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Abstract 

In this paper, we propose a parameter identification methodology of the SIRD model, 
an extension of the classical SIR model, that considers the deceased as a sepa-
rate category. In addition, our model includes one parameter which is the ratio 
between the real total number of infected and the number of infected that were 
documented in the official statistics. Due to many factors, like governmental decisions, 
several variants circulating, opening and closing of schools, the typical assumption 
that the parameters of the model stay constant for long periods of time is not real-
istic. Thus our objective is to create a method which works for short periods of time. 
In this scope, we approach the estimation relying on the previous 7 days of data 
and then use the identified parameters to make predictions. To perform the estimation 
of the parameters we propose the average of an ensemble of neural networks. Each 
neural network is constructed based on a database built by solving the SIRD for 7 days, 
with random parameters. In this way, the networks learn the parameters from the solu-
tion of the SIRD model. Lastly we use the ensemble to get estimates of the parameters 
from the real data of Covid19 in Romania and then we illustrate the predictions for dif-
ferent periods of time, from 10 up to 45 days, for the number of deaths. The main goal 
was to apply this approach on the analysis of COVID-19 evolution in Romania, but this 
was also exemplified on other countries like Hungary, Czech Republic and Poland 
with similar results. The results are backed by a theorem which guarantees that we can 
recover the parameters of the model from the reported data. We believe this method-
ology can be used as a general tool for dealing with short term predictions of infec-
tious diseases or in other compartmental models.

Introduction
Infectious disease pandemics have had a major impact on the evolution of mankind 
and have played a critical role in the course of history. Over the ages, pandemics made 
countless victims, decimating entire nations and civilizations. As medicine and technol-
ogy have made remarkable progress in the last century, the means of fighting pandemics 
have become significantly more efficient. A reality nowadays is that globalization, the 
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development of commerce, and the ease to travel all over the world facilitate the trans-
mission mechanism of a new disease much more than it did in the past.

In 2019, Covid19, a virus from the coronavirus family appeared and spread around the 
world very quickly. This changed dramatically our world as we know it.

Covid pandemic

In 2019, COVID19, a virus from the coronavirus family appeared and spread around the 
world very quickly. The first cases of COVID19 were reported in China in December 
2019 and, within less than 3 months, the outbreak became a global pandemic, spreading 
across almost all countries all over the world. In the period that followed, we witnessed 
many changes in political decisions including lockdowns, school closures and many 
other restrictions which were aimed to control the spreading of the virus.

The main ideas of this paper

Fighting COVID-19 was at first driven by quarantine and other restriction measures. 
These were imposed because the mechanisms of infection were not well understood and 
the hospitals were overwhelmed. Later on, various degrees of restrictions were imposed 
in order to control the spread and, at the same time, let the economy recover. Thus many 
political decisions affected for better or for worse the transmission of the virus.

Mathematical modeling is by now one of the scientific pillars on which we build our 
understanding of the world. It is a valuable tool that can be used in the assessment, pre-
diction and control of infectious diseases, as it is the COVID-19 pandemic. There is a 
growing body of mathematical models used at the moment for the spread of virus which 
are related to our approach in this note. From the rich literature around this topic we 
sample the papers [1–8].

One popular choice used to mathematically model the epidemics is the SIR model, 
appeared in [9–14]. This is a compartmental model where an individual can be in one 
of the following 3 states, at any given time: susceptible (S), infected (I) or recovered (in 
some sources removed) (R). An extension of the SIR model is the SIRD model which 
considers the category of deaths as a separate compartment.

The epidemic SIR/SIRD models are non-linear and the identification of the param-
eters is challenging, compared to the linear models where analytical approaches exist 
(Godfrey and DiStefano, [15]). For the case of non-linear models there are methods for 
identifying the parameters, that are assumed to be constant, by using Taylor series (Gun 
et  al, [16]; Pohjanpalo [17]) or differential algebra (Audoly et  al, [18]; Eisenberg [19]). 
Differential algebra can also be an useful tool in the case of time dependent parameters 
(Hadeler, [20], Mummert, [21]). Marinov et al, [22], also proposed a numerical scheme 
for coefficient identification in SIR epidemic models using the Euler-Lagrange equations. 
In the case of the stochastic models, parameter estimation is a type of statistical infer-
ence, procedures as least square estimation (Banks et al. [23]) or maximum likelihood 
estimation (Julier, [24]) being the most used techniques.

Many studies have been done on the evolution of the pandemics around the world. 
For the case of Covid19 pandemic, the assessment and prediction of the spread as well 
as the identification of the parameters were rigorously and in detail studied in the papers 
[25–32].
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The purpose of this work is to detail a predictive model, define a methodology of iden-
tifying its parameters and accurately assess the transmission dynamic of COVID-19, 
with potential applicability for other infectious models. At the same time we analyse the 
evolution of the pandemic in Romania and we validate the method, in a separate Appen-
dix 2, for the case of Hungary, Czech Republic and Poland. The application of predictive 
models in the study of pandemics dynamics has been exhaustively addressed in the fol-
lowing studies [32–36].

