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Abstract 

Squiggle data is the numerical output of DNA and RNA sequencing by the Nanopore 
next generation sequencing platform. Nanopore sequencing offers expanded appli‑
cations compared to previous sequencing techniques but produces a large amount 
of data in the form of current measurements over time. The analysis of these segments 
of current measurements require more complex and computationally intensive algo‑
rithms than previous sequencing technologies. The purpose of this study is to inves‑
tigate in principle the potential of using quantum computers to speed up Nanopore 
data analysis. Quantum circuits are designed to extract major features of squiggle 
current measurements. The circuits are analyzed theoretically in terms of size and per‑
formance. Practical experiments on IBM QX show the limitations of the state of the art 
quantum computer to tackle real life squiggle data problems. Nevertheless, pre‑
processing of the squiggle data using the inverse wavelet transform, as experimented 
and analyzed in this paper as well, reduces the dimensionality of the problem in order 
to fit a reasonable size quantum computer in the hopefully near future.

Introduction
Novel genomics technologies such as next generation sequencing are revolutionizing 
the way we generate and use biological data for precision medicine, precision agricul-
ture and other applications. Over the last few years the repertoire of genomic technolo-
gies has encompassed novel sequencing platforms, such as the PromethION platform 
by Oxford Nanopore which enables direct DNA and RNA sequencing for base call-
ing of modified nucleotides. Establishment of the appropriate analysis algorithms and 
approaches for this data would help to fully realize the potential of this technology.

Squiggle data is the output of nucleotide sequencing by the Nanopore sequencers. 
Sequencing of just one DNA or RNA sample can produce data in the range of hun-
dreds of megabytes to terabytes. High throughput sequencers such as the Nanopore 
PromethION perform parallel sequencing of up to 48 samples, resulting in an immense 
amount of data that requires the development of computationally intensive algorithms 
for the respective analysis. This amount of data has generated a bottleneck regarding the 
use of novel genomics technologies at a large scale.

The purpose of this study is to investigate the theoretical advantages quantum meth-
ods provide when applied to the analysis of squiggle data. By necessity, the paper also 
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explores the limitations of today’s quantum computers as exemplified by experiments on 
the IBM QX platform.

The quantum algorithms described in this paper are designed to extract features of the 
squiggle data. The algorithms exploit quantum parallelism in that arithmetic operations 
are executed on quantum registers in superposition, or by applying quantum mechanical 
interference [4].

Squiggles
Nanopore sequencing is the third generation sequencing technique (TGS) and thus is 
one of the most recent techniques in practice today [3]. Nanopore sequencing exploits 
the differences in electrical charge of polynucleotides with different sequences and takes 
place within a chip that includes a membrane populated with small orifices known as 
nanopores [5]. A nucleic acids polymer passes from one chamber of the sequencing 
chip, the cis chamber, to the second chamber, the trans chamber, through these pores. 
The strand gets drawn electrophoretically through the pore such that 5 to 12 nucleotides 
[3] are within the pore at any moment. The presence of nucleotides in the pore affects 
the current across the membrane between the two chambers and thus gives a reading 
that depends on the composition of the nucleotides that fill the nanopore at the moment 
of the reading. Through this process, a sequence of picoampere scale current readings 
are produced while the polynucleotide is passing through the pore providing the numer-
ical component of the squiggle data. Decoding the squiggle data through a process called 
basecalling will reconstitute the sequence of nucleotide bases of the original molecule 
analyzed by the sequencer. The third generation sequencing technique targets a single 
DNA or RNA molecules for sequencing and owes its success to high speed sequencing 
of long strands. The maximum length of strands sequenced with TGS varies from 10K 
bases to millions of bases [8].

The Nanopore squiggle data itself are current readings recorded as integers with 
range of approximately [300,700], though based on the type of sequencing this range 
may differ. To represent 400 different values, we need a binary register of nine bits, as 
29 = 548 > 400 . As quantum computer memories to date are a mere 5 qubits and up to 
15 qubits, computations on 9 bit registers are already unattainable. We envision that a 
reduction on the value-space will be crucial for quantum applications in any reasonable 
foreseeable future. Therefore, we investigated ways to reduce the data values with a pre-
processing step, while still preserving the features of the squiggle data.

