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Abstract 

Motivation:  Clustering of genetic sequences is one of the key parts of bioinformatics 
analyses. Resulting phylogenetic trees are beneficial for solving many research ques-
tions, including tracing the history of species, studying migration in the past, or tracing 
a source of a virus outbreak. At the same time, biologists provide more data in the raw 
form of reads or only on contig-level assembly. Therefore, tools that are able to process 
those data without supervision need to be developed.

Results:  In this paper, we present a tool for reference-free phylogeny capable of 
handling data where no mature-level assembly is available. The tool allows distance 
calculation for raw reads, contigs, and the combination of the latter. The tool provides 
an estimation of the Levenshtein distance between the sequences, which in turn 
estimates the number of mutations between the organisms. Compared to the previous 
research, the novelty of the method lies in a newly proposed combination of the read 
and contig measures, a new method for read-contig mapping, and an efficient embed-
ding of contigs.

Keywords:  Sequence similarity, Phylogeny, Levenshtein distance, Reads, Contigs

Introduction
The genetic code includes not only information about current organisms and their state, 
but it also contains enough information to trace the history of evolution. With phyloge-
netic trees that represent hypothetical evolutionary trees, one can, for example, trace the 
migration in the Middle East area [10], find a source of a virus outbreak [9], or solve a 
hundred-year-old argument between biologists, on the one hand claiming that a panda 
is a bear and biologists, on the other hand classifying panda as a raccoon [22].

Historically, biologists had to rely on phenotype to build such a tree. With advances 
in genome sequencing, DNA—the genuine source of differences between species—is 
used instead. Given a set of DNA sequences, their pairwise similarities can be computed 
through sequence alignment, enabling a subsequent construction of a phylogenetic tree 
through a hierarchical clustering algorithm.

However, obtaining the needed sequences from biological material is not straight-
forward. The DNA molecule is first cloned and cut into many short fragments. Then, 
we select fragments of a similar length, which are sequenced in parallel. The sequenced 
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fragments are called reads and the read length length is usually between tens to hun-
dreds of nucleotides. Since the read positions in the sequence are unknown, the in-sil-
ico assembly of the original sequence is based on detected overlaps between input read 
pairs. Typically, the sequence cannot be reconstructed entirely due to a part of it not 
being covered by enough reads, the presence of long repeat regions, or other reasons. 
As a result, instead of the original sequence, the algorithm produces a set of sequence’s 
non-overlapping substrings called contigs.

Additional wet-lab sequencing work is needed to move from contigs toward the tar-
get sequence. Usually, so-called mate-paired reads are sequenced. Those are two reads 
sequenced from the ends of a fragment of a known length. For some mate-pairs, the 
sequenced ends of the fragments can hopefully be located in two different contigs, 
which allows building a scaffold to order contigs and estimate gaps between them. Then 
a computationally expensive iterative procedure called gap-filling tries to align reads to 
the ends of the contigs to extend them.

The mentioned sequencing issues are avoided by the alignment-free approaches (AF) 
[39] that estimate the similarities from constant-length subsequences, called k-mers, 
which the input sequences are broken into. This principle naturally allows using raw 
reads on the input. The main advantage of the AF approaches is that they are, by order 
of magnitude, faster than the conventional sequence alignment methods [39]. A disad-
vantage is the obvious loss of information incurred by the breakage into k-mers. Indeed, 
the most promising area for the alignment-based approaches is when the alignment is 
applied to short, mutually similar sequences [39].

With decreasing costs of genome sequencing, more and more data are being pro-
duced, and researchers commonly publish their data in the form of read sets accompa-
nied by their partial assemblies, i.e., with a set of contigs. Here we contribute a method 
and a tool suitable for said kind of input data leveraging the assembled contigs but also 
all leftover reads not included in the contigs.

The method combines the advantages of conventional and AF approaches. The method 
allows distance estimation without the need to determine the complete sequences or 
to break the already assembled contigs into k-mers. Instead, the k-mers are used only 
to select prospective reads and contigs to apply alignment calculation on. In this way, 
the distance is evaluated on closely matching regions of the sequences. The proposed 
method does not assume the availability of any reference genome. By avoiding de 
novo assembly, the method requires smaller coverage than the conventional assemble-
then-align approach. Compared to the AF methods, the proposed method has a more 
straightforward connection to the evolutionary distance between the organisms as its 
goal is to estimate directly the number of point mutations that occurred between the 
species over time. While the presented approach is slower than the AF methods, the dis-
tances calculated by our method are closer to the reference solutions, and the results are 
usable in more cases.

This study uses some ingredients from our previous work. In particular, we follow 
up on the method [26, 28] that assumed the inputs to consist exclusively of reads and 
another one assuming only contigs on the input [27]. In contrast to these previous stud-
ies, the present proposal exploits both kinds of inputs synergically. The sequence simi-
larity computation is based on matching reads and contigs from the two input sequences 
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yielding four different matching cases. For read-read matching, we use the algorithm 
from [26]. For contig-contig matching, we adopt and improve the method [27]. The 
original method featured favorable accuracies of the computed estimates; however, the 
quadratic time complexity hindered its practical use. Here we provide an improvement 
of the technique achieving a speedup by order of one or two magnitudes without signifi-
cant influence on the quality of the estimates (Efficient contig-contig matching section). 
Read-to-contig and contig-to-reads matching strategies are novel contributions of this 
paper (Read-contig mapping, Contig-reads mapping, and Efficient read-contig matching 
sections).