The starting point of our study is the idea that, during the pandemic, it is hard to 
measure the number of infected, susceptible or recovered persons over time. Due to the 
large size population, it is very difficult to accurately know the number of infected or the 
number of recovered people. As Covid19 showed, the governmental institutions and the 
hospitals became rapidly overwhelmed, while many people became infected and treated 
themselves at home, without it being recorded in the official statistics.

The dynamic of the pandemic was driven by many factors, for instance lockdown, 
opening or closure of the restaurants, elections, opening or closing of schools, vacation-
ing and other measures taken by authorities in order to mitigate the pandemic effects. 
Thus any reasonable parametric model is negatively impacted by the fact that the coeffi-
cients are not constant in time. This implies that the estimations can not be done on long 
term. In a previous paper [29] we considered a regime switch which was geared toward 
adapting the parameters to the political decisions of lockdown or relaxation.

In this paper the main idea is to use a dynamic model which does not take into 
account long term evolution or outside assumptions about the status of the pandemic. 
In this approach we consider the data on a short period of time, in our case we chose to 
work with seven days and estimate the parameters relying primarily on the number of 
deceased people.

We do this in several steps. The first one is the cleaning and smoothing of the data. 
We fixed some anomalies in the reporting and we take a moving average of two weeks 
time. The second step is to exploit the model and generate data with parameters cho-
sen at random. Based on only seven days of data, we train neural networks to learn the 
parameters of the model. Furthermore, we used these neural networks to estimate the 
parameters based on the real data. The key here is a form of ensemble learning which 
is interesting in itself. A single neural network does not seem to predict the parameters 
very well, however the average has a much better prediction power. The third and last 
step is to predict the evolution for a number of future days and compare with the real 
data. For a range of ten days, we get very close results to the real data.

We should point out that in mathematical terms, our approach is a typical inverse 
problem. Generically, inverse problems can be ill posed. We show that our model is 
actually well posed, meaning that determination of the coefficients from the observation 
do identify the coefficient uniquely. This is the backbone of our analysis and estimation.

The paper is organized as follows. In The SIR and SIRD models section we briefly dis-
cuss the SIR model and we introduce the SIRD model. Here we state Theorem 1 whose 
proof is in Appendix 1. Also here we describe the guiding idea of our approach. In The 
data and the neural networks section we discuss the data and its cleaning and describe 
the construction of the neural networks. Then we proceed with the Discussion and con-
clusions section.
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The SIR and SIRD models
One of the most important models that can describe infectious diseases is the SIR 
model. The first ones that developed SIR epidemic models were Bernoulli [37], Ross 
[10, 11], Kermack-McKendrick [38] and Kendall [39].

The SIR model is a mathematical model that can be used in epidemiology to ana-
lyze, at a given time for a specific population, the interactions and dependencies 
between the number of individuals who are susceptible to get an infectious disease, 
the number of people who are currently infected and those who have already been 
recovered or have died as a cause of the infection. This model can be used to describe 
diseases that can be contracted just one time, meaning that a susceptible individual 
gets a disease by contracting an infectious agent, which is afterward removed (death 
or recovery).

It is assumed that an individual can be in either one of the following three states: 
susceptible (S), infected (I) and removed/ recovered (R). This can be represented in 
the following mathematical schema:

 where:

• β = infection rate
• γ = recovery rate.

We consider N as the total population in the affected area. We assume N to be fixed, 
with no births or deaths by other causes, for a given period of n days. Therefore, N is 
the sum of the three categories previously defined: the number of susceptible people, 
the ones infected, and the ones removed:

Therefore, we analyze the following SIR model: at time t, we consider S̄(t) as the 
number of susceptible individuals, Ī(t) as the number of infected individuals, and R̄(t) 
as the number of removed/recovered individuals. The equations of the SIR model are 
the following:

where:

• dS̄(t)
dt  is the rate of change of the number of individuals susceptible to the infection 

over time;
• dĪ(t)

dt
 is the rate of change of the number of individuals infected over time;

• dR̄(t)
dt  is the rate of change of the number of individuals recovered over time.

N = S̄ + Ī + R̄.

(1)

dS̄(t)
dt

= −
β̄S̄(t)Ī(t)

N
dĪ(t)
dt

=
β̄S̄(t)Ī(t)

N − γ Ī(t)
dR̄(t)
dt

= γ Ī(t)
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Because there is no canonical choice of N, we will transform the system (1) by divid-
ing it by N and considering S(t) = S̄(t)/N  , I(t) = Ī(t)/N  and R̂(t) = R̄(t)/N  . It is cus-
tomary to choose N = 106 for convenience but this is just an arbitrary choice. For 
instance, analysis on smaller communities or cities involves less than 106 , however, 
106 is a common choice because countries number their populations in multiples of 
106 . With these notations, we translate (1) into

where β = β̄/N  and γ is the same as in (1). Observe that we actually have that 
S(t)+ I(t)+ R̂(t) = S0 + I0 + R̂0 = 1 for all t ≥ 0.