Thus, to reduce the bit-space for processing with near-future quantum comput-
ing technology, an inverse discrete wavelet transform was applied to the signal data. 
Unlike the Fourier transform which reduces the time dimension of the data, the 
inverse wavelet transform preserves the time dimension and is a reversible opera-
tion. As found by Tapinos et al. [14], this transformation applied to Nanopore squig-
gle data is capable of extracting major features from the data while suppressing noise 
and analytical performance is preserved. We applied the inverse wavelet transform 
on direct RNA Nanopore sequencing data of mouse hippocampus brain tissue, using 
the SQK_RNA002 sequencing kit. The array of current readings has over 40,  000 
entries, as shown in Fig. 1, top-left. Implementations were done in R [11], using the 
waveslim [15] library. In order to see the features, we have worked on a sub-array 
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from positions 8,000 to 10,000, as shown in the figure, top-right. This transforma-
tion reduced most values to the range of [-10,10] with large jumps in value in some 
locations, see Fig. 1, bottom-left. Notice that in this graph, the sub-array points on 
the x-axis are now from 2,000 to 2,500. By keeping only the values from [-25,25] and 
recording anything outside of that as a large value, we have reduced the bit-space 
of the current readings. This way, we have reduced the range values to 50 and the 
register size is therefore s = 6 , as 26 = 64 > 50 . The analysis of the size of the quan-
tum computer for this bit space can be found in the Discussion and analysis section. 
Additionally, the variations within the graph can be further enhanced by repeating 
every value in the original array. This way, the length of the original current array is 
doubled. In this case, feature variations become stronger, as it can be seen in Fig. 1, 
bottom-right.

Another reduction operation being attempted is simply rounding the current val-
ues to the nearest 5 and using a sliding window of input to normalize the values to 
a lower bit-space. The sliding window can grow until the values exceed the desired 
bit-space. This has the advantage of keeping the current values near their original 
values and applying machine learning techniques similar to previous works in this 
area. We have not further explored this direction so far.

Fig. 1 Left‑top: Raw signal data from the entire sequence of over 40,000 current measurements. Each index 
position in x‑axis corresponds to one measurement in the squiggle. Right‑top: Sub‑interval of the raw signal 
data, from position 8000 to 10000. Left‑bottom: The current measurements have been transformed by an 
n.levels = 2 inverse wavelet transformation on positions from 2000 to 2500. Right‑bottom: Before applying 
the inverse wavelet transform, each data point has been recorded twice. The positions are from 4000 to 5000 
which directly correlates to the positions in the bottom‑left graph
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Feature definition
The electrical current value of a squiggle measurement is considered to be influenced 
by approximately 5 bases within the nanopore [12]. Thus, based on one current value 
only, the type of the base cannot be determined. The sequence of current measure-
ments have to be analyzed together to extract features that are representative for a 
base or a short sequence of bases. Thus, we looked at features of squiggle data that 
show modifications in the sequence of current values.

The features of squiggle data that we consider significant for interpretation are 

1. values that are close to a constant, showing on the graph as areas with little vertical 
variation, and

2. values that increase or decrease sharply, showing on the graph as a close to vertical 
line. These are values that have a large gradient, positive or negative.

3. values that have a peak. These are values that have a large positive gradient on the left 
and a large (in absolute value) negative gradient on the right.

4. values that have a valley. These are values that have a large (in absolute value) nega-
tive gradient on the left and a large positive gradient on the right.

Large changes in signal value may indicate a base transition state while inter-base 
signal variation in the form of peaks, valleys and stalls provide the signal variability 
required to differentiate base labels. Figure 2 is an excerpt of a graph of squiggle data 
that shows the features as they appear in reality. The squiggle data was generated by 
a PromethION sequencer performing direct RNA sequencing with base labelling of 
signal segments performed by Guppy 6.4.2.

Quantum bits and operations
The advantage of using quantum operations in the detection of features stems from 
the added possibilities of quantum states versus classical states together with the spe-
cific quantum gates versus classical computations on bits. In particular, properties 

Fig. 2 Squiggle features to be detected
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such as superposition and quantum parallelism can capture multiple operations into 
one.

Qubits and quantum gates

The primary quantum feature that is used in our algorithm is superposition, the capa-
bility of a collection of qubits to hold multiple superimposed states at the same time. 
In order to connect the particular nonce value with the value of the Hash, we also 
need the qubit system to be entangled.

Qubits

A general qubit [10] is described in Dirac’s notation as a superposition of the base 
vector |0� and |1�.

where the coefficients α,β , the amplitudes, are complex numbers and the vector is of 
unitary norm, i.e. |α|2 + |β|2 = 1 . For an ensemble of qubits, the formula can be 
extended naturally. For two qubits, we have

with the unitary condition 
√

|α|2 + |β|2 + |γ |2 + |δ|2 = 1 where ⊗ is the tensor product 
operator.