The salient contribution of this paper is the integration of the four mentioned facets 
to provide the desired distance estimate (Avoiding redundancy and Combination of the 
measures sections). We present a robust method that leverages the assembled contigs of 
the input sequences, but when such contigs are not available, or they cover only a small 
part of the sequences, the method maintains good accuracy due to its ability to exploit 
raw reads as well.

Problem formalization
Here we formalize the problem tackled in the rest of the paper. Table 1 summarizes the 
notation of the main concepts.

A string is a sequence of symbols chosen from {a, g, c, t} . As we will not be concerned 
with sequences other than strings, the words string and sequence will be used inter-
changeably. The empty string is denoted as ε , |x| means the length of string x, and xy is 
the concatenation of strings x and y. If x = ps , then p is a prefix of string x, and s is a suf-
fix of it. If x = pys , then (p, s) is an occurrence of string y in string x. String y is a substring 
of string x if there is an occurrence of y in x. Two strings overlap if a non-empty prefix of 
one is a suffix of the other one. Two substrings x, y of z overlap in z if there exist strings 
u, v, w such that v is not empty, uvw is a substring of z, and x = uv, y = vw or y = uv , 
x = vw . So, e.g., ct and tg overlap in ctg but not in ctatg.

Given a set of strings S = {s1, s2, . . . , sn} , string s is a superstring of S if all si ( 1 ≤ i ≤ n ) 
are substrings of s, and given also K ∈ N , we define the bounded superstring problem fol-
lowingly: is there a superstring s of S such that |s| ≤ K  ? This problem is NP-hard [8].

Table 1  An overview of the notation used in the paper

symbols meaning

A, B genomic sequences

RA , R
′
A ( RB , R

′
B) read bags sequenced from A (B)

a, b a read from RA ( RB)

CA ( CB) contig set for A (B) assembled from RA ( RB)

α ( β) a contig from CA ( CB)

α∗ ( β∗) a substring of contig α ( β)

TA ( TB) RA , CA ( RB , CB ) tuple

dist(·, ·) Levenshtein distance function

distxy(·, ·) auxiliary (non-Levenshtein) distance functions, x, y indi-
cate the respective argument types: r - read, c - contig, 
R - read bag, C - contig set, T - read-contig tuple, T\R -
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Read a of sequence A is a short ( |a| ≪ |A| ) substring of A. Read bag RA of A is a bag of 
reads of constant length l ∈ N sampled i.i.d. with replacement from the uniform distri-
bution on all possible |A| − l − 1 substrings of A of length l. Coverage

indicates the average number of reads covering a particular position in A. Here, we 
assume a constant coverage for all read bags considered.

Contig α of sequence A is a substring of A, and contig set CA of A is a set of contigs of A 
such that no two contigs in CA overlap in A.1

The sequence assembly task is to reconstruct sequence A from its read bag RA . This 
general task statement does not allow any guarantees for an exact solution; one can-
not be, for example, sure that reads in RA cover all positions in A. Typically, a surrogate 
problem is, therefore, considered instead: find the shortest superstring of RA . While this 
formulation has a well-defined solution, it is, of course, at least as hard as the bounded 
superstring problem and, thus, NP-hard. As such, it is usually tackled in a heuristic man-
ner by the iterative merging of overlapping read pairs, generally resulting in multiple 
mutually disconnected assembled sequences (contigs) and a bag of remaining reads not 
used in the contigs.2

Let dist(A,B) denote the Levenshtein distance [16] between sequences A and B, i.e., the 
minimum number of operations insert, delete, and substitute needed to make the two 
sequences the same.3

The task we deal with in this paper is to estimate dist(A,B) given contig set CA and read 
bag RA of A, and the analogical inputs CB,RB for B. Again, stated this way, the problem 
does not provide any guarantees for the exact solution for reasons including incomplete 
coverage by reads, but also the fact that the sum of lengths of the input contigs may be 
larger than the original sequence length. Analogically to the sequence assembly task, we 
consider instead a surrogate problem defined in turn.

Given two contig sets, CA,CB , and two read bags, RA,RB , the partially assembled 
sequences distance problem (PASDP) is to determine dist(Ã, B̃) where Ã ( B̃ , respectively) 
is the shortest superstring of RA ∪ CA ( RB ∪ CB).

We now show that PASDP is NP-hard. Let (S, K) be an instance of the bounded super-
string problem. We will show that it reduces to PASDP. Let CA = CB = ∅ . Let RA = S 
and RB = ∅ . Then B̃ = ε and Ã is the shortest superstring of S. As B̃ is empty, by the defi-
nition of the Levenshtein distance,

(1)c =
l|RA|

|A|

(2)dist(Ã, B̃) = |Ã| = |shortest superstring of S|.