We use a slight change in the SIR model which accounts for the number of deceased 
people separately. The main idea here being that the number of deceased people 
might be more reliable than other data, as for instance the number of infected. In the 
plain vanilla SIR model the recovered and deceased are combined into the single cate-
gory of recovered. The idea of the SIRD model is to use the provided data of deceased 
people in a significant way.

To this aim, we will work with four variables changing in time, namely S(t), I(t), R(t) 
and D(t) where R(t) is the proportion of recovered and alive people while the D(t) is 
the proportion of deceased people. We set the SIRD model as an interaction driven by 
the system of differential equations:

Notice that in this setup the recovered population bifurcates into recovered ones, 
accounted by R and the dead ones accounted by D. We also point out that by taking 
sum of the two factors R̂(t) = R(t)+ D(t) above we fall into the classical SIR model. 
The reason of accounting for D(t) separately is that the data reports the number of 
deaths separately and the model above allows to fit the parameters using the data.

Even if the above system is satisfactory to a certain degree, we would like to point 
out that in practice, the number of infected as well as the number of recovered is not 
really known. The data we have at our disposal reports the number of infected and 
recovered which are documented. The real number of infected is not really observed. 
Therefore we will adjust the model by introducing another parameter α which meas-
ures the proportion of observed number of infected and recovered. Therefore, we 
denote

In terms of these new quantities, the SIRD model becomes now

(2)











dS(t)
dt

= −βS(t)I(t)
dI(t)
dt

= −βS(t)I(t)− γ I(t)
dR̂(t)
dt

= γ I(t)

(3)



















dS(t)
dt

= −βS(t)I(t)
dI(t)
dt

= βS(t)I(t)− (γ1 + γ2)I
dR(t)
dt

= γ1I(t)
dD(t)
dt

= γ2I(t).

Ĩ(t) = αI(t) and R̃(t) = αR(t).
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We are going to estimate the parameters α,β , γ1, γ2 from data based on certain 
number of days. The advantage of getting an estimate on α is that we can in reality 
predict the real number of infected people and also the number of recovered people. 
In our adjusted model we have

for all times t ≥ 0 . To see this, we start by noticing that summing up all the equations 
in (3), we get that the derivative of S(t)+ I(t)+ R(t)+ D(t) is constant in time. Since 
S0 + I0 + R0 + D0 = 1 , as they represent the proportion of the entire population, we 
get that the sum S(t)+ I(t)+ R(t)+ D(t) = 1 and using the definition of α and Ĩ , R̃ we 
arrive at (5).

We present next the main mathematical result, with a proof in the Appendix 1. This 
guarantees that the problem is well posed and we can recover the main parameters of 
the model.

Theorem 1 Given the observations of Ĩ(0) = Ĩ0, R̃(0) = R̃0 and D(t) for t = 0, 1, 2, 3, 4 , 
we can uniquely determine the parameters α,β , γ1, γ2.

This result is fundamental for our approach. It shows that given a number of daily 
observations, at least 5 days, we can uniquely determine the parameters of the model. 
In practice, given any day k of the pandemic, we will use the previous data on a num-
ber of days to determine the parameters.

The guiding idea: We can imagine the map from the daily data to the parameters as 
a function

generated by (4). The theorem ensures that this function is well defined on the set

At this point, given an arbitrary data point data = (Ĩ0, R̃0,D(0),D(1), . . . ,D(4)) it is 
difficult to check that this belongs to Datagen . Thus our goal is to find the best approx-
imation of the data with a point in Datagen.

In general this is achieved using projection methods, for instance non-linear least 
square, as it is done in [5]. In our case we consider an extension problem, rather than 
the projection method, through the method of neural networks trained on simulated 
data, using the SIRD model. These are functions which construct approximations of 
� defined on the set Datagen , that can naturally extend to the whole space, thus can 
be interpreted as (approximate) extrapolations of � to the whole space. As we will 

(4)



















dS(t)
dt

= −
β
α
S(t)Ĩ(t)

dĨ(t)
dt

= βSĨ(t)− (γ1 + γ2)Ĩ(t)
dR̃(t)
dt

= γ1 Ĩ(t)
dD(t)
dt

=
γ2
α
Ĩ(t).

(5)S(t)+
1

α
(Ĩ(t)+ R̃(t))+ D(t) = 1

�(datagen) = (β , γ1, γ2,α) where datagen = (Ĩ0, R̃0,D(0),D(1), . . . ,D(4))

Datagen = {(Ĩ0, R̃0,D(0),D(1), . . . ,D(4)) solution of (4) for some (β , γ1, γ2,α)}.
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describe below, one single neural network did not work very well in our numerical 
experimentation, while an ensemble of neural networks achieve a better performance.

Numerical simulations show that we get more robust results by considering a larger 
number of days for the deceased. We noticed that 7 days instead of 5 give more robust 
results. Also we exploit 2 days of data for infected and recovered to strengthen the 
robustness.