Generalizing the above, we get that a register, an ensemble of n qubits can hold up 
to N = 2n different values, with various amplitudes. Note that some of the amplitudes 
may be zero, and the corresponding states can be omitted from the description. In the 
case when all the coefficients except a single one are zero, the quantum register has a 
unique value stored in it and is equivalent to a classical register. At the other end of 
the spectrum, when all coefficients are equal, the quantum register is said to be in a 
balanced superposition of all possible states. For a register of n qubits, the balanced 
superposition is

Note that we have omitted the ⊗ symbol in the equation above.

Measurements

Superposition provides a natural way to apply a function to various inputs (compo-
nents) in parallel. There is one limitation: we cannot see the work in action. The draw-
back comes from not being able to extract all the information in a quantum register. 
The complex coefficients of the components of the superposition represent the prob-
ability of each component. For example, if the coefficient of a component is α , then 
the probability of observing that component is |α|2.

When a quantum register is measured, the result is a classical register value and is 
the value of only one component. The superposition is said to collapse to the state 

q = α|0� + β|1�,

(1)qAB = α|00� + β|01� + γ |10� + δ|11�

(2)q1 . . . qn =
1

√
N
(|00...0� + |00...01� + ...+ |11...1�).
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represented by the value. The superposition can collapse to any one of its components, 
and it obeys the probabilities given by its coefficients. Thus a component with a large 
coefficient is more likely to be observed than a component with a small coefficient. In 
the case of a balanced superposition, all the components are equally likely to be observed 
as a result of a measurement.

It is also impossible to make a copy of a qubit in an unknown state. This property is 
called the nonclonability of qubits and follows from the linearity of the operator.

Quantum gates

All regular binary gates, such as NOT, OR, AND, XOR, and similar other gates, exist 
readily for quantum registers as well. Also, swap operations on the bits left, and right 
shift operations on registers can be implemented on quantum registers as well.

There are additional gates needed to specify our algorithm in the next section; they are 
quantum specific. These are the Hadamard gate and the controlled-NOT (CNOT) gate. The 
NOT gate can also have two controls in which case it is a CCNOT gate. These gates and 
their generalizations are used to implement Grover’s algorithm for unstructured search, 
presented in the next subsection. For a general description of quantum gates see [10].

To specify our algorithm, we need the Hadamard gate (H) which is applied on a base state 
|0� or |1� to obtain a balanced superposition. When the Hadamard gate is applied to a bal-
anced superposition directly, the state returns to a base state. The Hadamard gate is its own 
inverse, and therefore, applied twice to a qubit, restores its original state. If a qubit is in a 
simple state qzero = |0� , then the Hadamard gate transforms qzero into a balanced superposi-
tion: H(qzero) = H(|0�) = 1√

2
(|0� + |1�), and H( 1√

2
(|0� + |1�)) = |0� = qzero . For the state 

qone = |1� , a similar transformations exist: H(qone) = H(|1�) = 1√
2
(|0� − |1�) , with the 

inverse transformation H( 1√
2
(|0� − |1�)) = |1� = qone.

The CNOT and the CCNOT gates have two and three inputs respectively and the 
same number of outputs. There is one data input to which the not applies, the other (one 
or two) inputs are the control qubits. When all control qubits are equal to one, the value 
on the data input is flipped; otherwise, the data input is left unchanged.

Quantum gates can have an arbitrary number of inputs. A requirement on quantum 
gates is that the number of inputs is equal to the number of outputs. This is because 
quantum gates are reversible. They are linear transformations and can be used both from 
inputs towards outputs as well as from outputs towards inputs. Quantum gates (linear 
transformations) are information preserving.

Grover’s algorithm

Grover’s algorithm [6] performs an unstructured search. It was initially developed by 
Lov Grover to find a specific record, if one exists, in a database of unordered records. 
Grover’s algorithm has found numerous applications, as it is formulated for a general 
data format.

Suppose there is a set of data items. This set can be an arbitrary data structure of unor-
dered items or records. The algorithm searches for a record that meets specific criteria. 
The criteria are formulated as a boolean function, taking in the item and computing a 
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true or false value. We are interested in finding one record on which the boolean func-
tion is true.

The algorithm starts with a balanced superposition of all states. This allows us to 
operate on all the records, in parallel. Then, iteratively, the coefficient (amplitude) that 
corresponds to solutions states is increased to the disadvantage of the non-solution 
components in the superposition. After several iterations, the probability of measuring a 
solution is considerably higher than the probability to measure a non-solution. The fail-
ure rate can be as low as 2−n , where n, in this case, is the size of the solution space. For a 
detailed description of Grover’s algorithm together with a modest size implementation 
on IBM Quantum QX, see [9].

Quantum circuits to compute squiggle properties
We hereby show theoretical circuits for the squiggle features defined in the previous 
section. All these circuits are realizable in theory, though they do need larger quantum 
memories than available at present.