1  We adopt the assumption of contigs not overlapping in the original sequence from [31].
2  The resulting contigs and leftover reads may be concatenated in arbitrary order to produce the requested single super-
string, which—due to the heuristic nature of the algorithm—is not necessarily the shortest.
3  Under the molecular clock hypothesis, this function indicates the least possible number of mutations, which, in turn, 
approximates the evolutionary distance.
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The bounded superstring problem is answered positively if and only if dist(Ã, B̃) ≤ K  . 
Therefore, PASDP is at least as hard as the bounded superstring problem and thus is 
indeed NP-hard.

Related work
This research relates to alignment-free measures (AF measures). For sequence A, we can 
define the q-gram profile as vector QA

k  whose i-th component is equal to the number of 
occurrences of the i-th q-gram4 in A. The first AF measure, D2 , was proposed by [4] as 
simply the scalar product of QA

k  and QB
k  . Many other measures followed, including, DS

2 , 
D2z, [13, 25], differing mostly only in normalization or bias removal to capture the real 
nature of the data. A recent overview of the AF methods is in [39].

We will compare our approach with two state-of-the-art algorithms namely co-phylog 
[37], and Mash [23].

The co-phylog algorithm introduces a notation of C-gram subsequences. Each C-gram 
has one or more positions called O-grams. On C-gram positions, an exact match is 
required. On O-gram positions, any nucleotide is acceptable. For both sequences, a 
mapping is created from C-grams to corresponding O-grams. This mapping is then used 
to calculate the distance as similar sequences have a higher number of shared C-gram-
O-gram pairs.

The Mash algorithm is based on the hashing approach used originally for embedding. 
In its nature, Mash is very similar to the D2 measure. For each k-mer of the sequence, its 
hash is calculated. It is not guaranteed that two distinct k-mers have different hashes; 
however, this situation is not very likely-the algorithm then computes the Jaccard index 
of the set of hashes. The main advantage of the algorithm compared to the D2 measure 
is its effectiveness, as it is much easier to store the set of hashes in the memory than the 
whole set of k-mers.

The success of the alignment-free tools justifies the need for alignment-free and 
assembly-free tools. Review paper [39] mentioned more than 100 tools published in 
2017. The Mash tool meanwhile collected more than 1, 000 citations according to the 
publisher’s website.

Proposed method
The non-tractability of PASDP motivates a heuristic approach to compute a sub-optimal 
solution. To this end, we avoid any attempts to reconstruct A and B from the input reads 
and contigs, as these inputs are already assumed to be the ultimate outputs of an assem-
bly algorithm so further overlap-based assembly is futile.

To estimate the distance between the sequences, we will be matching strings (reads 
and contigs) from one sequence with those of the other. Each such match will yield 
a contribution to the final distance (dissimilarity function). We follow the “Occam’s 
razor” heuristic that for a string from one sequence, we should look for the clos-
est match in the other sequence to yield the distance contribution. This rationale is 

4  The q-gram and k-mer represent the same thing — a substring of length q (k).
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supported by the fact that if the original sequences were known, their dissimilarity 
would be computed under their best possible alignment.

The matching strategy differs for the four possible pairing sorts (refer to Fig.  1): 
read-to-read, read-to-contig, contig to one or more reads, and contig to one or more 
contigs. This section details them individually and also describes how the matching 
results integrate into the final distance estimate. Fig. 2 reveals the data flow among 
the methodological components.

Fig. 1  An overview of possible mappings between reads and contigs. A read can map either to a read (①, 
[28]) or a contig (②, Read-contig mapping section). Similarly, a contig can map to a part of another contig 
(③, [27]) or multiple reads (④, Contig-reads mapping section). Reads that were assembled to a contig do not 
need to be considered (⑤, Avoiding redundancy section)

Fig. 2  An overview of the algorithm with references to the corresponding sections and equations
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Contig‑contig mapping

Here we explain how we match two contigs by identifying a substring in each of them 
such that the two substrings have a small Levenshtein distance and also are sufficiently 
long. Then we elaborate on a matching between a contig and a contig set based on a 
dynamic programming procedure using the results of the contig-contig matches. Finally, 
we define the match between two contig sets.

There are two ways in which two contigs can be matched: 1) one is an (approximate) 
substring of the other, or 2) the two (approximately) overlap. We seek a match that is 
as long as possible, and at the same time, the distance of the matched parts should be 
as small as possible. This results in the minimization of the post-normalized Leven-
shtein distance, which is the ratio of the Levenshtein distance and the maximum of the 
sequence lengths. Formally, we define the match of two contigs α ∈ CA,β ∈ CB as

where

By symbols pref , suff , and sub , we mean the set of all non-empty prefixes, suffixes, and 
substrings, respectively. To avoid small random overlaps, a threshold5 of 20 is applied on 
lengths |α∗|, |β∗|.

For each contig α ∈ CA , we can calculate the match with each contig in CB . As con-
tigs represent non-overlapping subsequences of the genome, each symbol of α should be 
mapped to at most one contig from CB . For each α , we thus identify a set of contigs in CB 
that satisfies the said condition. This is achieved by a reduction to the weighted interval 
scheduling problem [14]. The latter is solved by an efficient dynamic-programming pro-
cedure (see [27] for details) and yields an admissible subset of matches for contig α:

Next, we define the set of all admissible matches for CA:

To calculate the distance between CA and CB , we sum the distances of the string pairs in 
match(CA,CB) (the nominator in (7)). Because the overlap lengths do not necessarily cor-
relate with sequence lengths, the measure is normalized6 (the denominator in Eq. (7)):

(3)match(α,β) = argmin
(α∗,β∗)∈S(α,β)

dist(α∗,β∗)

max{|α∗|, |β∗|}
,

(4)
S(α,β) = suff(α)× pref(β) ∪ pref(α)× suff(β) ∪ sub(α)× {β} ∪ {α} × sub(β).

