rgd. mcw. edu/) for rats (assembly Rnor 
6.0) and mice (assembly GRCm39). We retrieve any model that is 1Mb upstream or 
downstream from each epistatic locus/hub. We then convert the species-specific gene 
model symbols from the respective database to Entrez IDs. Any returned queries 
that do not have associated Entrez IDs are omitted. We use this list to identify the 
enrichment of GO (gene ontology) terms (cellular component, molecular function, 
and biological process) using the BioConductor [65] package clusterProfiler [66, 67] 
in R with FDR correction (p-value cutoff= 0.01 ; q-value cutoff= 0.05 ). We also per-
form Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analy-
sis using clusterpPofiler (p-value cutoff= 0.05 ; q-value cutoff= 0.02 ). Dotplot figures 
of enriched ontological terms are made using the DOSE [68] package in R.

Identifying three‑way epistatic interactions between putative QTLs

To test the extension of our algorithm for identifying higher order epistasis, we explore 
three-way epistatic interactions among the 18 putative QTL identified in the original rat 
GWAS [21–23] under both Cartesian and XOR interaction models. Triplets that have 
an associated experimental p-value < 0.05 are retained and we record occurrences of 
three-way epistasis for each GWAS QTL. In addition, the triplets between each interac-
tion model are compared for overlap. Since all significant triplets in both experiments 
are unique in terms of genomic location and are between putative QTLs, no pruning or 
epistatic locus identifications are performed for this analysis.

https://rgd.mcw.edu/
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Results
Interaction terms excel with interactions simulated assuming their respective model

After FDR correction, pairwise interactions simulated with the Cartesian model are 
detected better with the Cartesian interaction term compared to the XOR interaction 
term. The average corrected p-value of the nine simulated Cartesian interactions with 
the Cartesian interaction term is 1.86E-06 compared to 0.18 with XOR (S1 File). The 
XOR interaction term does, however, identify five of the nine Cartesian interactions as 
significant. With stricter FDR correction (i.e., a larger number of SNPs), most of these, 
if not all, would likely not remain significant as they are marginal. As for XOR simulated 
interactions, after FDR correction, none of the possible 153 pairwise comparisons are 
significant using the Cartesian interaction term (S1 File). However, using our algorithm 
with an XOR interaction term, the nine simulated XOR interactions have the lowest 
adjusted p-values by a large margin compared to any of the other possible 144 interac-
tions (average p-value of XOR interactions = 6.31E-26). The non-adjusted and adjusted 
p-values from the standard regression approach with the Cartesian interaction term 
match exactly to the non-adjusted and adjusted p-values derived from our algorithm 
with the Cartesian term (S1 File).

Epistasis algorithm efficiency scales with sample size

In both the Mac and PC tests, our algorithm outperforms the standard regression 
approach as sample size increases (S1 File). Faster computation times are reached quickly 
on the Mac, at a sample size of 3,000 (1.9X speed up), and speed increases of approxi-
mately 2.3X are achieved at samples sizes 6,000 and above. On the PC, speed increase 
does not occur until a sample size of 5,000 for the GPU and a sample size of 6,000 for 
the CPU. Max speed increases are observed at a sample size of 10,000 with 1.2X for the 
CPU and 1.4X for the GPU. SNP number does not affect the speed ratio between algo-
rithms as much as sample size (S1 File). With a constant sample size of 5,566, as SNPs 
increase from 10 to 1,000, the average speed increase is 2.4X (min = 2.1X, max = 2.6X) 
for the Mac system and, on the PC, average speed increases are 1.04X (min = 0.96X, 
max = 1.1X) and 1.1X (min = 0.97, max = 1.2X) for the CPU and GPU, respectively. 
These results illustrate that our epistasis algorithm scales well with sample size and will 
reach higher levels of efficiency with large experimental designs. However, this efficiency 
is system and specification dependent. GPU integration, including the integrated M1 
Pro®GPU, yields faster computation speeds.

Most epistatic interactions and hubs occur at non‑QTL‑associated loci

For the Cartesian experiment in rats, our method detects 4,158 (86.8%) interchromo-
somal and 634 (13.2%) intrachromosomal significant pairs (4,792 total; S1 File). After 
MLG pruning, this reduces to 3,109 (90.4%) interchromosomal and 329 (9.6%) intrachro-
mosomal pairs (3,438 total; S1 File). After redundancy pruning, this is further reduced 
to 175 interchromosomal pairs (96.2%) and seven intrachromosomal pairs (3.8%) (182 
total) (Fig. 1A; S1 File). There are 182 Cartesian pairs after all pruning. Of these, there 
are 66 pairs (36.3%) containing one QTL-associated locus and 9 (4.9%) QTL-QTL inter-
actions (Fig.  1C; S1 File). However, most pairs are between two non-QTL-associated 
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loci (107 pairs; 58.8%). There are a total of 91 Cartesian epistatic loci. Of these, 75 
are non-QTL-associated (82.4%) (Fig.  1E; S1 File). Of the 18 putative GWAS QTL, 
chr7:8599340_A, chr18.32316331_A, and chr5:72916242_T are not detected as epistatic 
loci (S1 File). It is important to note that chr18.32316331_A is physically close to another 
putative QTL, chr18.27348077_G (4,968,254 bp apart), and is not represented as loci we 
detect are physically closer to chr18.27348077_G.