There are a few constants that apply to all circuits and properties that we consider.
The current values are always within the same range. As discussed before, the range 

can be taken from raw data or it can be pre-processed. For the analysis of our algo-
rithms, we will use the generic parameter s to refer to the size of the input squiggle elec-
trical current value.

In all property calculations, we consider a number of consecutive values that define 
the feature. the choice on the number of values to be considered may lie with the experi-
menter. We will denote this number with n.

We are ready to see the quantum circuits themselves.

Quantum circuit for near to constant values

The feature to be determined here is described by a data point P0 that is very close in 
value to its neighbors. The neighbors, P1,P2, ...,Pn−1 may be predecessors, successors, or 
half before and half after the main point P. Thus, the set S of neighbors are within a small 
range of P0 if the pairwise difference is a small positive or a small negative. This means 
that |P0 − Pi| < ǫ for all i = 1, 2, ..., n− 1 . The parameter ǫ depends on the finesse of the 
definition of near to constant data.

The idea of the circuit in Fig. 3, is to have two inputs: first, the value P0 to be compared 
to, and second, the set S of the neighboring values in superposition. Additionally, the cir-
cuit has to input two registers of |0� to hold partial and final results, and the extra input 
to Grover’s circuit. The additional inputs also ensure the circuit is reversible.

The circuit has three stages: the first stage computes the subtraction of two qubit reg-
isters, the second stage computes the absolute value of a qubit register, and the last stage 
is the application of Grover’s algorithm. After stage two, before Grover, all differences 
are computed in absolute value and they coexist in a superposition of n− 1 components. 
A positive result means that all components have a number of leading zeroes, defined by 
ǫ . Thus, Grover’s algorithm has to enhance the probability to read the non-zero compo-
nent, if it exists. Thus, if the measurement at the end has only leading zeroes, then then 
sequence of current values is near-to constant. Otherwise, the test failed.
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To analyze this circuit, we will use the breadth and depth measurements. Depth is the 
size of the qubit registers used and depth is the number of gates along the longest line 
of the circuit [2]. The breadth of the Near-To-Constant circuit is 4 ∗ n+ 1 = O(n) . The 
depth of the circuit is given by the depth of the three stages. We ignore the preparation 
of the superposition input. The first two stages can be implemented in a depth of circuit 
linear in the size of the input O(n). The depth of Grover’s algorithm [16] depends on the 
number of options in the search space, which is n− 1 in this case. Thus, the depth of 
Grover’s algorithm is O(

√

log (n− 1)) = O(log n) . And the overall depth is the addition 
of the two, namely O(n).

Quantum circuit for sharp increase or decrease of values

The next quantum circuit we developed is targeted to recognize a steady, sharp increase 
or decrease in the values. As the decrease property is the direct opposite of the increase 
property, this section describes the circuit for the increase of value in detail and then 
mentions briefly the differences in the case of decreasing values.

A few constant parameters need to be decided upon at the start. The number of con-
secutive values that determine a sharp increase is one such parameter. Next, it needs to 
be clear what a sharp increase means after all, namely the difference (or tangent) that is 
considered significant. Denote the number of consecutive values by n, this resembles the 
meaning in the previous circuit. The lowest significant increase is denoted by incr, which 
is a threshold value. Figure 4 shows these parameters as they refer to measured squiggle 
values. Also, we will consider that a current value is stored in a register of size s.

Consider an array of n consecutive current values for consecutive points valuei , where 
0 ≤ i ≤ n− 1 . Thus, in order to detect a sharp increase, we need to compute all par-
tial differences valuei+1 − valuei , for 0 ≤ i ≤ n− 2 , and compare the difference with the 
threshold value incr. If all valuei+1 − valuei ≥ incr then this array is considered to be 
a sharp increase. The advantage of using the parallel computer is that we can compute 
n− 1 all differences in superposition and then compare the resulting superposition dif-
ference to the threshold incr.

The quantum circuit that computes the differences and compares to the threshold is 
shown in Fig. 5. The structure of the circuit is given by three main stages. The first stage 

Fig. 3 Circuit to determine whether a set of consecutive values are near to constant
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computes the pairwise differences. The second stage compares these differences with 
the threshold value incr. The last stage is the application of Grover’s algorithm to check 
whether all comparisons were successful.

The data input of the circuit consists of a 2s input register. It holds each pair

Fig. 4 Squiggle values with a sharp increase. For this example, the number of consecutive values to be 
considered for a sharp increase is n = 4 . The value of the increase considered significant, incr, is also shown 
on the figure

Fig. 5 The circuit that detects a sharp increase
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in superposition with all other pairs. Thus, for n consecutive values, we have a superpo-
sition of n− 1 terms. This register is described by the state 

∑n−1
i=0 |valuei+1�|valuei� . 

