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Abstract 

Background: Automated data analysis and processing has the potential to assist, 
improve and guide decision making in medical practice. However, by now it has not 
yet been fully integrated in a clinical setting. Herein we present the first results of 
applying algorithm-based detection to the diagnosis of postoperative acute kidney 
injury (AKI) comprising patient data from a cardiac surgical intensive care unit (ICU).

Methods: First, we generated a well-defined study population of cardiac surgical ICU 
patients by implementing an application programming interface (API) to extract, clean 
and select relevant data from the archived digital patient management system. Health 
records of N = 21,045 adult patients admitted to the ICU following cardiac surgery 
between 2012 and 2022 were analyzed. Secondly, we developed a software function-
ality to detect the incidence of AKI according to Kidney Disease: Improving Global 
Outcomes (KDIGO) criteria, including urine output. Incidence, severity, and temporal 
evolution of AKI were assessed.

Results: With the use of our automated data analyzing model the overall incidence 
of postoperative AKI was 65.4% (N = 13,755). Divided by stages, AKI 2 was the most 
frequent maximum disease stage with 30.5% of patients (stage 1 in 17.6%, stage 3 in 
17.2%). We observed considerable temporal divergence between first detections and 
maximum AKI stages: 51% of patients developed AKI stage 2 or 3 after a previously 
identified lower stage. Length of ICU stay was significantly prolonged in AKI patients 
(8.8 vs. 6.6 days, p <  0.001) and increased for higher AKI stages up to 10.1 days on aver-
age. In terms of AKI criteria, urine output proved to be most relevant, contributing to 
detection in 87.3% (N = 12,004) of cases.

Conclusion: The incidence of postoperative AKI following cardiac surgery is strikingly 
high with 65.4% when using full KDIGO-criteria including urine output. Automated data 
analysis demonstrated reliable early detection of AKI with progressive deterioration of 
renal function in the majority of patients, therefore allowing for potential earlier thera-
peutic intervention for preventing or lessening disease progression, reducing the length 
of ICU stay, and ultimately improving overall patient outcomes.
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Graphical Abstract

Background
The application of tools from modern medical informatics to existing data sets from 
routine care is an emerging field in medicine. Promises in this area range from the 
improvement in diagnosing conditions with subtle clinical representation to an accu-
rately description of patient populations. Basis for such improvements is the auto-
mated extraction and accurate analysis of this data in a privacy-compliant manner [1].

Furthermore, automated data extraction from an existing database can serve as 
a solid basis for training machine learning algorithms. These have proven to be an 
exceedingly useful tool in the clinical setting over the past years with regards to early 
diagnosis, recognizing developing complications and ultimately improving patient 
outcomes especially in an intensive care setting [2].

Diagnosis itself is partially subjective and often based on subjective reasoning, 
therefore directly dependent on the physician and individual experience. This inte-
grated process will most likely never become fully automated, at least not in the 
near future. On the other hand automated data processing can assist the clinician 
in arranging, and highlighting the relevant information in a timely manner. Current 
efforts are geared toward reducing the physicians’ workload and minimizing human 
error [3].

The current project relates to the implementation of a software to automatically 
detect AKI according to full KDIGO-criteria including urine output in a postopera-
tive ICU-setting following cardiac surgery.

It’s known that AKI is associated with a high mortality rate up to 60% on ICU and up 
to 1 year after discharge, making early detection and prevention crucial [4–7]. In the last 
50 years, the mortality of ICU patients on kidney replacing therapy (KRT) has unfortu-
nately not significantly improved and remains very high [8]. Although the incidence of 
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AKI is high and associated with worse outcomes, it is often underestimated and fre-
quently under-reported [9]. In addition, reported AKI rates show wide variations as the 
diagnosis is often based on serum creatinine values alone as is often seen in studies of 
automated AKI detection [10]. However, not considering urine output in the diagnosis 
of AKI can significantly underestimate incidence and mortality [11].

Previous studies state that automated AKI detection and prediction can outperform 
human predictive performances [3].

In this study, we performed a retrospective descriptive analysis of a monocentric 
patient cohort at a cardiac center in southern Germany. The series includes N = 21,045 
intensive care patients undergoing cardiac surgery and was designed to include data 
on individual patient condition, comorbidities, and aggravating factors in addition to 
static and dynamic parameters and medication. The main objective of this work was, 
besides a feasibility analysis regarding the application of algorithm-based AKI detec-
tion on already existing data, caption of the true AKI incidence according to full KDIGO 
criteria including urine output of cardiac surgery ICU patients and a description of the  
generated cohort.

