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Abstract 

In many healthcare applications, datasets for classification may be highly imbalanced 
due to the rare occurrence of target events such as disease onset. The SMOTE (Syn-
thetic Minority Over-sampling Technique) algorithm has been developed as an effec-
tive resampling method for imbalanced data classification by oversampling samples 
from the minority class. However, samples generated by SMOTE may be ambiguous, 
low-quality and non-separable with the majority class. To enhance the quality of gener-
ated samples, we proposed a novel self-inspected adaptive SMOTE (SASMOTE) model 
that leverages an adaptive nearest neighborhood selection algorithm to identify the 
“visible” nearest neighbors, which are used to generate samples likely to fall into the 
minority class. To further enhance the quality of the generated samples, an uncertainty 
elimination via self-inspection approach is introduced in the proposed SASMOTE 
model. Its objective is to filter out the generated samples that are highly uncertain 
and inseparable with the majority class. The effectiveness of the proposed algorithm 
is compared with existing SMOTE-based algorithms and demonstrated through two 
real-world case studies in healthcare, including risk gene discovery and fatal congenital 
heart disease prediction. By generating the higher quality synthetic samples, the pro-
posed algorithm is able to help achieve better prediction performance (in terms of F1 
score) on average compared to the other methods, which is promising to enhance the 
usability of machine learning models on highly imbalanced healthcare data.

Keywords: Imbalanced data classification in healthcare, SMOTE-based resampling, 
Adaptive nearest neighborhood selection, Self-inspection

Background
Imbalanced data classification, which refers to the problem of classification when there is 
an uneven distribution of classes in the training dataset, has been encountered in many 
healthcare applications, and it is considered as an important topic to discuss in the bio-
medical data mining area [1–4]. In clinical practice, for example, disease risk prediction 
models enabled by the classification algorithms are usually built on highly imbalanced 
datasets with much smaller population of diseased patients compared with healthy indi-
viduals. In the area of bioinformatics, classification approach has also been adopted to 
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predict the novel disease-associated risk genes by leveraging the previously implicated 
disease genes to distinguish patterns between disease-associated and irrelevant gene 
groups [5]. Due to the limited number of disease genes discovered in biology, the risk 
gene identification is also  an imbalanced data classification problem. However, most 
classification algorithms were designed based on the assumption of a balanced num-
ber of samples for each class. Thus, the classification models built on highly imbalanced 
datasets are likely to be dominated by the majority class and thus have poor predictive 
performance on the minority class [6]. It is largely due to a parochial focus on maximiz-
ing an average prediction accuracy of the whole training set [7, 8]. A study by [9] on both 
real and artificial datasets demonstrated that there is an inverse relationship between the 
performance of a binary classifier and imbalance level of the training data used in model 
fitting. This behavior has been identified as problematic in imbalanced data classification 
because the correct classification of the minority class is often of prime interest to the 
analyst [7]. In other words, the cost of misclassifying the occurrence of a minority sam-
ple is substantially greater than the cost of misclassifying the majority class [7].

The performance of classification models built on highly imbalanced datasets, can be 
improved either at the algorithmic or data pre-processing level [10]. At the algorith-
mic level, an improvement involves using techniques such as cost-sensitive learning to 
combat the prediction bias on minority class [7]. Cost-sensitive algorithms, for example 
C4.5 [11], provide improved classification performance by assigning higher misclassifi-
cation costs to the minority class. However, the implementation of cost-sensitive algo-
rithms is difficult if there is no domain/prior knowledge on the misclassification costs 
of the minority and majority classes. Improvement on the data pre-processing level, on 
the other hand, involves the use of resampling techniques to balance the ratio between 
minority and majority class samples in the training dataset prior to model learning [12]. 
The resampling techniques are popular in solving imbalanced data classification prob-
lem as they require less prior knowledge and are flexible to be used together with vari-
ous classification algorithms [13].

Two commonly used resampling methods are downsampling and oversampling [12]. 
The downsampling works by randomly selecting a subset of the majority class as training 
dataset so that the balanced ratio between two classes is obtained. Because of the ran-
domness in selecting training data and the sacrifice of training sample size, the down-
sampling algorithms usually lead to poor and unstable performance. The oversampling, 
on the other hand, boosts the size of minority class by replicating the minority samples 
with a random noise. Since there is a replication process which increases the number of 
training data, it requires more computational cost [7, 14]. Also, as the replicated dataset 
is too similar to the original data, it does not provide new information and might result 
in the overfitting issue [14, 15].