Additionally, the circuit has inputs to hold the results. The circuits need three inputs for 
the results, reflecting the three stages. First, the circuit needs a register of size s to hold 
the result of the subtraction. This is set to zero. Second, the comparison circuit needs the 
threshold value, which can also be considered to be a register of size s. Grover’s algo-
rithm needs one qubit input to give the result. This qubit is set as always to a balanced 
superposition of zero and one, namely 1√

2
(|0� − |1�) = HNot|0� , obtained after applying 

a NOT and a Hadamard gate on the base state |0� . Formally, the state of the input register 
is

The first stage of the circuit computes the subtraction of all pairs (valuei+1, valuei) . 
The subtraction is happening on a 2s qubit register in superposition. The depth of the 
circuit is O(s) which is equivalent to the classical depth of such a circuit. The advan-
tage of the quantum approach is that all subtractions are happening in parallel. Thus, 
for the classical case, the s − 1 subtractions are executed in O(n× s) , whereas the 
quantum version is executed in O(s) times only. A practical implementation of a sub-
traction on one qubit only will be shown in the One qubit subtraction circuit section 
with the gate analysis and accuracy measurement. We may consider that the error of 
one qubit subtraction accumulates over the length of the register by a factor of 2s.

The second stage of the circuit tests whether the result of all subtractions is sharp 
enough. By sharp enough, we mean that the result of the subtraction is larger than 
the expected increase. This is another subtraction circuit, where the value incr is sub-
tracted from all previous results. If the increase is not sharp enough, this result will 
be negative. Or, if some increases in the superposition are not sharp enough then the 
result will have some negative components. This time the subtraction is on registers 
of size s. Thus, the depth of the circuit is again O(s).

The third stage of the circuit, which is Grover’s algorithm, determines if there are 
subtractions with a negative result. This translates into testing whether the result-
ing superposition has a solid leading one, which is determined when all terms of the 
superposition have a leading one. Thus, Grover’s algorithm increases the probability 
of one for this one qubit. Note that in this case Grover’s algorithm may be applied 
on one qubit only. Nevertheless, if s − 1 , the number of terms in the superposition 
is large, and there is only one negative number in the superposition, then the initial 
probability of that one is very small and Grover’s algorithm is indeed necessary.

Overall, the circuit to check for a sharp increase has a breadth of O(s) and a depth 
of O(s), which shows a volume of O(n2) . Naturally, for a sharp decrease the circuit 
needs to reverse the sign of the difference to |incr� , and, in the case of success, expect 
positive results only.

(valuei+1, valuei)

S0 =
n−1
∑

i=0

|valuei+1�|valuei� ⊗ |00...0� ⊗
1
√
2
(|0� − |1�)
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It should be noted that the circuit above detects steady increases in values. The nature 
of the circuit is that it checks that the threshold is always met by any two consecutive 
values. Therefore, if only one pair of values do not meet the threshold, the entire increase 
is rejected. If the rejection rate is too high, adjustments have to be made by the value of 
the threshold itself incr, or by the value of n.

Quantum circuit for peak values and valley values

For the sake of completion, circuits detecting peak and valley values are discussed here, 
though the circuit is simple. In both cases, we need two circuits described in the previ-
ous section, to detect both a sharp increase as well as a sharp decrease. The two circuits 
need to take into consideration half of the qubits n/2 for the increase and then again 
n/2 qubits for the decrease. If the circuits detect a sharp increase (decrease) before the 
intended peak (valley) value and then a shard decrease (increase) after the value then the 
test is successful and the peak (valley) has been found.

We will now see that practical experiments can be conducted on tiny examples only 
and reveal that quantum computers are yet neither large enough nor reliable enough to 
be useful in such computations.

Quantum circuit experiments and reliability
This section is dedicated to actual implementations of the theoretical circuits presented 
in the previous section. The implementations are done on the quantum platform offered 
by IBM QX [7]. The experiments were run on a Falcon r4 processor, and most of the 
experiments had available 5 input qubits and a quantum volume of 16. All experiments 
have a standard number of 1024 runs.

As the size of the input, the breadth of the circuit, and the volume of the circuit need 
to be small, the circuits and experiments presented here give a proof of concept, but 
cannot be applied to large numbers. In fact all operations, such as subtraction, absolute 
value, etc. are executed on one to three qubit data input only. Additional input qubits are 
necessary for computations and partial results. The analysis of the results show that even 
in these small situations, the quantum computer does not offer enough reliability for a 
usable result.