In mice, 81 epistatic pairs are detected under the Cartesian model. However, 65 of 
these involve at least one locus on the X chromosome and are omitted as we are only 
investigating autosomal loci, leaving 16 pairs. None of these pairs are intrachromo-
somal (S3 File). After MLG pruning, eight pairs remain and after redundancy prun-
ing only one pair remains between chr3.44666611, and chr12.7079769 (S3 File). In 
rats, the XOR model yields more significant pairs compared to Cartesian (31,182 vs. 
4,792) (S1 File). Of the 31,182 significant pairs, 27,774 are interchromosomal (89.1%) 
and 3,408 are intrachromosomal (10.9%; S1 File). After MLG pruning, this is reduced 
to 11,016 (86.4%) interchromosomal pairs and 1733 (13.6%) intrachromosomal pairs 
(12,749 pairs total; S1 File). After redundancy pruning, this is further reduced to 296 
(94.9%) interchromosomal pairs and 16 (5.1%) intrachromosomal pairs (312 pairs 
total) (Fig.  1B; S1 File). Most pairs (181 (58.0%)) are between two non-QTL-associ-
ated loci while there are 125 (40.1%) pairs involving one QTL-associated locus and six 
(1.9%) QTL-QTL interactions (Fig. 1D; S1 File). Epistatic pairs involve 100 loci where 
82 (82.0%) are non-QTL-associated (Fig. 1F; S1 File). All 18 putative GWAS QTL are 
represented under the XOR model.

Fig. 1 Proportions of epistasis detected in rats. A and B Interchromosomal (blue squares) vs 
intrachromosomal (light purple squares) pairs under Cartesian (A) and XOR (B) models. C and D Number of 
epistatic pairs involving no (pink squares), one (green squares), or two (yellow squares) putative GWAS QTL 
under Cartesian (C) and XOR (D) models. E and F: Non-QTL-associated (gray squares) and QTL-associated 
(dark purple squares) epistatic loci under Cartesian (E) and XOR (F) models
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In mice, under the XOR model, there are 468,596 significant pairs. After we map these 
loci to genomic locations and remove any pair involving an non-autosomal locus, 25,055 
pairs remain with 23,688 (94.5%) interchromosomal and 1,367 (5.5%) intrachromosomal 
(S3 File). After MLG pruning, this is reduced to 13,328 (95.0%) interchromosomal pairs 
and 707 (5.0%) intrachromosomal pairs (14,035 pairs total; S3 File). Finally, after redun-
dancy pruning, this is reduced to 341 (92.4%) interchromosomal pairs and 28 (7.6%) 
intrachromosomal pairs (369 pairs total) (Fig. 2A; S3 File). As in rats, and due to there 
only being 3 putative GWAS QTL for BMI in mice we are able to map to a genomic 
location, most pairs (351 (95.1%)) are between two non-QTL-associated loci while there 
are 18 (4.9%) pairs containing one QTL-associated locus (Fig. 2B; S1 File). There are no 
QTL-QTL interactions detected in mice. In mice, XOR yields 115 unique epistatic loci 
where 112 (97.4%) are non-QTL-associated.

Fig. 2 Representations of epistasis in mice. A Interchromosomal (blue squares) vs. intrachromosomal (light 
purple squares) pairs under XOR model. B Number of pairs involving no (pink squares), one (green squares), 
or two (yellow squares) putative GWAS QTL under XOR model. C Non-QTL-associated (gray squares) and 
QTL-associated (dark purple squares) epistatic loci under XOR model. D Interaction plot of XOR epistasis 
across mouse autosomes. Autosome numbers are depicted as roman numerals and increase clockwise. 
Orange bars represent counts of epistatic instances per locus. E Venn diagram of epistatic pairs under 
Cartesian (left circle) model, the intersect between models (center), and under XOR (right circle) model. F 
Venn diagram of epistatic loci under Cartesian (left circle) model, the intersect between models (center), and 
under XOR (right circle) model. E and F Color gradient illustrates low (white) to high (blue) occurrences
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It is important to note that a large amount of significant epistatic pairs involve non-
autosomal or unmappable loci in mice. In future analyses, we aim to explore interac-
tions that involve non-autosomal loci within the mouse cohort and in other species. 
The rank order and number of interactions per GWAS QTL differ between experiments 
and across species. In rats, under the Cartesian model, the largest QTL-associated hubs 
are chr1.281788173_G and chr5.107167969_G with 12 interactions each (Fig.  3A; S1 
File). chr1.281788173_G is also the locus with the largest main effect signal in the rat 
GWAS (S1 File). Under the XOR model, there are four QTL-associated hubs identi-
fied (Fig. 3B; S1 File). As in Cartesian, chr1.281788173_G is the largest QTL-associated 
hub with 34 interactions. This is followed by chr18:27348077_G with 25 interactions. 
XOR QTL-associated hubs also include chr5:107167969_G and chr8:103608382_G. 
Under the Cartesian model, 10 of the putative GWAS QTLs are in QTL-QTL interac-
tions (Fig. 3C; S1 File). Two putative GWAS QTLs are in three QTL-QTL interactions 
while four are in two QTL-QTL interactions. The remaining four are in one. The Car-
tesian QTL hubs, chr5.107167969_G and chr1.281788173_G are involved in QTL-QTL 
interactions, but there doesn’t seem to be a clear relationship between number of epi-
static interactions and number of QTL-QTL interactions. Under the XOR model, seven 
putative GWAS QTL are in QTL-QTL interactions (Fig. 3D; S1 File). However, the rank 
orders and QTL representations are distinct between models. For example, under XOR, 
chr1.281788173_G has the largest occurrences of QTL-QTL interactions with five. 
Under XOR, there also is not a clear relationship between the number of QTL epistatic 
events a hub is involved in and the propensity of QTL-QTL interactions.