This holds great potential to provide insights into hospital processes and AKI disease 
progression. Furthermore, reliable detection is a fundamental cornerstone for imple-
menting an artificial intelligence (AI) based prevention program that could ultimately 
help in early prediction of AKI onset using real-time data.

Methods
Endpoint definition of acute kidney injury

For detecting AKI at any stage, we followed the international definition of AKI accord-
ing to the KDIGO criteria and implemented a corresponding software functionality 
(see Table 1). AKI is assumed when at least one of the defined criteria, that is, increased 
serum creatinine level, decreased urine output or initiation of KRT, are met in an inde-
pendent manner. Whenever more than one criterion simultaneously indicates a disease, 
only the higher AKI stage is considered in further analysis.

Data collection and processing

Primary data source for this work was the archive database of our internal digital patient 
documentation management system (PDMS). Data collected included general patient 
information (e.g. age, sex, weight), clinical (comorbidities, medication) and laboratory 
data. Unlike most related work, we used full KDIGO criteria in defining of AKI includ-
ing urine output. Thus, we were not only dealing with data collected via automated 

Table 1 KDIGO definition of AKI

Definition of AKI according to KDIGO definition including urine output

Stage Creatinine Urine output Dialysis

AKI 1 baseline multiplier ≥1.5 AND ≤ 1.9 
OR ≥ 0.3 mg/dl increase

<  0.5 ml/kg/h for 6-12 h

AKI 2 baseline multiplier ≥2.0 AND ≤ 2.9 <  0.5 ml/kg/h for ≥12 h

AKI 3 baseline multiplier ≥3.0 OR ≥ 4.0 mg/dl 
AND ≥ 0.5 mg/dl increase

< 0.3 ml/kg/h for 24 h–48 h initiation of dialysis
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transmission protocols using so-called Digiboxes or HL7 interfaces, but also with manu-
ally entered values. Nonetheless, to ensure high information quality, we preprocessed 
the extracted data in a three-step manner as depicted in Fig. 1, resulting in the described 
study population. Roughly speaking, patient exclusion criteria were (1) no documented 
heart surgery, (2) missing or invalid data and (3) improper data for use. Please find a 
detailed list of applied constraints in the supplemental appendix. Furthermore, as the 
risk factors and comorbidities were predominantly available as free-text signals, we 
implemented a mapping protocol concordant with International Classification of Dis-
eases 10th Revision (ICD-10) Standards [12] for a set of AKI related diagnoses (see Sup-
plemental Appendix). Finally, AKI stages were calculated at the time of every extracted 
urine, serum creatinine and dialysis related based on the corresponding rule. In doing 
so, urine outputs were normalized with (interpolated) body weights and derived for the 
required time windows. Regarding serum creatinine, we set the baseline to the first level 
obtained from our PDMS. Reasons were lacking of documentation of pre-surgery levels 
and the fact that creatinine levels shortly after surgery are unlikely to be greatly different 
from baseline level because of the time-dependent nature of accumulation of by-prod-
ucts in the absence of adequate kidney filtration. To better monitor the detection pro-
cess, we further developed a Graphical User Interface (GUI) and combined all detections 
in a commutative manner (see Fig. 2). As we could not re-construct the exact time of 
ICU admission and discharge due to lack of documentation, each patient’s observation 

Fig. 1 Summary of cohort generation. Patients were excluded with (1) surgery type other than heart related 
(2) with missing or invalid data, e.g. no birth year, inconsistent timestamp, unrealistic age, (3) improper data 
for use, e.g. unclear case, insufficient AKI signals, dialysis before ICU
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period commences with the first available timestamp of ICU signals across all avail-
able dynamic indicators (e.g. blood pressure, heart rate) and continues to the last sig-
nal within a period of 14 days. This approximates the total duration of ICU stay with an 
adequate degree of precision. Throughout this process, we ensure compliance with data 
protection regulations by de-identifying extracted information and referring to patients 
by numeric IDs. Technically, we used R v4.1.3 [13] for building the APIs and subsequent 
data analysis. Instead, database queries relied on joined statements built with Structured 
Query Language (SQL).