One of our main findings is that the prediction works very well as it is shown in the 
next pictures. For each day k we predict using our method the next 10 days and take 
the average for each category. These are plotted along the averages of the real data for 
10 days starting from day k.

We can observe from Figs. 1, 2, and 3 that the prediction power is excellent for 10 
forward days. By computing the MAE (Mean Absolute Error) for different timeframe 
predictions and reality data we notice that this observation is validated:

Prediction Case MAE

10 days prediction Deaths 66.77549

Infected 1635.88403

Recovered 752.07601

30 days prediction Deaths 212.02360

Infected 13731.60866

Recovered 4733.52849

45 days prediction Deaths 531.00102

Infected 32418.20868

Recovered 14693.97709

We detail and discuss more on these predictions in the next section.

Fig. 1 Averages of deaths using 10 future days for predicted and real data. The red value at time k is 
computed as the average of future 10 days predictions, while the blue value at time k is the average of the 10 
future days values
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The data and the neural networks
In this section we present our strategy for the data cleaning and the estimation of the 
parameters β , γ1, γ2,α of the SIRD model.

We clean the raw data which has several anomalies and we use a regularization by 
averaging.

The basic strategy is the following. Based on the assumed SIRD model we generate 
data for 7 days and then train a neural network which learns the parameters from the 
data for this 7 days time interval.

Then, using the real data and the neural network we find the parameters in a dynami-
cal way for any 7 consecutive days. Given these 7 days we can predict based on the model 
what is going to happen on the next few days.

In a real world the parameters do not stay constant, they change dynamically and we 
would like to catch part of this behavior.

Fig. 2 Averages of infected using 10 future days for predicted and real data. The red value at time k is 
computed as the average of future 10 days predictions, while the blue value at time k is the average of the 10 
future days values

Fig. 3 Averages of recovered using 10 future days for predicted and real data. The red value at time k is 
computed as the average of future 10 days predictions, while the blue value at time k is the average of the 10 
future days values
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Data

We took the data from https:// datel azi. ro which keeps a record of all the data during the 
pandemic in Romania.

During the pandemic, the reported numbers and the methodology regarding the 
reporting changed several times causing delays or bad reporting. In October 2020, the 
definition of a recovered person changed thus causing a data anomaly in the reported 
number of recovered. Particularly, we can see a spike of 44000 new cases from one day to 
another, equivalent to the cumulative number of cases until then. To alleviate this anom-
aly, we distribute the extra number of cases proportionally to the previous days.

There are also periods of time in which the number of recovered people is actually 0 
for almost three weeks.

We further analyse the data of the 102 weeks taken into assessment by day of the week 
and we compute the average of the reported number of infected.

Day of the week Average number of 
infected (reported)

Monday 2461

Tuesday 4479

Wednesday 4525

Thursday 4453

Friday 4269

Saturday 4041

Sunday 2909

We notice a significant difference between the average numbers reported on weekdays 
and weekends and we perform an One Way Anova Test to validate this observation.

Source of Variation SS df MS F P-value F crit

Between Groups 4.32E+08 6 72029925 2.286333 0.034118 2.111386

Within Groups 2.23E+10 707 31504561

Total 2.27E+10 713

We found a statistically significant difference between the averages of the reported 
cases according to the day of the week ( p < 0.05 ). However, by law, the methodology of 
reporting from the health centers allows reporting cases within an interval of two weeks. 
In order to mitigate the above deficiencies, we replaced the data at time t with the aver-
age of the data during the previous two weeks preceding time t. We present in Fig. 4 the 
data before and after the cleaning.

The neural networks

To deal with the estimation of the parameters, we follow two main steps.
The first one is the generation of data.
We take the range of β in the interval Jβ = (0, 1) , for γ1 we consider the range in 

Jγ1 = (0, 1) , for γ2 we consider the interval Jγ2 = (0, 0.01) and for α we consider the 
interval Jα = (0.01, 1) . Next we split each of these intervals into 7 sub-intervals of the 
same size which we will index accordingly as

https://datelazi.ro
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for i ∈ {0, 1, . . . , 6} . The splitting is motivated by the fact that we want to have good rep-
resentation of the parameters and at the same time we want to avoid concentration of 
the parameters in one single region. We tried previously to use a simple uniform choice 
for each parameter in the whole interval, but we run into the problem of misrepresenta-
tion of small values of the parameters. It seems that this phenomena is due to some form 
of concentration of measure which is alleviated by using this splitting method. With 
this strategy we also avoid the overfitting problem of the neural networks. Therefore we 
obtain 7 sub-intervals for each of the 4 parameters which means that we get 74 = 2401 
combinations of sub-intervals.