In mice, under the Cartesian model, QTL and QTL-QTL interactions do not occur as 
only one significant pair, involving two non-QTL-associated loci, is detected. However, 

Fig. 3 Bar graphs of occurrences of QTL-associated epistasis in rats. A and B Bar graphs of instances of 
epistatic events for GWAS putative QTL under Cartesian (A, orange bars) and XOR (B, blue bars) models. C and 
D Bar graphs of instances of QTL to QTL epistatic events for GWAS putative QTL under Cartesian (C, orange 
bars) and XOR (D, blue bars) models
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under the XOR model, all three putative QTL are involved in a least one epistatic 
interaction; however none are hubs (Fig. 4A; S3 File). The largest QTL epistatic loci is 
chr2.68831331_G with eight interactions. No QTL-QTL interactions are detected in 
mice under the XOR model.

In rats, there are four Cartesian non-QTL-associated epistatic hubs and 18 under XOR 
(Fig. 5A,C; S1 File). The largest non-QTL-associated epistatic hubs are chr16.54146824 
under Cartesian and chr9.60993465_G under XOR. As we observe with GWAS QTL 
epistasis, the rank order and hub sizes of non-QTL-associated hubs differ between 
experiments (Fig. 5A,C; S1 File). When including putative GWAS QTLs as hubs, there 
are a total of six epistatic hubs identified under the Cartesian model (Fig. 5B; S1 File) 
and 22 under the XOR model (Fig. 5D; S1 File). GWAS QTLs account for 33% (2/6) and 
18.2% (4/22) of Cartesian and XOR hubs, respectively. Despite the rank order of hubs 
being largely distinct between experiments, the largest hub under both Cartesian and 
XOR models is the putative GWAS QTL with the largest main effect signal in the rat 
GWAS [21–23], chr1.281788173_G. In mice, under the XOR model, all 25 hubs are non-
QTL-associated. The largest is chr12.42624574 with 19 interactions (Fig. 4B, S3 File).

In rats, there is a significant correlation between the significance of SNPs in the GWAS 
considering its p-value (i.e. -log10p-value) and the number of epistatic interactions 
under the XOR model when considering all epistatic SNPs (p = 0.0112, r = 0.253; S2 
File) and only QTL-associated SNPs (p = 0.00249, r = 0.667; S2 File). This relationship 
does not occur under the Cartesian model. We did not perform this analysis in mice as 

Fig. 4 Bar graphs of epistatic interactions and dot plots of GO term gene set enrichment in mice under the 
XOR model. A Bar graph of instances of QTL-associated epistatic events for GWAS putative QTL under XOR 
model. B Bar graph of instances of epistasis for all epistatic hubs (QTL-associated and non-QTL-associated) 
under XOR model. C dot plots for enriched cellular component GO terms. D through F dot plots for enriched 
GO terms for biological processes (D), cellular components (E), and molecular functions (F) for XOR-specific 
epistatic loci. C through E size of dot corresponds to the number of genes associated with that enrichment. 
Color gradient illustrates level of significance with higher p-values in blue and lower p-values in red
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we did not have access to the GWAS statistics for all SNPs. Phantom epistasis detection 
results illustrate that no measurements of pairwise LD (D’ and  R2), for epistatic pairs 
involving chr1.281788173_G, either in Cartesian or XOR, suggest strong association 
between loci (S1 File).

Permutation test results in rats under the XOR model yielded 29 XOR specific loci 
compared to 25 when just using FDR correction alone. Of the 29 XOR specific loci after 
1,000 permutations, most (23) overlap (are within 1 Mb of a similar locus with FDR 
correction alone) while six are only found after 1,000 permutations (S1 File). In this 
instance, permutation testing leads to the detection of additional epistatic loci. We only 
apply the permutations algorithm to epistatic pairs from rat data under the XOR model 
to both test the algorithm’s capability and to verify detection of XOR statistical epistasis 
in a living system.