(5)match(α,CB) ⊆ {match(α,β) | β ∈ CB}.

(6)match(CA,CB) =

α∈CA

match(α,CB).

(7)distC(CA,CB) =

∑

(α∗,β∗)∈match(CA,CB)
dist(α∗,β∗)

∑

(α∗,β∗)∈match(CA,CB)
max{|α∗|, |β∗|}

.

5  This number approximately matches free gap parameter t (which will be introduced in Read-read mapping section) for 
most common read length l = 100 and coverage between 2 and 3.
6  Note that this function has the range [0,  1] while the unknown distance between A and B is in the range 
[0,max{|A|, |B|}] ; we will address the scale in a later step in Eq. (17).
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Avoiding redundancy

Before we start with mapping reads to contigs, we need to filter out duplicate informa-
tion. There are two reasons for that — runtime and the aim to avoid bias caused by reus-
ing some parts of sequences twice. Firstly, contigs are generated from reads. There is no 
need to find matches for a read assembled into a contig since we already found a match 
for the contig.

To avoid this duplicate work, we re-define

To eliminate the reads that are substrings of a contig, we use the Aho-Corasick algo-
rithm [2], which builds an automaton on reads in RA and finds their occurrences in a 
single linear pass through a contig.

Secondly, if a part of contig α ∈ CA is matched with another contig in CB , we do not 
need to match it with reads in RB — we know that the counterparts are already in CB . 
Instead of CA , we work further with C ′

A that contains for all α only substrings of α that are 
not in match(α,CB) . In other words, let match(α,CB) = {(α∗

1 ,β1), (α
∗
2 ,β2), . . . , (α

∗
n ,βn)} , 

let α = α′
0α

∗
1α

′
1α

∗
2α

′
2 · · ·α

∗
nα

′
n , and let

be a set of all substrings of α that are not matched to any contig in CB . Then,

Read‑read mapping

We adopt the method from [28] based on the Monge-Elkan distance [18] to establish 
the distance function for two read bags. It follows the same spirit as above; in particular, 
each read a in RA is matched with the closest read in RB . Formally, the Monge-Elkan dis-
tance is defined as

The read-read distance distrr above is essentially the Levenshtein distance except for 
the following adjustment. Because read locations are random, the first t = 1

2

(

l
c − 1

)

 

leading or trailing gaps are not penalized in the alignment of two reads.7

The range of distME is [0;  l] as the function is the average of values in the said inter-
val. On the contrary, the Levenshtein distance is in the range of [0;max{|A|, |B|}] . In 
the experiments, we will use the scaled symmetric version of the distance, denoted 
distMESSG.

(8)R′
A ← RA \ {i ∈ RA | i is a substring of some α ∈ CA}.

match(α,CB) = {α′
0,α

′
1,α

′
2 . . . α

′
n}

(9)C ′
A =

⋃

α∈CA

match(α,CB).

(10)dist
ME

(RA,RB) =
1

|RA|

∑

a∈RA

min
b∈RB

distrr(a, b).

7  See [28] for the derivation of the value assigned to t.
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Read‑contig mapping

When aligning a read to a contig, the read can either overlap with one of the contig 
ends, or it can match a substring of the contig. Therefore, the match for the read can be 
defined as a substring of β that has the lowest distance from a but for borders where the 
first t margin gaps are not penalized. Otherwise, the read-contig distance is defined as

where β j
i denotes a substring of β that starts at i and ends at j.

Following the reasoning from Read-read mapping section, it is not desirable to penal-
ize leading or trailing gaps up to a certain length at contig ends. Therefore, we modify 
the Wagner-Fischer dynamic programming algorithm [34] so that it does not penalize 
the first t leading or trailing gaps caused by a random location of the read or different 
lengths of the contig and the read. The cost function used for the margin gap penalty is 
illustrated in Fig. 3.

Contig‑reads mapping

Here, the mapping is very similar to the one used in the previous section. There is, how-
ever, a slight difference — contig α is long, and as a result, there should be multiple reads 
b ∈ RB that map to α . By (1), there should be |α| · c/l reads on average. Therefore, we cal-
culate the distrc distance from α to all b ∈ RB and select the |α| · c/l minimum distances.

From Avoiding redundancy section, we know that we will use only unmatched sub-
strings α′ . Therefore, we define dissimilarity for α′ as

The formula above selects subset S of read bag R′
B that minimizes the sum of the dis-

tances between the reads and α′.

(11)
distrc(a,β) = min

i ∈ [2, |β| − l − 2],
j ∈ [i + 1, |β| − l − 1]

dist(a,β
j
i ),

(12)
dist
cR

(α′,RB) = min
{

S⊆R′B

∣

∣

∣
|S|=

⌊

|α′ |·c
l

⌋}

∑

b∈S

distrc(b,α
′).