One qubit subtraction circuit

The subtraction of two quantum registers is used in all algorithms described in the pre-
vious section. Given the size of IBM Qx, the circuits described below are operating one 
qubit subtractions only. The circuits are meant to be the building block of a subtraction 
of registers of arbitrary size, in which case they are repeated in series for all qubits in the 
input registers. Recall, that a one bit subtraction, see Table 1 needs three inputs: 

1. q0 is the carry qubit from the previous bit subtraction.
2. q1 is the minuend.
3. q2 is the subtractor qubit.
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The subtraction calculates the result and the new carry. We designed two circuits. The 
first circuit computes the one qubit result, that is the actual difference, shown as the 
fourth column in the table. The second circuit computes the new carry value to be sent 
to the next subtraction circuit unit, shown as the fifth column in the table.

Each of the qubits in the circuits can be in superposition. If, let us say, the minuend q1 
is a superposition of two states and q2 is a superposition of two states, then the results 
will be a superposition of the differences of all pairs of components, namely fours differ-
ences. In the same way, q2 , the carry qubit, is a superposition for all possible subtraction 
carry values obtainable from the operations on less significant digits. For example, in the 
algorithm of Quantum circuit for near to constant values section, the minuend is a qubit 
that holds a classical bit value, as this value is unique to the point for which we study the 
property, whereas, the subtractor is a superposition of the values of the neighbors. In the 
algorithm presented in Fig. 8 the opposite is true, namely the subtractor is in superposi-
tion and the minuend is a simple state. The fact that the circuit works on superpositions 
is a powerful tool, as all subtractions are computed using quantum parallelism.

The result of the subtraction

Figure  7 shows the circuit that computes the result of the subtraction. The first block 
shows the input. In the particular case of the figure, the input qubits are set to q0 = 1 , 
q1 = 1 , and q2 = 0 . The second block of the circuit sets the result according to the 
expected values as defined in Table 1. The third and last block performs a measurement 
of the qubits. The only qubit of interest at this stage is qubit q3 . This circuit gives the cor-
rect result theoretically on all inputs. This has been tested both by following the logic as 
well as in the experiments on IBM Qx.

Nevertheless, the actual runs of the circuit give very different results. For example, 
on the input shown in Fig.  1, there are measured results for all possible outcomes, 
see Fig. 6. The histogram shows a clear peak for the theoretical expected result |0011� , 
but the occurrence of 50% of this result is far from acceptable. Note that the qubit of 
interest is q3 which in this case is 0. All other qubits may have been destroyed from 
their original values. If we add all probabilities where q3 = 0 the success rate is better, 
namely 72.754 %.

The circuit has been run on all possible basic inputs, namely on eight inputs accord-
ing to Table 1. The results for all this inputs are collected in Table 2. For each input, the 

Table 1 This table shows the expected bit values for a simple one bit subtraction

One Bit Subtraction and Carry

Carry Q1 Q2 Result New Carry

0 0 0 0 0

0 0 1 1 1

0 1 0 1 0

0 1 1 0 0

1 0 0 1 1

1 0 1 0 1

1 1 0 0 0

1 1 1 1 1
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probability of success is shown both as following the theoretical result only, this is col-
umn 6, and then the probability of success when only correctness of the result q3 is taken 
into consideration. We can see that the overall rate of success ranges from 59.083 % to 
77.247 %. Consider that errors propagate along the register of size s, showing the need 
for improving the accuracy of the quantum computer.

The new carry of a subtraction

In the second circuit, Fig. 7, the output of the circuit, q3 is the new carry value to be fed 
to the next significant computation. It has the same three stages as the circuit in the pre-
vious section. The second stage, the one that actually computes the new carry. is differ-
ent in content. It follows the logic of the last column in Table 1.

This circuit, theoretically, always gives the correct answer. In practical runs, the 
quantum computer again shows a steady percentage of errors. The circuit has been 
run on all possible inputs and a run on each particular input consists of 1024 actual 

Table 2 This table shows the expected bit values for a simple one bit subtraction. The circuit 
computes the difference

Measurements for the Result of Difference Circuit

Q0 - 
Previous 
Carry

Q1 - 
Minuend

Q2 - 
Subtrahend

Q3 - 
Difference

Expected 
Measurement

% of the 
Expected 
Measurement

% of Correct Q3

0 0 0 0 |0100� 61.426 75.293

0 0 1 1 |1000� 66.016 77.247

0 1 0 1 1010|� 35.059 72.267

0 1 1 0 |0110� 42.871 65.918

1 0 0 1 |1101� 48.047 59.083

1 0 1 0 |0001� 58.105 70.703

1 1 0 0 |0011� 50.586 72.754

1 1 1 1 |1111� 50.098 69.728

Fig. 7 This is part of the circuit that computes the subtraction of two qubits and includes a carry from the 
previous operation. The last qubit is the new carry
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runs of the quantum circuit. Table  3 shows the percentages for correct measured 
outcomes. the sixth column shows the percentage of measurement of the theoreti-
cal expected value. We see that the lowest value is for an input of q0 = 0 , q1 = 1 , and 
q2 = 0 , that is 39 %. The last column shows all the measurements where q3 yields the 
correct values, even if the input qubits were not measured at the expected value. 
Here, the percentages are between 57 % to 70 %. It shows that in all cases the correct 
output is more abundant.