Next, to generate the data we apply the following procedure: 

1. Create the data set � to store the values obtained in the next steps
2. For i1 ∈ {0, 1, . . . , 6} , i2 ∈ {0, 1, . . . , 6} , i3 ∈ {0, 1, . . . , 6} , i4 ∈ {0, 1, . . . , 6} : 

(a) For j ∈ {1, . . . , 10000} pick at random 

Jβ ,i = (i/7, (i + 1)/7)

Jγ1,i = (i/7, (i + 1)/7))

Jγ2,i = (0.01 ∗ i/7, 0.01 ∗ (i + 1)/7)

Jα,i = (0.01+ 0.99 ∗ i/7, 0.01+ 0.99 ∗ (i + 1)/7)

Fig. 4 Data adjustments according to the methodology of reporting the Covid19 numbers in Romania. The 
rows describe the data (from top to bottom) of recovered, infected and dead. The left column represents the 
raw data and the right column represents the adjusted data as we described above. Notice the scale and the 
spike in the first picture which is adjusted as we pointed out. The data we work with is scaled by 10, 000, 000
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a. β ∈ Jβ ,i1,
b. γ1 ∈ Jγ1,i2,
c. γ2 ∈ Jγ2,i3
d. α ∈ Jα,i4,
e. I0 in the interval (0, 0.2),
f. R0 in (0, 0.6)
g. D0 in (0, 0.007)

(b) Solve the system (4) with all the parameters from step 1 and 2 for the time inter-
val [0, 7] and add the row of (I0, I1, . . . , I7,R0,R1, . . . ,R7,D0,D1, . . . ,D7) to �.

For each i ∈ {1, 2, . . . , 10} , we create a training sample Bi from the dataset � of size 
70% chosen at random without replacement. Using Bi sample we train a neural net-
work, NNi , i ∈ {1, 2, . . . , 10} , having as input:

and our parameters

as output.
According to our Theorem 1 we know that we can recover the parameters β , γ1, γ2,α 

only from I0,R0,D0,D1,D2,D3,D4 , from our dataset. However, we choose to use more 
data because the estimates are more robust. This choice can also be interpreted as a 
regularization which decreases the training/test loss.

The next step is the construction of the neural networks. We performed various 
tests, with different type of architectures, ones with multiple hidden layers and large 
number of neurons, as well as some architectures with 1-2 hidden layers and small 
number of neurons. Based on these tests we draw the conclusion that the large ones 
are expensive to train while the small ones do not perform very well. We decided to 
mitigate these disadvantages by choosing the below architecture, which is a medium 
one when it comes to its complexity. It helps us achieve great results at good perfor-
mance with a reasonable consumption of resources. The training was performed on 
an Intel(R) Core(TM) i9-10885H CPU @ 2.40GHz x 16. The architecture of the neural 
network we use is of the following form:

• Layers: 

1. Dense 64, activation function ’ReLU’, input dimentsion=14
2. Dense 128, activation function ’ReLU’
3. Dense 256, activation function ’ReLU’
4. Dense 512, activation function ’ReLU’

• One output for each parameter, (β , γ1, γ2,α).
• Loss: Mean Absolute Error
• Optimizer: Adam (Kingma and Ba, [40] )

XTrain = (I0, I1, I2,R0,R1,R2,D0,D1,D2,D3,D4,D5,D6,D7)

YTrain = (β , γ1, γ2,α)
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The size of the training, respectively test data split for NNi is 80% , respectively 20% from 
the sample Bi.

After training the neural networks, the predictions of our parameters is made by aver-
aging the predictions from all the individual neural networks on the real data

With this approach, we can achieve better performance of our model because we man-
age to decrease the variance, without increasing the bias. Usually, the prediction of a 
single neural network is sensitive to noise in the training set, while the average of many 
neural networks that are not correlated, is not sensitive. Bootstrap sampling is a good 
method of de-correlating neural networks, by training them with different training sets. 
If we train many neural networks on the same dataset, we will obtain strongly correlated 
neural networks.

In Fig. 5 we present the results of the estimated parameters β , γ1, γ2,α.
Knowing the parameters for the model (βk , γ1,k , γ2,k ,αk) at each time k and the values 

(Ik ,Rk ,Dk) , from the real data, we can generate the predictions Pk ,0, . . . ,Pk ,10 using the 
system (4) for the time interval [k , k + 10] . We take the average of Pk ,0, . . . ,Pk ,10 and call 
this Pk.

In Fig.  6 we plot for each day k the average of the real (smoothed) data for 10 days 
starting with k alongside with the average Pk computed above. As we already pointed 
out, the fit is very good.

The next images, in Fig.  7, show the prediction on the death for 30 and 45 days. In 
many cases the prediction is good, however there are regions in which the prediction 
ceases to be accurate. This highly depends on the timeframe we chose to make the 
predictions.

(β̂ , γ̂1, γ̂2, α̂) =
1

10

10
∑

i=1

NNi(data)

Fig. 5 Parameters of the spreading of Covid19 in Romania estimated using the above averaging of the 
neural networks. Notice the behavior of the parameters β , γ1, γ2 which tend to decrease over the period of 
almost two years. Interestingly we see the parameter α having large values during the Fall of 2020 and lower 
values during the summer of 2021. This suggests that the proportion of real infected people is between 
[1/0.9, 1/0.1] = [1.11, 10] to the reported infected. This show that roughly only half of the infected get 
reported
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Fig. 6 The plots of the real data and the predicted averages for the next 10 days. As we described above, for 
each day k we compute the average of the real data for the next 10 days and the average of the predicted 
data for the next 10 days. Notice the important fact that each prediction is made in terms of the previous 7 
days. The close match suggests a very good prediction power of our approach. A slight difference appears in 
the case of the infected number of people during the forth wave of the pandemic, namely the Fall of 2021
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Next, in Figs. 8 and 9, we look in more details at the images above, to see the refined 
structure of the behavior. We do this for 10 days versus 30 days starting at different 
moments of time.