Fig. 3  An illustration to (11). Instead of constant 1 (dashed line), the gap extension penalty on margins 
changes to the solid line. In this case, the cost-free margin gaps are t = 2  
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Combination of the measures

The final measure based on reads follows Eq. (10). For each read a′ ∈ R′
A , there should be 

exactly one match — either a read or a contig. We define the distance from a read to the 
closest read or contig as

The sum of (13) and (12) over all reads and contigs gives a pre-measure that contains 
all information captured in reads as

The denominator in Eq. (14) scales to [0, 1] interval and is calculated by substituting l 
for distance calculations.

In the next step, we will have to combine distTT\R(TA,TB) with the measure captur-
ing the distance between the contigs. To do so, we use a weighted average based on the 
part of the original sequences covered by the contigs. distC(CA,CB) uses only a part of 
sequence A, namely

On the contrary, the estimate of A length is |RA| · l/c . The weight assigned to the con-
tig-contig measure is, therefore,

The min operation is to prevent errors of assembly because there is no guarantee that 
the contigs will be shorter than the true sequence. We define pre-distance as

The final distance is the scaled (see Formula (1) — distTT is from the [0,  1] interval 
while dist(A,B) is from the [0,max{|A|, |B|}] interval) symmetric version

Efficiency improvements
Equation (17) gives a way to compute the distance. However, this method is too slow for 
practical use as it requires the alignment of all data in TA and TB . Most of those align-
ments are, however, not necessary as they do not count towards the minimum in (5), 
(10), and (12). Therefore, we will use only a carefully selected subset of alignments, as 

(13)dist
rT

(a′,TB) = min

{

min
b′∈R′B

distrr(a
′, b′), min

β∈CB

distrc(a
′,β)

}

.

(14)distTT\R(TA,TB) =

∑

a′∈R′A

distrT(a
′,TB)+

∑

α′∈C ′
A

distcR(α
′,RB)

l
(

|R′
A| +

∑

α′∈C ′
A

⌊

|α′|·c
l

⌋) .

|match|(CA,CB) =
∑

(α∗,·)∈match(CA,CB)

|α∗|.

(15)w = min

{

1, |match|(CA,CB) ·
c

|RA|l

}

.

(16)distTT(TA,TB) = wdistC(CA,CB)+ (1− w)distTT\R(TA,TB).

(17)dist(TA,TB) =
distTT(TA,TB)+ distTT(TB,TA)

2
·
l ·max{|RA|, |RB|}

c
.



Page 11 of 20Ryšavý and Železný ﻿BioData Mining           (2023) 16:13 	

illustrated in Fig. 4. Following [26], we use the technique of embedding reads to q-grams 
to filter out alignments that won’t count towards the output of the min operator. Recall 
the q-gram profile QA

k  of a string A defined in Related work section. The q-gram distance 
of A and B, denoted distq(A,B) , is the Manhattan distance of q-gram profiles of A and B, 
i.e., distq(A,B) = �QA

k −QB
k �1.

Informally, the q-gram distance counts how many substrings of length q are in one 
sequence and not in the other (or vice versa). The q-gram distance is a simple but effec-
tive approximation of the Levenshtein distance [33] as it holds that

While we need O(|A||B|) time to calculate the Levenshtein distance, the q-gram dis-
tance is much faster to compute: we need O(q + |A| + |B|)+ 4q) or only O(4q) if we 
precompute the q-gram profiles in advance.

Efficient read‑read matching

Calculating the edit distance between two reads with the Wagner-Fischer algorithm [34] 
(called Needleman-Wunsch [20] in the bioinformatics context) is very fast as reads are 
usually only hundreds of symbols long. However, the Monge-Elkan distance requires us 
to calculate the distance between all pairs of reads. We, however, need only the closest 
match in Eq. (10). Therefore, as a heuristic, we select a candidate for the match (there 

(18)dist(A,B) ≥
1

2q
· distq(A,B).

Fig. 4  The main idea of the efficiency improvements in Efficiency improvements section. Instead of pairwise 
alignment of all reads and contigs vs. all reads and contigs, we run the exact quadratic alignment only for 
a small subset of those. This subset of candidates is identified based on the q-gram distance, which runs in 
linear time. See Fig. 1 for meaning of the caption numbers
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may be more of them than one) under the q-gram distance for each read. Because of the 
typical read length, we use q = 3 . Once having only a few closest match candidates, we 
can calculate the exact Levenshtein distance.

Efficient read‑contig matching

Matching a read to a contig means finding the contig’s substring, which is the most simi-
lar to the read. Instead of the quadratic dynamic programming approach, we can exploit 
the q-gram distance and find a set of candidates in linear time. Then for this short sub-
string, we can call the exact quadratic alignment.

A naive implementation of the search under the q-gram distance requires a quadratic 
amount of work. This can be cut down to linear time using the sliding window method. 
Once we have calculated the q-gram distance for a prefix of length l of the contig, we 
can only update the distance by observing the first-to-add q-gram of the contig and the 
last-to-remove q-gram of the contig. Once we have the correct candidates, we trigger the 
exact quadratic alignment.

Efficient contig‑contig matching

We relax the matching problem by positing the following assumption. Referring to (3), 
we assume that for (α∗,β∗) = match(α,β) , it holds that |α∗| = |β∗| . This reduces the 
quadratic number of possible overlap candidates to a linear number.