Cartesian and XOR share common epistatic loci while epistatic landscapes are distinct

In rats, the interaction landscapes of Cartesian and XOR two-way epistasis are mostly 
distinct (Fig. 6A,B; S1 File). Out of the 182 Cartesian and 312 XOR pairs, only 16 pairs 
(3%) reach significance under both models (Fig. 6C; S1 File). However, of the 91 and 100 
epistatic loci that occur under Cartesian and XOR models, respectively, 75 (65%) are 
shared Fig. 6D; S1 File). Although most epistatic loci are shared between Cartesian and 
XOR, distinct significant two-way epistatic interactions occur under each model.

In mice, only one epistatic pair is significant and is distinct to the Cartesian model (i.e., 
does not reach significance under the XOR model) (Fig. 2E; S3 File). Only two epistatic 

Fig. 5 Bar graphs of epistatic events in non-QTL-associated hubs and all hubs in rats. A and B Bar graphs of 
instances of epistatic events for non-QTL-associated hubs (A) and all hubs (B) under Cartesian model (orange 
bars). C and D Bar graphs of instances of epistatic events for non-QTL-associated hubs (C) and all hubs (D) 
under XOR model (blue) bars). B and D Loci on y axes ending with “_” and allele designation are GWAS 
putative QTL
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loci are significant under the Cartesian model. These two loci also reach significance 
under the XOR model (Fig. 2F; S3 File).

Enriched terms and pathways associated with metabolism detected from epistatic loci

In rats, the 16 Cartesian-unique and 25 XOR-unique epistatic loci are analyzed using 
gene set enrichment. Additionally, the 75 loci that are shared between the models and 
the 18 putative QTLs are also analyzed. Under the Cartesian model, the 16 Cartesian-
unique loci led to no significant enrichment of cellular component, biological pro-
cess, or molecular function. However, one KEGG pathway was enriched - Ribosome 
(S1 File). Enrichment of the 75 shared loci reveal biological processes, cellular compo-
nents, and molecular functions associated largely with immunity (Fig. 7A-C; S2 File). 
Under the XOR model, five enriched biological processes are identified, all of which 
are metabolic in nature (Fig.  7D; S1 File; S2 File). A total of ten molecular functions 
are enriched with the vast majority being oxidoreductase activities and carboxylic acid 
binding (Fig. 7E; S1 File; S2 File). No cellular components are significantly enriched. A 
total of 17 KEGG pathways are enriched. Notable metabolism-associated KEGG path-
ways are nitrogen metabolism, gastric acid secretion, and glucagon signaling pathway 
(S1 File). In mice, the two shared loci between models reveal significant enrichments 

Fig. 6 Interaction plots and epistatic model comparisons in rats. A and B Interaction plots of Cartesian (A) 
XOR (B) epistasis across rat autosomes. Autosome numbers are depicted as roman numerals and increase 
clockwise. Orange bars represent counts of epistatic instances per locus. C Venn diagram of epistatic pairs 
under Cartesian (left circle) model, the intersect between models (center) and under XOR (right circle) model. 
D Venn diagram of epistatic loci under Cartesian (left circle) model, the intersect between models (center) 
and under XOR (right circle) model. C and D Color gradient illustrates low (white) to high (blue) occurrences
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of metabolic terms (Fig. 4C; S3 File). The enrichments from the 113 XOR-specific loci 
are mostly involved in immunity (Fig. 4D,E; S3 File). There are a total of eight biological 
functions, five cellular components, 15 molecular functions, and two KEGG pathways 
significantly enriched from XOR-specific loci. However, “detection of chemical stimulus 
involved in sensory perception of smell”, “fatty acid transmembrane transporter activ-
ity”, and “hydrolase activity, acting on carbon-nitrogen (but not peptide) bonds, in lin-
ear amides” are enriched metabolically-relevant processes and functions. Additionally, 
both KEGG pathways are metabolic in nature:  "Endocrine and other factor-regulated 
calcium reabsorption" and "Nicotinate and nicotinamide metabolism" (S3 File).

In rats, GO term enrichments for the 75 shared epistatic loci between models 
yielded 75 significantly enriched biological processes, three cellular components, five 
molecular functions, and 46 KEGG pathways. The vast majority of these terms and 
pathways are involved in immunity (S1 File). In mice, the two shared epistatic loci 
between Cartesian and XOR models significantly enriched 10 cellular components 
and four KEGG pathways, all of which are involved in metabolism (S3 File). This is 
likely due to the gene ApoB being located in close proximity to the chr12.7079769 
epistatic locus. Interestingly, SNPs near this gene were not implicated in the original 
GWAS study ([24, 25]; S3 File). In rats, the 18 putative GWAS QTL yield 14 signifi-
cantly enriched biological processes and one molecular function (S1 File). Outside 
of “cellular response to alcohol”, all other enriched biological processes are related to 
immunity. The lone enriched molecular function is “type I interferon receptor bind-
ing”. The 18 putative GWAS QTL yield KEGG pathway enrichment mostly associated 
with immunity. However, metabolic-related pathways like “alcoholic liver disease” 
and “lipid and atherosclerosis” are also enriched (S1 File). In mice, the three puta-
tive GWAS QTL are enriched for one cellular component (“inner dynein arm”) and 
two metabolic KEGG pathways: “Glycoaminoglycan biosynthesis” and “Cholesterol 
metabolism” (S3 File).