To mitigate the limitations in downsampling and oversampling, the Synthetic Minority 
Over-sampling Technique (SMOTE) algorithm was proposed [16]. It works by select-
ing samples using k-nearest neighbors that are close in vicinity, drawing a line between 
the selected samples and generating a new sample at a random point along the line. 
Although the SMOTE algorithm has the ability to generate more minority data for 
enhancing the classification accuracy, there are some limitations with the quality of 
the generated samples. First, SMOTE generates data based on the nearest neighbors 
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acquired from the k-nearest neighbor algorithm, but it is usually hard to identify the real 
valuable neighbors when the classes of data are not well separated [16, 17]. Second, to 
force the decision boundary of the minority class to become more general, it oversam-
ples the minority class by randomly generating samples between each minority data and 
its nearest neighbors [18]. Unfortunately, SMOTE often generates “uncertain” minor-
ity samples, which are on the edge of the class or even belong to the wrong class. The 
“uncertain” minorities lower the confidence and overall performance of the classification 
algorithms.

To improve the quality of generated samples from SMOTE and enhance its perfor-
mance on real dataset, several extensions have been developed. A Borderline-SMOTE 
or BSMOTE was built to remove the noisy minority samples that have all the neighbors 
from the majority class [16]. Another extension of SMOTE is the FRIPS-SMOTE algo-
rithm, which was built to obtain high quality samples by utilizing Fuzzy Rough Imbal-
anced Prototype Selection (FRIPS) technique which cleans data based on the noise 
threshold [19]. A SMOTE-TL algorithm was also proposed to clean the noisy majority 
samples which are connected with the minority class by Tomek links [20]. However, it 
may not be effective when there are noisy minority samples fall into the majority class 
[21]. Also, similar to SMOTE, it does not remove the low-quality synthetic samples that 
are not distinguishable from the majority class. The Safe-level-SMOTE was expanded 
from SMOTE by assigning a safe level to each sample based on the number of minority 
samples around it [16]. Hence, the resampled data is only generated in the safe regions. 
The Density Based SMOTE or DBSMOTE is another extension of the BSMOTE algo-
rithm to improve the classification accuracy for both majority and minority classes [16]. 
The resampled data is generated based on a shortest path from each minority sample 
and the center of the minority class. However, the existing SMOTE algorithms either 
ignore the quality of nearest neighbors selected to be resampled or lack of an evaluation 
metric to quantitative measure the quality of resampled data, and hence are not able to 
maximally improve the classification accuracy.

In this paper, we proposed a novel self-inspected adaptive SMOTE (SASMOTE) model 
that utilizes the adaptive nearest neighborhood selection algorithm to identify “visible” 
nearest neighbors which tend to generate solid minority class samples. Also, an uncer-
tainty via inspection approach is introduced in the SASMOTE model to filter out the 
low-quality synthetic data that are not distinguishable with the majority class. The struc-
ture of this paper is organized as follows. The proposed self-inspected adaptive SMOTE 
model is described in the method section. Result section presents two real-world case 
studies of applying the proposed method to risk gene discovery and fatal congenital 
heart disease (CHD) prediction. Finally, the conclusion of this paper and discussion of 
future work are provided in the discussion section.

Methods
The overall framework of the proposed method is illustrated in Fig. 1, which includes 
two steps. First, the proposed SASMOTE method generates the minority data based on 
an adaptive nearest neighborhood selection algorithm, which enforces the usage of “vis-
ible” neighbors to generate minority samples. Second, an uncertainty via self-inspection 
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approach determines the quality of resampled data and rules out the “uncertain” minor-
ity samples.

Adaptive nearest neighborhood selection

The conventional SMOTE-based resampling algorithm consists of two steps: the first 
step searches the k-nearest neighbors (KNNs) for each minority data and the second 
step generates resampled data randomly from the lines between minority data and its 
KNNs. One of the most significant limitations is that the quality of the resampled data 
can be low when the minority data are too far away from their KNNs or the neighbors 
fall into the other classes. To enhance the quality of resampled data, the proposed SAS-
MOTE method conducts an adaptive neighborhood selection algorithm to identify the 
“visible” neighbors for resampling, which can generate higher quality resampled data 
than the conventional KNNs approach used in SMOTE algorithm. The idea of “visible” 
neighbors is inspired from [22] where the neighborhood selection algorithm is applied 
to avoid the long edge connections between neighbors. Formally, denote the KNNs of a 
minority sample x as KNN(x) , a sample y is regarded as a “visible” neighbor of x if there 
is no other neighborhood in KNN(x) that separates y and x. In the other words, the angle 
between edges xz and yz for every neighbor z in KNN(x) is always acute. The set of “vis-
ible” neighbors of x, denoted as VN(x) , is a subset of its KNNs with the following formal 
definition:

Definition of visible neighbors: A sample y is said to be a visible neighbor of 
x if there is no other neighbor z that can separate y and x, which is expressed as 
�x − z, y− z� ≥ 0,∀z ∈ KNN(x) . The set of visible neighbors of x is defined as

 An exemplary dataset with five samples is illustrated in Fig. 2 (a), where the KNNs of 
a minority sample P is the set A,  B,  C,  D. Among the KNNs, the points C and D are 
considered as invisible because the angle between the edges AP and AD and the angle 
between BP and BC are obtuse. A and B are two visible neighbors of P identified from 
the above definition. Then, the proposed method generates resampled data randomly 
from the lines between minority data and its “visible” neighbors, denoted by the blue 
dash lines in Fig. 2 (a). To avoid these long edge connections with invisible neighbors, 
the resampled data are more likely to fall within the minority class when the class is not 
convex. Specifically, a binary classification problem with nonlinear decision boundary, 

(1)VN(x) = {y ∈ KNN(x) | �x − z, y− z� ≥ 0,∀z ∈ KNN(x)}

Fig. 2 A Illustrations of visible neighbors (green dots A and B) and invisible neighbors (red dot C and D). 
B Effects of samples generated from visible neighbors (blue dash lines) and invisible neighbors (red dash 
lines). Data points randomly generated between P and its invisible neighbors are likely to fall into the other 
class, which can mislead the classification model toward a biased decision boundary
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denoted by the gray curve, is shown in Fig. 2 (b). The minority samples, denoted as the 
blue dots, lie outside the decision boundary and form a nonconvex set. Based on the def-
inition, A and B are visible neighbors of sample P, C and D are invisible neighbors. Data 
points randomly generated between P and its invisible neighbors (denoted by red dash 
lines) are likely to fall into the other class, which can mislead the classification model 
toward a biased decision boundary. On the other hands, the data generated between P 
and its “visible” neighbors neighbors (denoted by the blue dash lines) are more likely to 
fall within the minority class. Hence, the resampled data should be generated from the 
lines between P and its “visible” neighbors only.

Uncertainty via self‑inspection

Quantifying the quality of training data is critical for classification model perfor-
mance. Different statistical metrics have been developed to measure the data quality 
in classification through its uncertainty, such as the direct uncertainty prediction, 
Bayesian techniques, and uncertainty via classification [23, 24]. The uncertainty via 
classification approach assigns a scalar uncertainty score to each sample represent-
ing the amount of expert disagreement on the label of this sample. In the resampling 
schema, we propose an uncertainty via inspection approach which considers the 
uncertainty as how likely the resampled data fall into the majority or wrong class. 
The higher probability indicating a higher uncertainty of the resampled data. To 
estimate the uncertainty score of each resampled data, a set of inspectors or classi-
fiers are trained to predict its labels. The uncertainty score then is estimated as the 
number of inspectors that classify the resampled data to the majority or wrong class.

Formally, given a resampled data generated from the adaptive nearest neighbor 
selection algorithm ( xi ) and M inspectors Rf1, . . . ,RfM , Eq. (2) which represents the 
uncertainty score of this sample is defined as:

where I(·) is an indicator function. The resampled data with uncertainty score higher 
than a predefined threshold is regarded as low-quality data and filtered out in the pro-
posed SASMOTE algorithm. The inspectors are trained from M batched training sam-
ples. Specifically, the batched training samples are obtained by dividing the majority 
class to M subsets and combining each subset with the minority class. The number of 
inspectors controls the size of majority class in each batched training data. To achieve 
balanced data in each batch, the number of inspectors (M) is set as the ratio between 
majority samples and minority samples in the training data. The random forest algo-
rithm is used to train each inspector and the threshold of uncertainty score is a tuning 
parameter with default value at 0.5. The resampled data passing through the inspection 
is further integrated with the original training data to train a final classification model. 
The Algorithm 1 in Fig. 3 summarizes the proposed SASMOTE method including adap-
tive nearest neighborhood selection and self-inspection.