We adapt the sliding window approach from the previous section that updates the cur-
rent distance only by two q-grams as contigs slide one against each other. This allows 
us to find a match candidate that minimizes the ratio of the q-gram distance over the 
length of the match. Once having this candidate, we can calculate the exact Levenshtein 
distance of the matching contig parts faster using Ukkonen’s cutoff heuristic from [32] 
and [3].

We now address the choice of q. In the two preceding sections, we compared 
sequences of fixed length l. Here, the overlap length grows up to the minimum of the 
contig lengths. According to study [19], the q-gram distance works well for sequences 
of length 4q . With longer sequences, the q-gram profiles start to get closer to a fixed dis-
tribution (uniform for random sequences). To avoid this bias towards the long overlaps, 
we need to switch between q values as overlaps get longer. For a value of q, we consider 
overlaps of length from the interval [4q−1, 4q+1] . However, direct comparison is still not 
possible, as our goal is to minimize the Levenshtein distance. Instead of comparing the 
ratio of distq over the overlap length, we divide this ratio by q, which is a direct result of 
(18).

Experiments
To evaluate the method, we run the algorithm on several real-world and simulated data-
sets. The simulated data will allow us to study the method under a wide range of cover-
age and read length, which is not available for real-world data.

Tested algorithms

The tested algorithms can be divided into several groups. The first group includes 
trivial baselines that should illustrate the complexity of the problem. This includes 
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max{|RA|, |RB|} , a simple upper bound on the Levenshtein distance, and the Levenshtein 
distance between the two longest contigs as produced by an assembly algorithm. Next, 
the comparison includes our previous work (distances distMESSG [28], distMESSGq [26], 
distC [27]), the newly proposed method dist (as of Eq. (17)), and distq (with improve-
ments from Efficiency improvements section, alternatively including downsampling 
denoted by α index). The state-of-the-art alignment-free approaches include Mash [23], 
d-type measures [5], and co-phylog [37]. The alignment-free approaches were initialized 
with the default set of parameters, and the d-type measures used k = 5 . The alignment-
free measures used only reads as input.

Any time contigs were used as an input in one of the methods, we used contigs calcu-
lated from the aforementioned read bags together with five assembly algorithms, namely 
ABySS [30], Edena [11], SPADES [21], SSAKE [35], and Velvet [38]. All assembly algo-
rithms were initialized with the default parameters whenever possible.

Used datasets

The influenza dataset consists of 13 real-world virus DNA sequences. Reads from those 
sequences are then sampled uniformly under the i.i.d. assumption. The sampling of reads 
was done for 20 coverage values in a range from 0.1 to 100. We used 14 read length val-
ues in a range from 3 to 500. The original sequences were used as a reference for distance 
calculation using the Wagner-Fischer algorithm [34]. The sequences were downloaded 
from the ENA repository [15] and were selected to contain similar virus genomes. The 
various dataset contains sequences of different viruses and undergoes the same proce-
dure. The hepatitis dataset contains 81 hepatitis sequences. This time, the read sampling 
was done with the ART program [12] for (α, l) ∈ {10, 30, 50} × {30, 70, 100}.

We use two real-world datasets. The first one contains sequences that are supposed to 
be completely different. We selected 20 kbp regions from the human DNA, each region 
from the beginning of one chromosome (excluding telomeres). For those regions, we 
selected reads that map to those regions. The reads come from the 1000 genome project 
[1]. The second real-world dataset, the e-coli dataset, contains 15 bacterial DNA of the 
same species. In this case, no official assembly for each of the read bags exists; therefore, 
we compare the algorithms in quantitative measures that do not need assembly.

Evaluation criteria

We evaluate the method in both qualitative as well as quantitative measures. The quali-
tative measures are represented by Pearson’s correlation coefficient and the Fowlkes-
Mallows index [7]. The first measure compares the similarity of the distance matrices by 
calculating the correlation coefficient on the distances to the reference distances calcu-
lated from the original sequences using the Wagner-Fischer algorithm [34].

The Fowlkes-Mallows index Bk is used to compare the resulting phylogenetic trees 
built by the neighbor-joining algorithm [29]. To calculate Bk , the tree is cut at level k to 
obtain several clusters. For the tested method and the reference, the clusterings are then 
compared. Besides the Fowlkes-Mallows index, the second method used to compare 
the trees is the triplets distance [6]. The distance counts how many times a set of three 
organisms form a tree of different topology.
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The quantitative measures compare how well the method performs in terms of time 
and how often the method produces a valid result (for low coverage, an assembly algo-
rithm may fail to produce any contigs, disqualifying all methods that depend only on 
contigs or calculation tool longer than the time limit of two hours (1 day on the hepati-
tis dataset)). Besides the finished cases, we measure the assembly time and the distance 
matrix time separately.

Results averaging

The influenza and various datasets contain reads for many coverages and read length 
values. This high range of coverage and read length was selected to show the behavior 
of the methods in extreme cases, for example in Fig. 5. For each coverage value (read 
length, respectively), we averaged the results. As extreme read length and coverage val-
ues are undesirable and likely to cause outliers, whenever we present an average, the 
average is calculated excluding the three most outlying values of read length (cover-
age). In such a case, the coverage spanned between 0.7 and 40, and the read length was 
between 15 and 100.