Fig. 7 Dotplots of gene set enrichment in rats. A through C dot plots for enriched GO terms for biological 
processes (A), cellular components (B), and molecular functions (C) for shared genes between Cartesian and 
XOR models. D and E dot plots for enriched GO terms for biological processes (D) and molecular functions 
(E) for XOR-specific epistatic loci. A through E size of dot corresponds to the number of genes associated 
with that enrichment. Color gradient illustrates level of significance with higher p-values in blue and lower 
p-values in red
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Three‑way epistatic landscapes for QTL are distinct between models

Using the XOR model, significant three-way epistatic interactions between putative 
GWAS QTL result in more and larger epistatic hubs compared to the Cartesian model 
(seven GWAS QTL hubs in Cartesian vs. all 18 GWAS QTLs in XOR) (Fig.  8A,B; S1 
File). Additionally, as we also observe in the two-way experiments, the epistatic land-
scapes and rank order of epistatic loci are distinct between the two models (Fig. 8A-E; S1 

Fig. 8 Representations of three-way epistasis in rats. A and B Bar graphs of occurrences of three-way 
epistatic events in GWAS QTLs under Cartesian (A, orange bars) and XOR (B, blue bars) models. C and D 
Interaction plots of Cartesian (C) XOR (D) three-way epistasis of GWAS QTLs across rat autosomes. Autosome 
numbers are depicted as roman numerals and increase clockwise. Orange bars represent counts of epistatic 
instances per locus. E Venn diagram of epistatic triplets for GWAS QTLs under Cartesian (left circle) model, the 
intersect between models (center) and under XOR (right circle) model. E Color gradient illustrates low (white) 
to high (blue) occurrences
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File). Furthermore, out of the 51 significant epistatic triplets in Cartesian and 90 in XOR, 
only 4 triplets are shared between them despite sharing all epistatic loci (the 18 putative 
GWAS QTLs) (Fig.  8E; S1 File). A similar result occurred in the two-way experiment 
(Fig. 6D; S1 File). There is no significant correlation between the absolute value of the 
GWAS betas or the GWAS -log10p-values and the number of three-way interactions for 
the 18 putative GWAS QTL under either interaction model (S2 File).

Discussion
Epistasis occurs widely at non‑QTL‑associated locations

Our findings point to the potential ubiquity of epistasis in living systems as we detect 
numerous epistatic pairs and loci under two distinct interaction models with many of 
them unique to either Cartesian or XOR. Furthermore, most interactions detected occur 
at loci not associated with a GWAS QTL (more than 10Mb upstream or downstream) 
in both species. However, in rats, the largest epistatic hub under both Cartesian and 
XOR models is chr1.281788173_G, which is also the putative QTL with the largest sig-
nal found in the rat GWAS study. In mice, under the XOR model, all epistatic hubs are 
non-QTL-associated. One explanation for this is that there are only three putative QTL 
for BMI from the mouse GWAS study that are mapped to a genomic location. Two stud-
ies investigating genome-wide non-additive effects in yeast found results to the contrary 
where a strong positive correlation between the main effect size of a locus and the num-
ber of interactions it was involved in is observed [7, 8]. Although we observe strong cor-
relations in the two-way experiment between the GWAS p-value of a locus and number 
of interactions under the XOR model in rats, it is important to consider that most hubs, 
both under Cartesian and XOR models and in both species, are not located near a puta-
tive QTL and hence did not have strong main effects in the original GWAS study.

There are several possible explanations as to why most instances of detected epista-
sis occur at non-QTL-associated locations. The first is that there are more possible 
non-QTL-associated genomic locations that could serve as epistatic loci or hubs. The 
rat GWAS study identified 18 putative QTL. Therefore, only 360Mb of the R. norvegi-
cus genome would be considered QTL-associated under our pruning and categoriza-
tion strategy. The R. norvegicus genome assembly used in this study is approximately 
2.6 Gb in size [69], meaning that there are more possible non-QTL-associated regions 
we could have detected in this study compared to the 18 QTL-associated regions. The 
mouse GWAS identified four QTL for BMI, three of which mapped to a genomic loca-
tion, representing only 30Mb of the mouse genome. This same reasoning as to why there 
are more non-QTL-associated epistatic loci can be applied to why we observe so many 
more interchromosomal epistatic pairs compared to intrachromosomal pairs. Simply, 
there are more possible pairwise combinations that can occur across chromosomes than 
can occur within the same chromosome.