(2)S(xi) =
1

M

M

j=1

I(Rfj(xi) = majority class)
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Results
Datasets and experimental setup

The proposed method is applied to two classification problems in healthcare, where one 
dataset was curated for risk gene discovery of autism spectrum disorder (ASD) (Case 1) 
[5] and the other dataset was collected for fatal congenital heart disease (CHD) predic-
tion (Case 2) [25].

Case 1: ASD is a complex neurodevelopmental condition with a strong genetic basis, 
but the set of disease-associated genes implicated so far is still far from complete. To 
enhance the discovery of ASD genes, this study develops a classification-based approach 
to predict ASD risk genes using features from spatiotemporal gene expression patterns 
in human brain, gene-level constraint metrics, and other gene variation features [5]. The 
dataset was acquired from the BrainSpan atlas which is a foundational resource for stud-
ying transcriptional mechanisms involved in human brain development [5]. The dataset 
includes 1084 genes with 121 (11%) of them are ASD associated and 963 (89%) of them 
are irrelevant genes. Each gene contains 553 features representing the gene’s spatiotem-
poral expression value in 13 developmental stages in 31 brain regions, topological fea-
tures from gene coexpression networks, and gene-level constraint metrics that quantify 
the sensitivity of genes to variations.

Case 2: This study establishes a classification model to predict CHD risk using features 
from patient characteristics and lifestyle [25]. The dataset was obtained from the Ath-
erosclerosis Risk in Communities (ARIC) study which contains the Cohort Component 
and a Community Surveillance Component for four communities: (1) Forsyth Country, 

Fig. 3 The SASMOTE algorithm
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NC; (2) Jackson, MS; (3) Suburban Minneapolis, MN; and (4) Washington Country, MD 
[26]. The dataset size in this study is 10774 with 677 (6%) of them are patients diagnosed 
with CHD and 10097 (94%) of them are normal patients. Each patient data contains 37 
features representing patient characteristics and lifestyle behavior. Patient characteris-
tics describe a patient using educational level, sex, age, heart rate, blood pressure, etc. 
The lifestyle behavior records the daily activities of the patients such as alcohol intake, 
smoking status, total activity hours per week, etc.

To deal with the imbalanced datasets in two classification problems, the proposed 
SASMOTE algorithm is applied to oversample minority class such that the imbalanced 
ratio between the minority and majority classes is reduced to 50%. To demonstrate the 
advantages of SASMOTE, the proposed algorithm is compared with other four SMOTE-
based resampling algorithms, SASMOTE without visible neighbor selection (SASMOTE 
w/o visible), SASMOTE without inspection (SASMOTE w/o inspection), SMOTE and 
B-SMOTE. The classification model built on original imbalanced dataset is also consid-
ered as the baseline. In total, six classifiers are trained on the two datasets and compared 
in terms of prediction accuracy.

Evaluation metrics

In the experiment, the resampling algorithms are applied to the training data and the 
Random Forest algorithm is used to learn the classification models on each resampled 
training dataset. The Random Forest algorithm has shown its advantage over the other 
classification models on both risk gene discovery [5] and CHD prediction [27]. The pre-
diction accuracy of each classification model is evaluated through precision, recall and 
F-1 score. The 5-fold cross validation is applied to obtain the average and variation of 
model performance over different replications.

Prediction performance

Tables 1 and 2 compare the prediction accuracy of six different models on risk gene dis-
covery and CHD risk prediction respectively. Compared with the classification accuracy 
on original imbalanced data, all SMOTE-based resampling algorithms enable to enhance 
the precision and F1 score of the risk gene discovery and CHD risk prediction. This 
demonstrates the importance and benefits of oversampling the minority class in imbal-
anced data classification. Compared with the other SMOTE algorithms, three proposed 

Table 1 For case 1: Average F1 scores, precisions, and recalls of the risk gene prediction models 
built on SASMOTES, SASMOTE without visible neighbors, SASMOTE without inspections, B-SMOTE, 
SMOTE, and original datasets. The values in brackets represent the standard deviation (Std) in 5-fold 
cross validation. The proposed SASMOTE performs better on the average recall and F1 score, and the 
original dataset performs best on the average precision

Model Precision % (Std) Recall % (Std) F1 score % (Std)

SASMOTE 52.57 (8.19) 50.05 (5.38) 51.16 (6.32)