For both distance calculation time and Pearson’s correlation coefficient, we provide 
the average rank of the methods. This is because the time and correlation are hard to 
interpret, together with information on whether each algorithm calculated valid results 
within the time limit. Therefore, we sorted the results for each choice of coverage and 
read length, placing the methods that did not finish last together with the case when 
the correlation was not defined (i.e., all sequences were equidistant). Then the rank is 
defined as the number of better methods in the sorted list plus one. The rank was then 
averaged over coverage and read length values, as explained earlier.

Discussion
The main experimental results can be seen in Table  2. Besides that, Fig.  5 shows the 
dependency of the correlation between the reference and the predicted distances on 
read length and coverage. Table 3 shows experimental results on the e-coli dataset. Fig. 6 
shows how the Fowlkes-Mallows index depends on the depth in the phylogenetic tree.

The results shown in Table 2 indicate that method distq including the efficiency opti-
mizations from Efficiency improvements section, yields valid results in a broader range 
of cases than other methods. Compared to the alignment-free approaches, the method 
works well on both similar as well as dissimilar genomes, while the performance of the 
alignment-free approaches is worse on dissimilar genomes. Fig. 5 further illustrates that 
the method is capable of producing reasonable results for low-coverage data and very 
short reads.

Table 2 shows that compared to the previous versions of the method, the newly pro-
posed changes are faster. However, the method is, as expected, slower than the align-
ment-free methods. Compared to the assembly time, there were differences in the 
order of magnitude. However, it needs to be said that the assembly algorithms were 
used with default parameters, which allowed parallel computation by default. If we 
look at the E.coli dataset in Table 3, we see that the single-threaded implementation 
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Table 2  Summary of the results. The finished column shows how many times the distance 
calculation was successful for different choices of read length and correlation. The following 
columns contain average assembly time, distance matrix calculation time, Pearson’s correlation 
coefficient of distance matrices, the Fowlkes-Mallows index for k = 4 and k = 8 , and the triplets 
distance. Note that the triplets distance is calculated only on a sample of read length and coverage 
values on the influenza and various datasets. The averaged results are only for the situations 
when the method finished. The rank columns show the average rank of the methods in distance 
calculation time and correlation, including the situations when the method did not finish. The 
‘reference’ method calculates distances of the original sequences. We show only assembly 
algorithms that gave the highest and the lowest correlation. From d-type measures, the one 
with the highest correlation is selected. For an explanation of the rank column, see Evaluation 
criteria section

Data method finished assem.
ms

distances
ms

rank
distances

corr. rank
corr.

B4 B8 trip.d.

Influenza reference 112/112 0 2,602 29.2 1 1 1 1 0

max(|RA|,|RB|) 112/112 0 335 13.3 .801 46.5 .66 .32 57

distMESSG(RA , RB) 107/112 0 899,270 60.1 .983 9.7 1 1 5

distMESSGq 112/112 0 50,808 42.5 .966 27.9 1 .97 28

distCSPAdes 43/112 13,529 22,661 56.8 .973 49.4 .99 .93 8

distCSSAKE 68/112 2,079 17,735 48.5 .944 44.5 .97 .84 22

distSPAdes 112/112 12,380 625,883 56.7 .983 8.9 1 1 0

distVelvet 111/112 378 749,033 57.9 .971 29.1 1 .99 23

distqSPAdes 112/112 14,345 28,690 37.6 .971 23.1 1 .94 28

distqVelvet 112/112 446 22,478 37.7 .956 35.3 1 .97 38

Mash 112/112 0 101 9 .679 46.8 .44 .61 152

d∗2 112/112 0 389 18.3 .837 44.7 .4 .9 118

longestcontigSPAdes 43/112 13,529 1,465 48.2 .751 51.5 .71 .56 106

longestcontigVelvet 110/112 385 38 7.5 .569 53.8 .46 .23 133

Various reference 112/112 0 57,099 16.9 1 1 1 1 0

max(|RA|, |RB|) 112/112 0 847 4.1 .907 14.1 .85 .92 48

distMESSG 64/112 0 1,299,980 24.8 .933 13 .93 .93 19

distMESSGq 109/112 0 605,647 20 .927 8.7 .84 .97 42

distCSSAKE 108/112 1,235 749,197 20.7 .928 5.4 .84 .92 25

distCVelvet 34/112 17,783 1,239,632 25.5 .917 19.8 .88 .94 16

distEdena 69/112 168 1,681,308 24.6 .932 12.3 .92 .93 18

distSSAKE 64/112 568 1,635,059 26.1 .919 12.9 .83 .91 27

distqABySS 110/112 10,937 252,197 16.5 .919 11.7 .85 .93 39

distqSSAKE 111/112 2,231 428,540 17.9 .934 6.4 .84 .95 62

Mash 84/112 0 562 8.3 .664 17.8 .46 .34 344

d
q∗
2

109/112 0 721 8 .573 17.4 .32 .28 399

longestcontigSSAKE 108/112 1,235 385 3.5 .386 20.9 .48 .43 349

longestcontigVelvet 34/112 17,783 34,858 22.5 .681 21.4 .62 .5 329
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is comparable to the assembly time and by the order of magnitude faster than assem-
bly in the parallel version. Table 3 also shows that on 32 cores system, the speedup 
reached is more than 20 times.