Absolute value circuit

Negative numbers are usually recorded in the two’s complement format. Therefore, com-
puting the absolute value of a number means simply to compute the two’s complement 
of negative values, while leaving positive values unchanged. The description of the two’s 
complement is standard and can be found in [13]. Our experiment works on a three 
qubit register and computes the absolute value according to Table 4. The third column 
shows the absolute value of the three bit number shown in the first column.

The quantum circuit that computes the absolute value of a quantum register of 4 
qubits is shown in Fig. 8. The input register is fed into the qubits q2q1q0 , where q0 is 
the least significant digit and q1 is the most significant digit, while q2 represents the 

Table 3 This table shows the expected bit values for a simple one bit subtraction

Measurements for the Carry Circuit

Q0 - 
Previous 
Carry

Q1 - 
Minuend

Q2 - 
Subtrahend

Q3 - New 
Carry

Expected 
Measurement

% of Expected 
Measurement

% of Correct Q3

0 0 0 0 |0010� 45.605 61.426

0 0 1 1 |1110� 53.125 69.921

0 1 0 0 |0000� 39.453 70.312

0 1 1 0 |0100� 42.676 57.617

1 0 0 1 |1001� 54.492 70.899

1 0 1 1 |1101� 43.555 67.385

1 1 0 0 |0011� 39.844 60.352

1 1 1 1 |1111� 40.625 64.453

Table 4 This table shows absolute value computation of a three bit register

Absolute Value of a Three Bit Register

Q2-Q1-Q0 Q3 - Helper qubit New Register % of Correct 
Measurement

000 0 → 0 000 81.835

001 0 → 0 001 70.804

010 0 → 0 010 70.023

011 0 → 0 011 68.261

100 0 → 0 000 83.691

101 0 → 1 011 67.480

110 0 → 0 010 70.019

111 0 → 1 001 71.679
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sign. Qubit q3 is used as decision maker, it shows whether qubit q1 of the input regis-
ter needs to be flipped or not.

The circuit has four stages and each stage performs a separate operation. The first 
stage represents the setting of the input. In Fig. 8 the particular value of the input is 
101. In the second stage the decision making qubit q3 is set. In the third stage, qubit q1 
gets flipped if necessary. Note that in the computation of the complement of two, the 
least significant bit is never flipped. Finally, in stage 4, the sign is adjusted to be always 
positive in the output and then the qubits are measured.

This circuit has also been run on all possible input values, with 1024 times runs for 
each input. The results are shown in Table 4. The percentages vary between 67% to 
83%. This result falls within an approximate similar range to the previous two circuits.

We are ready to evaluate the results for all circuits and to draw conclusions about 
their applicability.

Discussion and analysis
We have experimented with three circuit implementations: computing the difference, 
computing the carry of a difference and computing the absolute value. From the fig-
ures given for these circuits, we see that the breadth of all these circuits is 4 qubits. The 
depth of the circuits vary from 4 gates, in Fig. 8 to 7 gates, in Figs. 7 and 9. Note that 
some gates are controlled NOT gates: simple controlled with one control qubit CNOT, 
or double controlled with two control qubits CCNOT. When the circuits are run on the 
quantum computer they are first transpiled (translated) into the physical gates that the 
computer can perform. CCNOT gates do not exist directly in the quantum hardware 
and are implemented by simple controlled gates. As an example, we show the transpiled 
circuit for the absolute value circuit, see Fig. 10. The transpiled circuit has a depth of 40. 
Table 5 shows all the aggregated results for the three circuits.

Fig. 8 Compute the absolute value of a four qubit register
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Denote the worst accuracy with w. The overall minimum in accuracy in the table 
is w = 57% = 0.57 and the worst error rate is e = 100%− 57% = 43% = 0.43 . We 
will consider this as the worst case for further analysis. The worst accuracy has been 
measured for the difference on one qubit only. For a register of size s, the one qubit 
circuits are serialised and the error accumulates. The accuracy rate for an s qubit reg-
ister becomes ws . The value of s is given by the dimensionality of the squiggle values. 
The raw squiggle data values, as represented in Fig. 2, vary between 200 to 600 mV 
with an effective step size of 1 mV. This gives a range of 400 values. Thus to repre-
sent 400 values, we need the register of size s to be able to hold 400 different values: 
2s = 400 and then s ≈ 9 . Thus, the accuracy at the end of a subtraction with carry 
computation is approximately ws = 0.579 = 6.35 ∗ 10−3 . This is way below anything 
usable. We can conclude that in order for this method to work, an error correction 
method needs to be used.