SASMOTE w/o invisible 50.34 (10.10) 49.37 (10.06) 49.72 (9.67)

SASMOTE w/o inspection 53.02 (12.30) 47.92 (11.80) 50.26 (11.94)

B-SMOTE 49.12 (10.16) 47.20 (8.76) 47.80 (8.12)

SMOTE 46.85 (11.89) 45.47 (10.97) 46.07 (11.19)

Original data 68.53 (9.31) 22.64 (6.06) 33.83 (7.70)
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algorithms further enhance the performance of precision, recall and F1 score. For the 
risk gene discovery case, based on the results in Table 1, the SASMOTE method is on 
average 7% better than B-SMOTE and 11% better than SMOTE for the F1 score. Also, 
it is on average 6% better than B-SMOTE and 10% better than SMOTE for the recall 
score. For the CHD risk prediction case, based on the results of Table 2, the SASMOTE 
method is on average 3% better than B-SMOTE and 6% better than SMOTE for the F1 
score. It is on average 9% better than B-SMOTE and 16% better than SMOTE for the 
recall score as well. This demonstrates the importance and effectiveness of incorporating 
the visible neighbor selection and inspection. Due to the heterogeneous distribution of 
data in different folds of cross validation and the randomness in resampling, the model 
performance has high standard deviation in both tables. The standard deviation in the 
performance of SASMOTE without inspection is higher than the other two proposed 
models, which indicates that the uncertainty via self-inspection algorithm is critical for 
reducing the randomness in resampling and enhance the robustness in classification.

To evaluate the performance of the proposed method under different imbalance ratio, 
we further simulate the training datasets with imbalanced ratio (number of minority 
samples/number of majority samples) ranging from 5% to 15% from the original data 
for Case 1 and 5% to 11% for Case 2. The datasets with imbalanced ratio lower than 
the original data are simulated by down sampling the minority data while the datasets 
with imbalanced ratio higher than the original data are simulated by down sampling the 
majority data. The performance of the SASMOTE algorithm and other benchmark mod-
els is illustrated in Figs. 4 and 5. The models trained on resampled datasets have better 
performance than the model learnt from imbalanced data under all imbalance ratios. For 
the risk gene discovery, the difference is enlarged when data is highly imbalanced with 
5% imbalanced ratio. For the CHD risk prediction, the difference is enlarged when data 
is highly imbalanced with 8% imbalanced ratio. Moreover, the proposed self-inspected 
adaptive SMOTE (SASMOTE) algorithm on average has better performance than other 
methods on F1 score under most imbalanced ratios in Figs. 4(a) and 5(a). Also, the SAS-
MOTE without visible neighbors selection and SASMOTE without inspections on aver-
age have better F1 score than the other SMOTE algorithms under most imbalanced 
ratios, indicating the effectiveness of the adaptive nearest neighborhood selection algo-
rithm and the inspection. Figure 4(b) shows that SAMOTE has better precision score on 
average than the other resampling methods under most imbalanced ratios. Figure 5(c) 

Table 2 For case 2: Average F1 scores, precisions, and recalls of the CHD risk prediction models 
built on SASMOTES, SASMOTE without visible neighbors, SASMOTE without inspections, B-SMOTE, 
SMOTE, and original datasets. The values in brackets represent the standard deviation (Std) in 5-fold 
cross validation. The proposed SASMOTE performs better on the average F1 score, and the SMOTE 
performs best on the average precision. The original dataset performs best on the average recall

Model Precision % (Std) Recall % (Std) F1 score % (Std)

SASMOTE 26.06 (4.12) 25.06 (3.31) 25.41 (2.86)

SASMOTE w/o visible 26.54 (3.16) 24.45 (2.51) 25.33 (1.85)

SASMOTE w/o inspection 26.04 (3.82) 23.32 (4.01) 24.47 (3.20)

B-SMOTE 27.32 (3.70) 22.94 (3.97) 24.72 (2.64)

SMOTE 27.34 (2.11) 21.58 (3.74) 23.94 (2.24)

Original data 6.28 (4.73) 1 (0) 11.82 (0.84)
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further shows the effectiveness of the proposed SASMOTE method since it leads to 
higher recall compared to the other resampling algorithms on average.

Sensitivity Analysis

To explore how the change of parameters affects the algorithm performance, we conduct 
sensitivity analysis on three different parameters including the number of nearest neigh-
bors K (% of the number of minority samples), the number of samples generated from 
each minority data N, and the threshold of uncertainty score T (%). The results shown in 
Tables 3, 4, and 5 are based on the experiments on the risk gene discovery study.