Concerning the correlation, the method performs better on one dataset and worse 
on one dataset than our previous research. Compared to the alignment-free methods, 
the proposed method did better on two datasets while worse on one dataset.

The proposed changes improve the runtime up to three magnitudes. Note that in 
the case of the hepatitis dataset, the exact variant of the contig-based method finishes 
only in two cases, while the faster variant finishes in all cases.

The real-world experiments show that our method is successful in approximat-
ing the Levenshtein distance between the compared sequences. The experiments 

Table 2  (continued)

Data method finished assem.
ms

distances
ms

rank
distances

corr. rank
corr.

B4 B8 trip.d.

Hepatitis reference 9/9 0 1,748,984 16.9 1 1 1 1 0

max(|RA|,|RB|) 9/9 0 29,340 5.8 .181 19.3 .72 .83 24,017

distMESSG 9/9 0 42,332,682 21.1 .965 8.3 1 .9 4,407

distMESSGqα 9/9 0 1,118,585 15.4 .897 14.2 1 .94 4,543

distCSPAdes 2/9 76,514 31,517,537 23.1 .869 20.6 1 .89 7,361

distCVelvet 4/9 11,090 59,898,794 23.9 .98 14.6 1 .99 2,419

distEdena 0/9 NaN NaN 24.4 NaN 24.4 NaN NaN NaN

distqα ABySS 9/9 48,194 520,227 12.7 .957 10.6 1 .93 13,051

distqα SSAKE 9/9 88,516 615,615 14.2 .901 12.9 .96 .94 13,710

Mash 9/9 0 2,350 1.4 .967 8.1 1 .92 9,532

d
q
2

9/9 0 27,885 6.7 .973 5.1 1 .87 5,347

longestcontigEdena 9/9 7,038 1,581,613 15.6 .515 17.8 .92 .76 23,452

longestcontigVelvet 4/9 11,090 515 13.1 .296 21.3 .92 .47 51,443

Chroms reference 1/1 0 668,767 20 1 1 1 1 0

max(|RA|,|RB|) 1/1 0 2,184 13 .331 18 .61 .3 880

distMESSG 1/1 0 23,758,416 24 .848 14 .58 .26 923

distMESSGqα 1/1 0 202,517 19 .825 15 .9 .25 939

distABySS 1/1 17,838 24,085,638 25 .911 6 .64 .34 707

distSPAdes 1/1 22,898 23,757,934 23 .873 13 .68 .21 968

distqα SPAdes 1/1 22,898 127,061 16 .881 11 .81 .33 991

distqα SSAKE 1/1 51,604 126,565 15 .914 4 .81 .21 987

Mash 1/1 0 173 3 .33 19 .6 .38 787

d
q∗
2

1/1 0 697 6 .959 2 .81 .32 1,083

longestcontigVelvet 1/1 7,866 31 1 .574 16 .81 .4 1,007

The boldface numbers mark three best results on each dataset

Please note, that some of the marked results might be in the Supplementary materials
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show that the method requires coverage of 2. Potential benefits, therefore, include 
a possible reduction of the wet lab sequencing, no need to use high coverages or to 
sequence mate pairs. The method is applicable to viral genomes or shorter bacte-
ria genomes. Figure 5 has also shown that the correlation is high for read length of 
10. This might be useful in some applications; for example, publication [17] justi-
fies the need to use assembly-free, alignment-free, and reference-free tools by MiSeq 
[24] sequencing of rapidly mutating RNA viruses. Nevertheless, Fig. 5 shows that the 
possible conditions when our method works are much wider.

Our methods had two assumptions. The first one was that the read length l is the 
same for all reads. This can be justified by the fact that many of the sequencing tech-
nologies (including Illumina) read in each iteration a single nucleotide. As a result, 

Fig. 5  Plot of the average Pearson’s correlation coefficient for several choices of coverage (top plot) and read 
length (bottom plot) on the influenza dataset. See the Supplementary materials for the results on the various 
dataset

Fig. 6  Plot of dependence of quality of the phylogenetic tree on depth in the tree. To calculate the 
Fowlkes-Mallows index Bk , the tree is cut at level k and the clusterings are compared
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all reads are sequenced with the same read length. The assumption that the coverage 
is equal for all samples is usually not met. Hence, in our publicly available imple-
mentation, this requirement is not enforced and can be replaced by either providing 
per-read-bag coverage or estimating the lengths of each genome. For our analyses, 
especially in the artificial datasets, we assumed that the reads are generated uni-
formly, which is usually not exactly true [36].

Conclusion
We have presented a method capable of calculating sequence distances for inducing 
phylogenetic trees from reads and/or contigs of the input sequences. The method works 
universally for a wide range of coverage, read length, and similar and dissimilar organ-
isms. Compared to the alignment-free approaches, the method turned out slower but 
performed better in terms of the correlation of the computed distance matrix with the 
ground truth. Also, the new method has a more straightforward interpretation in terms 
of the number of mutations needed to transform one genome into another.
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