Discussion and conclusions
The dynamic of an infectious disease is highly impacted by numerous factors, includ-
ing the measures imposed by governments or the attitude of population towards it, 
as the COVID-19 pandemic has shown. Therefore, it is very unlikely that the param-
eters of a model designed to asses the spread of a virus are constant over time. We 
have to be aware of the fact that, in the long term, the prediction is affected by all the 
restrictions/relaxations taken by most of the countries. We believe that this method-
ology has a high degree of generality to be used in many other cases of prediction, 

Fig. 7 In both pictures, in blue is the real (reported) number of deaths. For each day k, we plotted, in red, the 
prediction of the deaths, starting with day k. The first picture shows the prediction is plotted for 30 days, while 
the second shows the predictions plotted for 45 days. Remark that the 30 days prediction is much better than 
the 45 days prediction
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Fig. 8 The evolution of the predicted 10 days starting with the days 30, 110, 180, 250, 320, 390, 430, 530, 610

Fig. 9 The evolution of the predicted 30 days starting with the days 30, 110, 180, 250, 320, 390, 430, 530, 610. 
The predictions for the first 10 days were highlighted. This reinforces that the predictions are good for short 
periods of time and they loose the prediction power on longer periods of time. The main lesson we learn 
from the above figure is the fact that the parameters are not constant in time
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particularly useful for those cases where the prediction depends on many other fac-
tors which change the behavior of the model.

We introduced on our model an extra parameter which accounts for the propor-
tion of the infected and reported population versus the whole infected population. 
The point being that not every infected person is actually tested or reported. Thus the 
actual number of infected people should be higher.

We do not account for the vaccination campaign, though this does not affect our 
model since we are looking at the parameters on relatively short periods of time. The 
vaccination should in principle change the parameters, which is in fact exactly what 
we look for.

Regarding the limitations of the methodology presented in this paper, we can men-
tion the followings. When it comes to the applicability of the model, one limitation 
could be that the number of recovered people is not included in the reporting by all 
of the countries, which would make the data incomplete. In the same time, one other 
limitation is caused by the changes that could appear in the reporting methodology 
of a specific country, such as the change of the definitions of infected/ recovered, that 
can have an impact in the results.

In order to test if this technique can be well generalized, we applied it to Covid19 
data of 3 other countries: Hungary, Czech Republic and Poland. By replicating the 
approach, similar to Romania case, we are confident that the predictive model that 
we presented in this paper can be also applied to other countries in order to identify 
the parameters of the model and to accurately assess the transmission dynamic of the 
pandemic, other infectious diseases or other compartmental models.

Appendix 1
The goal of this section is to provide the proof of Theorem  1. Recall the system (4) 
given by

The statement of Theorem 1 is the following.

Theorem 2 Given Ĩ(0), R̃(0) and D(0), D(1), D(2), D(3), D(4) we can uniquely determine 
the parameters α,β , γ1, γ2 of (6).

Proof
We will first reduce the analysis to a single equation, namely the one for D(t). To do this 
we will write each of the involved quantities as functions of D(t) as follows

(6)



















dS(t)
dt

= −
β
α
SĨ

dĨ(t)
dt

= βSĨ − (γ1 + γ2)Ĩ
dR̃(t)
dt

= γ1 Ĩ
dD(t)
dt

=
γ2
α
Ĩ .



Page 17 of 30Petrica and Popescu  BioData Mining           (2023) 16:22  

The easiest to deal with is R̃ because from the last two equations we get

which leads to R̃(t) = γ1
αγ2

(D(t)− D0)+ R̃0.

Now, we treat the function u which determines S(t) = u(D(t)) . Dividing the first and the 
last from (6) we get

which can be integrated to give S(t) in terms of D(t) as

Furthermore, this allows us to solve for Ĩ(t) = v(D(t)) . To see this, add the first two 
equations from (6) and then combine this with the last one to arrive at

from which we deduce that

Solving now for Ĩ and using (7) we obtain

which combined with the last equation of (6) shows that D(t) satisfies the differential 
equation

Before we move forward, we will treat a little bit a general problem. Assume we take a 
differential equation of the form

where f : R → R is a Lipschitz function with f (X0) > 0 . The solution Xt starts posi-
tive, and the derivative is positive, thus the solution is non-decreasing for a while. More-
over, the solution is defined for all t ≥ 0 from general results for ordinary differential 

S = u(D), Ĩ = v(D), R̃ = w(D).

dR̃(t)

dt
=

γ1

αγ2

dD(t)

dt

u′(D) = −
β

γ2
u(D)

(7)S(t) = S0 exp

(

−
β

γ2
(D(t)− D0)

)

.

dS

dt
(t)+

1

α

dĨ

dt
(t) = −

(γ1 + γ2)

α
Ĩ(t) = −

γ1 + γ2

γ2

dD

dt
(t)

S(t)+
1

α
Ĩ(t)+

γ1 + γ2

γ2
D(t) = S0 +

1

α
Ĩ0 +

γ1 + γ2

γ2
D0.