Table 3 illustrates the average F1 scores on different K values. It shows that when K 
is extremely low (i.e., 5%), the F1 scores on all SMOTE algorithms do not differ signifi-
cantly. However, this is not commonly used in reality as the number of nearest neighbors 

Fig. 4 For case 1: A F1 scores, B precisions and C recalls of the risk gene prediction models built on 
SASMOTE, SASMOTE without invisible neighbors (SASMOTE w/o visible), SASMOTE without inspections 
(SASMOTE w/o inspections), B-SMOTE, SMOTE, and without data resampling under different balanced ratios. 
The proposed SASMOTE performs better on the average F1 score under most imbalanced ratios. The original 
dataset performs best on the average precision, but worst on the recall and F1 score

Fig. 5 For case 2: A F1 scores, B precisions and C recalls of the CHD risk prediction models built on SASMOTE, 
SASMOTE without invisible neighbors (SASMOTE w/o visible), SASMOTE without inspections (SASMOTE w/o 
inspections), B-SMOTE, SMOTE, and without data resampling under different balanced ratios. The proposed 
SASMOTE performs better on the average F1 score under most imbalanced ratios. The B-SMOTE performs 
best on the average precision. The original dataset performs best on the average recall, but worst on the 
precision and F1 score

Table 3 Average F1 scores on different K values. The values in brackets represent the standard 
deviation (Std) in 5-fold cross validation. The proposed SASMOTE algorithms perform better on the 
average F1 score with respect to the value of K ranging from 10% to 75% while SMOTE performs 
better with respect to the value of K = 5%

Model K = 5% (Std) K = 10% (Std) K = 25% (Std) K = 50% (Std) K = 75% (Std)

SASMOTE 49.15 (9.02) 47.57 (9.80) 51.38 (8.49) 51.30 (5.99) 51.16 (6.32)

SASMOTE w/o visible 49.71 (9.79) 49.69 (9.82) 49.95 (7.58) 48.11 (7.76) 49.72 (9.67)

SASMOTE w/o inspection 46.81 (9.63) 48.57 (6.97) 50.38 (8.64) 51.38 (12.29) 50.26 (11.94)

B-SMOTE 48.84 (9.20) 48.63 (7.61) 48.02 (8.50) 46.14 (7.43) 47.80 (8.12)

SMOTE 49.73 (10.09) 47.84 (9.30) 50.15 (10.49) 48.69 (6.58) 46.07 (11.19)
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should be larger than the number of samples to be generated [9]. For the other K values, 
the proposed SASMOTE algorithms always have higher average F1 scores than the other 
SMOTE-based algorithms, which indicates the robustness of the proposed algorithm 
with respect to the value of K. When K is relatively large (i.e., 50% and 75%), the SAS-
MOTE algorithms with inspection have much lower standard deviations than the other 
resampling algorithms, which indicates the importance and effectiveness of quantifying 
the uncertainty of resampled data via inspection when K is large.

Table 4 represents the average F1 scores on different N values. It showcases that SAS-
MOTE methods on average has better performance than other SMOTE-based algo-
rithms under different settings of N. Even though they do not achieve the best F1 score 
in the case of N = 4 , they still have lower standard deviations than the B-SMOTE algo-
rithm. This indicates the effectiveness and robustness of the SASMOTE algorithms 
regardless of the size of synthetic minority samples. It also demonstrates the power 
of sample filtration from inspectors when the number of synthetic minority samples 
increases.

Table  5 compares the performance of SASMOTE method and SASMOTE without 
visible neighbors under different threshold of uncertainty score (T). SASMOTE per-
forms better than SASMOTE without visible neighbors on average when the threshold 
is between 50% to 60% while it performs worse when the threshold is between 75% to 
90%. This experiment suggests that SASMOTE without visible neighbors needs higher 
threshold of uncertainty since the low-quality samples can be generated from the invis-
ible nearest neighbors. SASMOTE, on the other hand, needs lower threshold of uncer-
tainty because the samples generated from the visible neighbors have higher quality. The 
average performance of both methods increases with respect to the threshold of uncer-
tainty score first and then decreases. This is due to the high threshold of uncertainty 
score can lead to smaller number of training samples, which potentially influences the 