The second explanation is that main effects derived from significant GWAS summary 
statistics are not adequate predictors of epistasis. 82.4% and 82.0% of unique epistatic 
loci are non-QTL-associated under Cartesian and XOR models, respectively in rats. Fur-
thermore, the dataset of SNPs in mice are not selected based upon GWAS summary 
statistics. Yet, there are still significant levels of statistical epistasis detected across the 19 
mouse autosomes. In this regard, the mouse dataset serves as a more pertinent example 
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of why searching for epistasis solely based upon main effects may not be optimal. Even 
though, to test our methodology and to compare to relevant findings in the literature, we 
prune the original rat dataset using GWAS p-values, we suggest implementing alterna-
tive pruning strategies, perhaps based on expert knowledge, allele frequency, or biologi-
cal function, to test for epistasis.

Another alternative explanation is our pruning strategy itself. Our initial step is to remove 
redundant pairs within 10Mb upstream or downstream from each other and only the 
most significant pair (lowest p-value) is retained. In rats, there are more redundant pairs 
involving loci in LD with putative QTL compared to non-QTL-associated pairs because 
our dataset is derived from the 10,000 most significant loci in terms of GWAS p-values (S1 
File). Perhaps with a different pruning strategy, QTL-associated loci would have possibly 
been highlighted more. However, our pruning strategy serves to control for high levels of 
LD and highlight loci with non-significant main effects as centers for epistasis. It is plau-
sible that combinatory mutations in multiple loci, interacting in networks or pathways, 
may be required to explain much of the variation observed in phenotypes as canalized sys-
tems are likely resistant to alterations to one or few loci [16–19]. Thus, it is possible that 
we detect loci underlying BMI in R. norvegicus and M. musculus that would otherwise go 
undetected if only main effects are considered. Examples from our results in rats include 
the gene Pdgfrl, which the largest Cartesian non-QTL associated hub (chr16.54146824), 
is centered on and Stk17b, which is located just upstream of the largest XOR non-QTL-
associated hub. Pdgfrl is a platelet-derived growth factor receptor-like gene that has been 
implicated in certain cancers in humans [70, 71] and Stk17b, serine/threonine kinase, has 
been associated with signal transduction and apoptosis [72, 73]. In mice, the second larg-
est XOR non-QTL-associated hub (chr14.33090575) is located within the Arhgap22 gene. 
This gene is expressed in all mammals and has been implicated as a cytoskeletal and cellular 
transcription regulator [74, 75] as well as being involved in the central nervous system [76]. 
These loci were undetected by their associated univariate analyses and this study provides 
evidence that their roles in BMI should be further investigated. Additional to this point, the 
sheer number of loci involved in significant two-way interactions compared to the num-
ber of loci with significant main effects detected in the original GWAS studies illustrate the 
potential importance of epistasis in understanding the genetic variance underlying complex 
biological traits like BMI in two closely-related species.

Numerous epistatic events are specific to one interaction model

Although the number of epistatic loci we detect under both Cartesian and XOR mod-
els is comparable and generally overlaps in rats, there are more significant pairs reach-
ing significance under the XOR model compared to Cartesian. These pairings are mostly 
distinct with only 16 pairs shared between the models. In mice, there is only one sig-
nificant Cartesian pair that reached significance. This highlights that, at least in mice, 
using a single interaction model (in this case, Cartesian) may not uncover substantial 
levels of epistasis and/or lead to the assumption that no epistasis underlies the BMI phe-
notype in this species. Furthermore, in rats, XOR hubs are larger and more numerous 
than Cartesian hubs. We also observe similar results in our 3-way experiment in rats 
with XOR hubs being larger and triplets being mostly unique between models. Taken 
together, these results suggest that interaction model is an important consideration 
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when investigating epistatic events in biological systems and that different systems and 
phenotypes may exhibit epistasis only under certain interaction models.