Ĩ(t) = αS0 + Ĩ0 +
α(γ1 + γ2)

γ2
(D0 − D(t))− αS0 exp

(

−
β

γ2
(D(t)− D0)

)

(8)
dD

dt
(t) =

γ2

α
Ĩ0 − (γ1 + γ2)(D(t)− D0)+ γ2S0

[

1− exp

(

−
β

γ2
(D(t)− D0)

)]

.

dX

dt
= f (X) with X(0) = X0 ≥ 0
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equations. By continuity of the solution, we have that the solution stays in the region 
f > 0 and thus it is increasing for all times it stays inside the region f > 0 . It can not 
hit in finite time a point where f (X(tc)) = 0 since then, reverting the equation (looking 
at X(tc − s) ) and combining this with the uniqueness of the solution, we must have that 
Xt = Xtc which is a contradiction. Thus, the solution is increasing and we can integrate 
the equation as follows:

Notice here that the function φ is well defined on the interval of f > 0 which contains 
X0 . Therefore we have φ(X(t)) = t for all t ≥ 0 and X(t) is increasing from 0 to infinity.

Now assume that we have two differential equations

At this stage, the point is that if X(ti) = Y (ti) for some sequence of points 
0 = t0 < t1 < t2 < t3 < t4 , then we obtain that

In particular, this implies that the function φ(x)− ψ(x) has at least five zeros. Since the 
function φ(x)− ψ(x) is C1 , this implies that the derivative has at least four zeros, in 
other words this means that 1

f (x)
− 1

g(x) has at least four zeros. Finally, this means that 
f (x) = g(x) has at least four solutions.

Returning to our problem we take now some parameters a, b, c, d, ã, b̃, c̃, d̃ and consider

In the case f (x)− g(x) = 0 has at least four solutions, we actually also get that 
f ′(x)− g ′(x) = 0 has at least three solutions, which then upon taking another derivative 
gives that f ′′(x)− g ′′(x) = 0 has at least 2 solutions. Now this means that

has at least two different solutions. The point is that if the above is satisfied for two dif-
ferent values of x, say x1 and x2 , then

φ(X(t)) = t where φ(x) =

∫ x

X0

1

f (s)
ds.

dX(t)

dt
= f (X(t)) and

dY (t)

dt
= g(Y (t)) with X0 = Y0, f (X0) > 0, g(X0) > 0.

φ(X(ti))− ψ(X(ti)) = 0 where φ(x) =

∫ x

X0

1

f (s)
ds,ψ(x) =

∫ x

X0

1

g(s)
ds.

f (x) = a− bx + c(1− e−dx) while g(x) = ã− b̃x + c̃(1− e−d̃x).

cd2e−dx = c̃d̃2e−d̃x

cd2

c̃d̃2
= e(d−d̃)x1 = e(d−d̃)x2
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which then leads to the conclusion that we must have d = d̃ and c = c̃ . Going now back 
the ladder, using the fact that f ′(x) = g ′(x) for three distinct values of x we have

and thus b = b̃ . Finally, having f (x) = g(x) for five different values of x means that we 
also get that a = ã , thus all the parameters must be equal.

Taking this back to our equation (8) and taking X(t) = D(t)− D0 , knowing the values 
X(0), X(1), X(2), X(3), X(4), then we can uniquely determine the values of

Knowing these values is not enough to determine all the values of γ1, γ2,β ,α because S0 
we know that

which shows that we can solve now

Consequently, knowing D0,D1,D2,D3,D4 and Ĩ0, R̃0 we can determine the parameters 
β , γ1, γ2,α �

Appendix 2

We apply the same methodology to 3 other countries and analyze the results. We use 
the COVID19 data of Hungary, Czech Republic and Poland. We have to mention that we 
don’t have information about the procedure of reporting the number of cases for these 
countries, which can cause a bias in the results.

By replicating the technique we are confident that the predictive model that we 
presented in this paper can be also applied to other countries in order to identify the 

−b+ cde−dx = −b̃+ cde−dx















a =
γ2
α
Ĩ0

b = γ1 + γ2
c = γ2S0
d =

β
γ2
.

S0 = 1−
1

α
(Ĩ0 + R̃0)− D0



























α = cĨ0+a(Ĩ0+R̃0)
a(1−D0)

β = d(cĨ0+a(Ĩ0+R̃0))

(1−D0)Ĩ0

γ1 =
(b(1−D0)−c)Ĩ0−a(Ĩ0+R̃0)

(1−D0)Ĩ0

γ2 =
cĨ0+a(Ĩ0+R̃0)

(1−D0)Ĩ0
.
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parameters of the model and to accurately assess the transmission dynamic of the pan-
demic. The results for the 3 countries are detailed below.