We will show methods to increase the accuracy to an arbitrary value, by using 

Fig. 9 This is part of the circuit that computes the subtraction of two qubits and includes a carry from the 
previous operation. The last qubit is the result of the subtraction

Fig. 10 Compute the absolute value of a four qubit register

Table 5 Aggregated reliability data for the practical circuits

Absolute Value of a Three Bit Register

Name of the Circuit Worst Accuraacy Best Accuracy Breadth Depth of the 
Initial Circuit

Depth of the 
Transpiled 
Circuit

Difference Result 59 % 77 % 4 7 40

Difference Carry 57 % 70 % 4 7 40

Absolute Value 67 % 81 % 4 4 25
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1. Error correcting techniques
2. Reducing the dimensionality of the squiggle data.

Suppose that this error rate has to be improved to a very small number, for example 
ǫ = 0.01 . This can be done by using more qubits to encode one single qubit value and 
then use an error correction code, such as he Hadamard code [1].

We consider that the alphabet has only two options: zero and one. Therefore, a Had-
amard encoding is not justified. We can simply assign n qubits to represent one qubit 
and let the majority measurement decide on the value of the qubit. In this case, n/2− 1 
errors are allowed to get the correct answer. The error rate can be calculated by 

error =
(

n
0

)

en +
(

n
1

)

en−1w + ...

(

n
n
4

)

en−
n
4w

n
2 < ǫ For example, for n = 16 , we can 

calculate error = 0.37 . This is a small improvement from 0.43. Thus, we can conclude 
that the quantum computers to date need to improve their accuracy internally to be use-
ful for this type of circuits.

The size of a quantum computer that can deal with the regular squiggle data with a data 
space of 400 integer values can be evaluated in the following way. The register size has 
to be s = 9 and the circuits presented for one qubits linearly add up. Thus, the breadth 
of a circuit for regular squiggle values is derived from Table  5 breadth = 4 ∗ s = 36 , 
the depth of the circuit needs to be depth = 40 ∗ s = 360 and the volume needs to be 
volume = 160 ∗ s = 1140 To reduce the necessary size of the quantum computer, the 
second approach is to work on minimizing the squiggle data dimensionality. We have 
seen in Squiggles section that the data space can be reduced from 400 integer values to 
50 integer values without losing the data property. I this case, s = 6 and the new quan-
tum computer size needed is: breadth = 24 , depth = 240 , and volume = 960 . These are 
already quite reasonable values. Note that this is the size as defined for one operation 
only. The operations along the squiggle data array itself would still be sequentially fed 
into the quantum computer.

Our analysis reveals that Nanopore squiggle data interpretation through a quan-
tum approach is possible, though at the moment restricted in feasibility with current 
hardware.

Conclusion
Quantum computers of reasonable sizes are expected to improve data analysis of prob-
lems requiring a large amount of data. We considered a particular niche of data analysis, 
namely squiggle data analysis as part of the determination of DNA and RNA sequences. 
We have shown that quantum specific procedures, such as quantum parallelism can be 
employed to improve (speed up) feature selection in Nanopore data.

We have applied quantum algorithms to extract features of the Nanopore squiggle 
data. The main idea is to calculate the desired property in parallel on a superposition of 
consecutive Nanopore current values and extract the result using Grover’s enhancement 
algorithm. Thus, the complexity of the operation is reduced in theory by a factor of 

√
n 

for n operations performed in parallel. As Nanopore data is considered to be large, this is 
expected to be a significant improvement.

Additionally, quantum circuits have been implemented to show a proof of concept for 
the theoretical algorithms. Quantum computers available allow implementations with 
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breadths of 4 qubits and a depth of up to 40 gates. In this situation, it has been shown 
that in the worst case, the error rate is prohibitively large, namely 47% . This number 
is actually very close to 50% . Theoretically, using coding techniques, the error rate can 
be decreased arbitrarily, but this requires a large number of additional qubits. We have 
shown that a multiplicity of 16 is obtaining a small decrease in the error rate only.

Decreasing the dimensionality of the current value range is a promising approach to 
reduce the quantum resource needs. We have had experiments with a range reduced 
from 200 to 5.

In conclusion, quantum computers are promising to deal with Nanopore data theo-
retically. The size of a quantum computer to be able to deal with such data has to grow 
with one or two orders of magnitude and offer better reliability.
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