The high amount of overlap between epistatic loci is partly attributable to re-using 
Cartesian hub identifications for XOR epistasis and our conservative pruning and iden-
tification strategy. Despite this, the ways in which these loci interact are mostly distinct 
in rats. This can be explained by the many possible ways in which epistasis can theoreti-
cally occur, which Li and Reich illustrate in their enumeration of possible full penetrance 
models [46]. For two-way interactions, the Cartesian model of epistasis is multiplica-
tive where the slope of one MLG is zero while another is double that of an intermediate 
MLG (S2 File). As we have shown, interactions following this model are indeed statisti-
cally possible and reach significance. However, genetic systems can be complex, leading 
to an array of possible interaction mechanisms, like in XOR (S2 File). Li and Reich only 
highlight full penetrance functions in their work because of the infinite possibilities of 
partial penetrance functions. We show here that these full penetrance functions serve 
as adequate models for detecting non-linear/non-additive interactions, even in con-
tinuous phenotypes (BMI) despite the binary, discrete outcomes (commonly a disease 
phenotype) modeled by full penetrance. Further, the rat dataset is pruned initially by 
main effect while the mouse dataset is not. Main effect pruning likely biases interactions 
towards Cartesian as strong main effects somewhat contradict the non-linearly separa-
ble MLG assumptions of the full penetrance XOR model. Despite this, we are still able 
to elucidate epistasis in the rat system using the XOR model with it uncovering more 
interactions than Cartesian in both our two-way and three-way experiments. Addition-
ally, almost all epistasis in our mouse dataset, not pruned by main effects, are described 
with the XOR model. This may be evidence suggesting that XOR interactions are more 
abundant in loci that do not show strong main effects, however additional research is 
required to bolster this claim. Taken together, we provide evidence that it may not be 
possible for the Cartesian interaction model alone to describe the many types of epi-
static relationships possible among loci, even those with strong main effects. Indeed, our 
results in mice suggest that the Cartesian model may not be suitable to detect any epista-
sis in that system for BMI. While this is also likely to be true for the XOR model in other 
systems and phenotypes, our results illustrate that XOR is a viable model for epistasis 
in two systems. This statistical evidence may justify experimental work to validate that 
biological interactions following an XOR-like model can evolve and be maintained in 
natural systems. The application of other interaction models to determine the degree 
of overlap between interaction models using our methodology may also warrant fur-
ther investigation. It is likely that the XOR model, as with the Cartesian model, can only 
detect a portion of all epistatic events occurring across a genome.

Different interaction models yield biologically‑relevant enrichment in rats and mice

In rats, functional annotation of gene models 1Mb upstream and downstream of the 16 
loci unique to the Cartesian model are not enriched for any GO terms and only one 
KEGG pathway (Ribosome). However, gene models near the 25 loci unique to the XOR 
model yield enrichment results primarily associated with metabolism and catalysis. 
Of these enrichments, a KEGG pathway of primary interest is the glucagon signaling 
pathway as glucagon-like-protein-1 receptor agonists (GLP-1 RAs) are emerging as 
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important medications to lower plasma glucose and induce weight loss in Murine mod-
els and humans [77, 78]. SNPs near the genes that enriched this pathway are not impli-
cated in the associated GWAS and could present possible targets for further study with 
additional experimentation.

When we investigate enrichment in the 75 epistatic loci shared between Cartesian 
and XOR models and the 18 putative QTL from the GWAS, immunity-related pro-
cesses make up most enriched GO terms and pathways. In mice, XOR-specific GO term 
enrichments are mostly centered around immunity, with some notable metabolic excep-
tions. Since there are no Cartesian-specific epistatic loci in mice, we could not inves-
tigate Cartesian-specific enrichment. However, one of the two loci shared between 
models, chr12.7079769, is in close proximity to the ApoB gene. ApoB is an apolipopro-
tein and thus a structural component involved with the formation and synthesis of low 
density lipoproteins [79]. It has been shown that heterozygous mice for a knockout in 
ApoB are protected against diet-induced hypercholesterolemia after being fed a diet rich 
in fat and cholesterol [79]. Further, in a more recent study, disruption of ApoB leads to 
high incidences of non-alcoholic fatty liver disease [80]. Variants in this gene are likely 
linked to changes in cholesterol/lipid metabolism and BMI.

In rats, the XOR model uncovers an enrichment signal for metabolism that would 
have been missed if only the Cartesian model was applied. In contrast, in mice, strong 
metabolic signal is captured using the Cartesian model. However, numerous examples 
of epistasis and notable metabolic-related enrichments are also detected with XOR. It 
is important to note that because so many XOR-specific epistatic loci are discovered 
in mice, enrichment becomes more challenging as many gene models are considered, 
potentially weakening enrichment signals. It is difficult to extrapolate if a similar enrich-
ment of immunity across shared loci, as we observe in rats, would have occurred if more 
epistasis was detected using the Cartesian model in mice. More experiments across 
breeding designs, phenotypes, and species are needed to better understand if certain 
interaction models are associated with specific biological processes. Taken together, 
however, all of these results point to the importance of using multiple interaction mod-
els when investigating epistasis.