Results
Cohort description

The cohort consists of patients of the Robert Bosch Hospital (Stuttgart, Germany) 
admitted to the ICU after cardiac surgery between 2012-04-19 and 2022-07-14. After 
screening N = 24,415 potential study participants, we obtained a cohort comprising 
N = 21,045 distinct patients (see Fig.  1). Health records were analyzed for the first 
days following admission to the ICU (maximum 14 days), commencing with the 
datetime of the first available ICU signal. These records comprised data from both 
the ICU and intermediate care (IMC) as they both use the same PDMS and conse-
quently the same database. As a result, the median (interquartile range (IQR)) time 

Fig. 2 Visualization of the automated AKI detection process on an exemplary patient during ICU stay. In the 
first row the graphic depicts the cumulative maximum of the AKI detection by any information derived from 
the creatinine, urine and dialysis signal. Instead, the first row of the columns below shows the result of the AKI 
detection based on a single method. The remaining plots in each column from left to right show: the relative 
change in creatinine value from the selected baseline along with critical limits, the raw creatinine value along 
with red markers indicating critical increases from the observed minimum in the last 48 hours, the calculated 
urine output over different time windows in hours along with critical limits, the urine volume normalized by 
the body weight and a binary indicator of the need for dialysis. In all partial images, the x-axis describes the 
days since ICU admission
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on ICU (including IMC) was 7.8 (5.8, 11.8) days. The patients were predominantly 
male (71.5%) and we found a median (IQR) age of 71 (62, 78) years at the time of ICU 
admission. Regarding patient’s comorbidities and risk factors related to AKI, 72.1% of 
patients had at least one of these documented, with chronic ischaemic heart disease 
(N  = 10,678, 50.7%) and essential (primary) hypertension (N  = 8693, 41.3%) being 
the most frequent. In turn, chronic kidney disease was evident in only 7.7% of the 
patients. Comparatively few patients received nephrotoxic medication, with Ibupro-
fen and Vancomycin being the most common, accounting for 2.6 and 2% of patients in 
the cohort, respectively. Please be referred to Table 2 and the supplemental appendix  
for details on the comorbidities and risk factors as well as on our assessment of 
nephrotoxic drugs.

Table 2 Comorbidities and risk factors dissected by subgroups after AKI detection

Note that except for total cohort, only patients with at least one considered comorbidity or risk factor are considered. 
Percentages are computed with N of each subgroup
a Pearson’s Chi-squared test

Total cohort Disease group AKI stages

Comorbidities/
risk factors

ICD10 N % AKI (%)
N = 11664

No AKI (%)
N = 3516

p-valuea AKI 1 (%)
N = 2848

AKI 2 (%)
N = 5689

AKI 3 (%)
N = 3127

Chronic 
ischaemic heart 
disease

I25 10,678 50.7 71.6 66.1 < 0.001 71.6 73.1 68.9

Essential  
(primary)  
hypertension

I10 8693 41.3 57.5 56.6 0.361 55.2 59.0 56.7

Disorders of  
lipoprotein 
metabolism  
and other  
lipidaemias

E78 4425 21.0 28.6 31.0 0.007 29.4 29.1 27.0

Unspecified  
diabetes mellitus

E14 3621 17.2 24.9 20.3 < 0.001 21.9 25.1 27.4

Nonrheumatic  
aortic valve  
disorders

I35 3458 16.4 23.4 20.8 0.002 23.1 23.5 23.3

Nonrheumatic  
mitral valve  
disorders

I34 2661 12.6 17.2 18.8 0.027 18.2 16.3 17.8

Atrial fibrillation  
and flutter

I48 2625 12.5 19.1 11.4 < 0.001 15.9 19.4 21.4

Chronic kidney  
disease

N18 1622 7.7 12.3 5.5 < 0.001 10.2 10.0 18.3

Obesity E66 1533 7.3 11.0 7.1 < 0.001 7.2 12.1 12.4

Atherosclerosis I70 1204 5.7 8.2 7.1 0.033 8.0 7.9 9.0

Other chronic  
obstructive  
pulmonary  
disease

J44 878 4.2 6.1 4.8 0.006 5.9 6.2 6.0

Sleep disorders G47 548 2.6 3.9 2.6 < 0.001 2.9 4.2 4.2

Acute and  
subacute  
endocarditis

I33 508 2.4 3.7 2.2 < 0.001 2.7 3.1 5.7

Aortic aneurysm  
and dissection

I71 316 1.5 2.4 0.9 < 0.001 1.9 2.1 3.5
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Automated AKI detection

By our detailed analysis we were able to investigate the time and severity of each AKI 
event in great detail. Because different AKI criteria can be met several times within the 
period of ICU stay, after further analysis we distinguish between the first AKI (first_AKI) 
as the first detection of AKI within the observed ICU stay and further specify the time 
(first_AKI_time) and stage (first_AKI_stage) if necessary. In an analogous way, we denote 
the maximum AKI (max_AKI) as the time (max_AKI_time) and stage (max_AKI_stage) 
of the highest AKI level detected within a patient’s ICU stay. Overall, our implemented 
automatic AKI detection revealed N = 13,755 (65.4%) patients showing signs of at least 
AKI stage 1 or worse within the considered length of ICU stay and according to the 
international definition of KDIGO.