Hungary

Fig. 10 Data adjustments according to the methodology presented into the article. The rows describe the data 
(from top to bottom) of recovered, infected and dead. The left column represents the raw data and the right 
column represents the adjusted data as we described above. Notice the scale and the spike in the first picture 
which is adjusted as we pointed out. The data was scaled by 10, 000, 000, exactly as in the case of Romania

In the next Figure we present the results of the estimated parameters β , γ1, γ2,α , for 
Hungary:

Fig. 11 Parameters of the spreading of Covid19 in Hungary estimated using the same methodology as we used 
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in the case of Romania

Regarding the predictions: 

1. Prediction of deaths, for 10 days:

Fig. 12 In blue is the real (reported) number of deaths. For each day k, we plotted, in red, the prediction of the 
deaths, starting with day k, for 10 days

2. Prediction of deaths, for 30 days:

Fig. 13 In blue is the real (reported) number of deaths. For each day k, we plotted, in red, the prediction of the 
deaths, starting with day k, for 30 days

3. Prediction of deaths, for 45 days:
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Fig. 14 In blue is the real (reported) number of deaths. For each day k, we plotted, in red, the prediction of the 
deaths, starting with day k, for 45 days

Regarding the MAE values, for Hungary:

Prediction Case MAE

10 days prediction Deaths 40.36850

Infected 699.77421

Recovered 723.19638

30 days prediction Deaths 153.05402

Infected 6600.95112

Recovered 3645.40171

45 days prediction Deaths 309.09216

Infected 15741.09146

Recovered 6408.25157
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Czech Republic

First of all we clean the data and we obtain:

Fig. 15 Data adjustments according to the methodology presented into the article. The rows describe the data 
(from top to bottom) of recovered, infected and dead. The left column represents the raw data and the right 
column represents the adjusted data as we described above. Notice the scale and the spike in the first picture 
which is adjusted as we pointed out. The data was scaled by 10, 000, 000, exactly as in the case of Romania

In the next Figure we present the results of the estimated parameters β , γ1, γ2,α , for 
Czech Republic:

Fig. 16 Parameters of the spreading of Covid19 in Czech Republic estimated using the same methodology as 
we used in the case of Romania
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Regarding the predictions: 

1. Prediction of deaths, for 10 days:

Fig. 17 In blue is the real (reported) number of deaths. For each day k, we plotted, in red, the prediction of the 
deaths, starting with day k, for 10 days

2. Prediction of deaths, for 30 days:

Fig. 18 In blue is the real (reported) number of deaths. For each day k, we plotted, in red, the prediction of the 
deaths, starting with day k, for 30 days
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3. Prediction of deaths, for 45 days:

Fig. 19 In blue is the real (reported) number of deaths. For each day k, we plotted, in red, the prediction of the 
deaths, starting with day k, for 45 days

Regarding the MAE values, for Czech Republic:

Prediction Case MAE

10 days prediction Deaths 30.50940

Infected 2172.68655

Recovered 921.83768

30 days prediction Deaths 189.93063

Infected 5308.06519

Recovered 3645.40171

45 days prediction Deaths 543.08844

Infected 49255.44366

Recovered 17283.88766
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Poland

First of all we clean the data and we obtain:

Fig. 20 Data adjustments according to the methodology presented into the article. The rows describe the data 
(from top to bottom) of recovered, infected and dead. The left column represents the raw data and the right 
column represents the adjusted data as we described above. Notice the scale and the spike in the first picture 
which is adjusted as we pointed out. The data was scaled by 10, 000, 000, exactly as in the case of Romania

In the next Figure we present the results of the estimated parameters β , γ1, γ2,α , for 
Poland:

Fig. 21 Parameters of the spreading of Covid19 in Poland estimated using the same methodology as we used in 
the case of Romania
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Regarding the predictions: 

1. Prediction of deaths, for 10 days:

Fig. 22 In blue is the real (reported) number of deaths. For each day k, we plotted, in red, the prediction of the 
deaths, starting with day k, for 10 days

2. Prediction of deaths, for 30 days:

Fig. 23 In blue is the real (reported) number of deaths. For each day k, we plotted, in red, the prediction of the 
deaths, starting with day k, for 30 days
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3. Prediction of deaths, for 45 days:

Fig. 24 In blue is the real (reported) number of deaths. For each day k, we plotted, in red, the prediction of the 
deaths, starting with day k, for 45 days

Regarding the MAE values, for Poland:

Prediction Case MAE

10 days prediction Deaths 42.08050

Infected 3397.06115

Recovered 1122.41742

30 days prediction Deaths 270.48052

Infected 30818.55274

Recovered 5515.75961

45 days prediction Deaths 842.45188

Infected 72149.78502

Recovered 16057.94535
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