Although links between immunity and obesity-related phenotypes have been well-
documented [81–86], immunity-related enrichments and associations are commonly 
reported across diverse taxa and phenotypes [84, 87–90]. This is largely due to the inher-
ent complexity of gene networks underlying immune systems across animal taxa [91], 
not excluding invertebrates [87, 89, 90]. Additionally, and perhaps even more impor-
tantly, genes related to immunity are likely core to general stress responses in all forms 
of life [82, 84, 88]. Since most phenotypes of interest to biologists and clinicians center 
around extreme perturbations from homeostasis (i.e., stressful conditions), it may be 
common to see the over-representation of immunity-related GO terms in functional 
annotations across biology and medicine. Our results may suggest that, in rats, shared 
epistatic loci between interaction models capture the dynamic and feedback-regulated 
nature of immunity observed in biological systems. Yet, in a closely-related species (M. 
musculus), XOR-specific epistatic loci uncover a mostly immunity-related signal, again 
with notable metabolic exceptions. An important consideration is that the mice and rats 
used in the associated experiments, despite being closely-related biological systems, 
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were reared in different environments, were exposed to unique stressors, ate different 
diets, and came from different pedigree structures. Although this can serve as a limita-
tion, one plausible explanation for the difference in enrichment profiles is the role of gut 
microbiota in the association between immunity and obesity. There is strong evidence in 
the literature of the link between the gut microbiome and immunity in affecting obesity-
related phenotypes [92–95]. Furthermore, there have been notable differences identified 
between rats and mice concerning the role of the microbiome in immunity and obesity 
[96, 97]. It may be possible that our distinct enrichment profiles between systems may 
be highlighting species-level differences in how obesity is related to immunity. Alter-
natively, we could also be capturing signals associated with differences between meth-
odologies and/or environments. Additional experiments are required to elucidate the 
differences in how epistatic interactions underlie obesity in these species.

In rats, the XOR model identifies epistatic loci enriched for more biologically relevant 
functions and processes (metabolism and BMI). This may be surprising as full penetrance 
XOR logic may not be biologically plausible due to genetic constraints. However, we have 
shown that a full penetrance XOR model is adequate to detect statistical epistasis in two 
systems. A possible scenario in which XOR-like epistasis may occur is during gene regula-
tion. An illustrative example could be when the presence of one activator (A), encoded by 
gene one, while in the presence of another activator (B), encoded by gene two, results in 
the transcription of gene three. However, in the presence of both activators, gene three is 
not expressed. This could be due to activators A and B binding to one another when they 
co-occur, inhibiting their DNA binding motifs, or because both activators collectively block 
other transcription enzymes from binding [48]. Mechanistic examples of XOR interactions 
in transcriptional regulation such as this may be plausible. However, examples of XOR logic 
in other biological processes may seem less likely. The XOR model assumes a phenotypic 
score in one extreme when only one locus is in a heterozygous state but the other extreme 
if both loci are heterozygous (S2 File). In terms of BMI, where higher phenotypic scores 
are deleterious in a static environment where food is abundant, this would translate to het-
erozygote disadvantages in one locus when the other locus is in a homozygous state. How-
ever, if both loci are in a heterozygous state, then the MLG is associated with lower BMI, 
leading to a heterozygote advantage. Heterotic relationships are commonly described in 
natural systems, primarily in crop plants [98] but also in humans as observed in the genetic 
mechanisms underlying sickle-cell anemia and malaria resistance [99]. Yet, the variable 
phenotypic diversity of sickle cell morphology and/or malaria resistance violates Mendelian 
expectations [11]. It is possible that one explanation for these abnormalities are epistatic 
interactions between loci, including relationships described by interaction models other 
than Cartesian. Exploring these phenotypes with multiple interaction models may assist in 
explaining deviations from Mendelian expectations in malaria and other phenotypes.

Conclusions
Regardless of the underlying mechanisms, our results from rats illustrate that many epi-
static loci are located near genes that are enriched for metabolic functions and inter-
act in a manner only detectable by the XOR model. In our mouse samples, we illustrate 
that most epistatic events underlying BMI only reach significance using the XOR model. 
However, it is important to note that considerable epistasis is uncovered in rats using the 
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Cartesian model that has an epistatic landscape distinct from that of XOR’s and impor-
tant, albeit limited, biologically-relevant loci are detected using the Cartesian model in 
mice. Thus, our results suggest that epistatic loci are detected and interact in different 
ways depending on the interaction model used. The latter suggests that distinct interac-
tion mechanisms may exist for different biological networks involving shared loci.

Our study has been illustrative in showing that epistatic interactions in biological sys-
tems are likely far more complex and ubiquitous than previously thought. This neces-
sitates the consideration of different models of interaction for investigating epistasis. 
The algorithms we have given provide tools for collecting statistical evidence for epista-
sis using different interaction models. The matrix-based permutation testing algorithm 
we have presented can give further statistical evidence and can also be simplified and 
applied in GWAS or eQTL studies.

In the future, we suggest applying our methodology to diverse taxa and phenotypes to 
investigate the complexity of epistasis and warrant the development of validation studies 
to describe biological interactions. We hope our methodology helps to further elucidate 
complex traits, including many human diseases, by uncovering genetic relationships 
that have thus far been elusive to standard analyses. Extending the algorithms given for 
logistic regression for case/control studies and generalized linear models would be very 
useful and important especially for handling population structure directly. Li and Reich 
presented many different models for epistasis and corresponding penetrance functions 
[46]. A natural extension to this work would be to use additional penetrance functions 
for modeling interactions. This can already be done with the algorithms given with the 
only change being how the interaction terms are encoded according to the models. The 
work for this software extension is already under development.
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