Table 4 Average F1 scores on different N values. The values in brackets represent the standard 
deviation (Std) in 5-fold cross validation. The proposed SASMOTE algorithms perform better on the 
average F1 score with respect to the value of N = 1, 2, 3, 5 while B-SMOTE performs better with 
respect to the value of N = 4

Model N = 1 (Std) N = 2 (Std) N = 3 (Std) N = 4 (Std) N = 5 (Std)

SASMOTE 47.04 (7.22) 51.32 (7.70) 51.88 (6.60) 51.13 (8.51) 51.16 (6.32)

SASMOTE w/o visible 48.97 (7.90) 49.60 (10.14) 48.04 (8.48) 50.15 (8.55) 49.72 (9.67)

SASMOTE w/o inspection 48.85 (4.60) 48.30 (6.90) 53.34 (6.92) 46.56 (8.90) 50.26 (11.94)

B-SMOTE 44.76 (7.85) 49.37 (10.60) 49.31 (7.76) 51.17 (10.53) 47.80 (8.12)

SMOTE 45.59 (8.90) 46.31 (9.71) 47.72 (11.81) 50.03 (7.92) 46.07 (11.19)

Table 5 Average F1 scores on different threshold of uncertainty score T values. The values in 
brackets represent the standard deviation (Std) in 5-fold cross validation. The proposed SASMOTE 
algorithm performs better on the average F1 score with respect to the value of T ranging from 25% 
to 60% while the SASMOTE without visible neighbors performs better with respect to the value of T 
= 75% and T = 90%

Model T = 25% (Std) T = 50% (Std) T = 60% (Std) T = 75% (Std) T = 90% (Std)

SASMOTE 50.45 (9.12) 51.16 (6.32) 49.63 (7.22) 48.44 (7.04) 47.06 (6.65)

SASMOTE w/o visible 49.26 (8.76) 50.04 (8.22) 47.39 (7.48) 49.72 (9.67) 49.51 (7.31)
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classification accuracy. Therefore, 50% is the optimal threshold of uncertainty score for 
both SASMOTE and SASMOTE without visible neighbors algorithms.

Discussion
The resampling techniques, especially SMOTEs, are popular for solving imbalanced data 
classification problem in healthcare. However, existing SMOTE algorithms may gener-
ate “uncertain” samples that fall into to the wrong class due to the lack of selection of 
nearest neighbors used for sample generation and the lack of inspection of generated 
samples. To close this gap, this paper proposes a self-inspected adaptive SMOTE (SAS-
MOTE) algorithm. The proposed algorithm introduces an adaptive nearest neighbor-
hood selection algorithm to identify the “visible” neighbors for generating more accurate 
minority class samples. An uncertainty via inspection approach is further developed in 
the proposed method to measure the quality of resampled data and filter out the low-
quality ones. The proposed method is capable of generating high-quality resampled data, 
further improving the performance of machine learning models on highly imbalanced 
healthcare data and advancing the development of biomedical data mining.

By applying the proposed SASMOTE method to two real-world healthcare data-
sets, risk gene discovery and fatal congenital heart disease prediction, the SASMOTE 
method on average has better performance than the other SMOTE-based resampling 
algorithms, which demonstrates the advantages of using the “visible” neighbors and 
uncertainty via inspection. By comparing the SASMOTE method with and without self-
inspection algorithm, the uncertainty via self-inspection algorithm is found to be critical 
for reducing the variance in resampling and improving the robustness in classification. 
Furthermore, the SASMOTE method shows advantage on the average performance over 
other SMOTE-based resampling algorithms under different imbalanced ratios, and the 
advantage is more significant when the dataset is highly imbalanced. Through the sen-
sitivity analysis, we explored the effects of hyperparameters, including the number of 
nearest neighbors, number of generated samples, and threshold of uncertainty score, on 
the SASMOTE performance. The SASMOTE method is preferred when the number of 
nearest neighbors is relatively large and the threshold of uncertainty score needs to be 
carefully tuned for achieving better average performance.

The two case studies conducted in this study may not be able to cover all types of 
imbalanced data classification problems in healthcare. In the future, we will apply the 
proposed SASMOTE method to other applications, such as the rare disease predic-
tion [28, 29]. The proposed method is evaluated on two healthcare datasets without 
missing values. However, the missing value issue is commonly observed in most real 
healthcare datasets [30, 31]. Thus, we will also explore the robustness of the proposed 
method when facing with the missing values.
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