Temporal course and development of the degrees of AKI severity

Regarding the patients’ first detection, the distribution of AKI stages was as follows: 
For N = 9984 patients (47.4%), AKI progression commenced with stage 1. In much 
lower proportions, AKI occurred initially already at stage 2 (11.1%) or stage 3 (6.8%). 
In terms of the patients’ max_AKI_stage, N  = 6423 (30.5%) developed stage 2 as 
the final severity. Stage 1 and 3 were detected considerably less as max_AKI_stage, 
namely in merely 17.6 and 17.2% cases, respectively. Similarly, after dividing max 
AKI stages per days (see b) Fig.  3): Stage 2 was the most frequently observed AKI 
stage across the first 3 days (18.9, 25.9, 28.1%), followed by stage 1 and finally 3. 
Despite the relatively coarse temporal resolution of 24 hours, disease dynamics were 
clearly observable, i.e. on each day, a noticeable proportion of patients either ini-
tially developed AKI or exceeded their previous maximum stage. The latter explicitly 
suggests that disease progression in most AKI patients corresponded to a gradual 

Fig. 3 Evolution of AKI deterioration. a Kaplan Meier representation of first and max detected AKI over time 
both for any stage (a) and with respect to each individual stage (a.1–3). Here, max AKI does not refer to a 
specific day, but to the entire ICU time window of 14 days. For clarity, the x and y labels of the subfigures have 
been removed but can be taken from the main plot. b Sankey plot of max AKI evolution within first three 
days. Each bin represents the proportion of patients developing no (gray), 1 (green), 2 (blue) or 3 (red) as max 
AKI stage up to a specific day on ICU after admission. For clarity, bin values less than 1% have been removed
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deterioration with at least one intermediate stage. Particularly, only 14.4% of patients 
developed AKI 2 or 3 without a previously identifiable lower stage. As a result, the 
median number of days was 0.3 (stage 1 to stage 2, N = 4826), 1.3 (stage 1 to stage 3, 
N = 1451) and 0.5 (stage 2 to stage 3, N = 747).

Furthermore, Fig.  3 a) underlines that the magnitude of the temporal divergence 
between the first and maximum AKI stage is dependent on the window of examination. 
For 36.2% of the cohort, the first detection occurred within the first day, i.e. first_AKI_
time was less than or equal to 1 day. Conversely, only 21.2% of patients already developed 
their max AKI stage within this timeframe. This discrepancy could potentially enable 
early therapeutic interventions, e. g. already evaluated KDIGO recommendation-based 
bundles [14], for 15% of patients before AKI progression continues beyond initial stages. 
Including the second day, however, the difference between patients who had already 
developed the first and maximum stages was reduced to 7% and continued to shrink 
in the subsequent days. When breaking down disease evolution into stages (see a.1–3)  
Fig. 3), we found that the proportion of patients developing AKI initially with a stage 2 
or 3 after the second day is quite low. However, this is not true for the max_AKI_stage, 
which takes considerably more days to develop. Contrastingly, 17.4% of patients devel-
oping AKI 1 as initial stage show a first_AKI_time greater than 2 days. This further 
underlines the importance of automatic detection over several days.

Comparison of AKI criteria

As we follow the international definition of acute kidney injury according to the KDIGO 
guidelines, our automated AKI detection relies on three different indicators: drop 
in urine output, rise in serum creatinine level and initiation of KRT (see Table 1). We 
assessed the relevance of these indicators using three metrics: total contribution and 
specifically the contribution to the detection of max_AKI_stage both generally and time-
dependent. Overall, we found that the urine output indicator turned out to be the most 
relevant. Quantitatively, the criterion contributes in N = 12,004 cases, which is quite 
remarkable as it corresponds to 87.3% of the individual patients developing at least stage 
1. In fact, in N = 11,665 patients, the urine criterion was the first criterion met when 
an AKI stage was first detected, followed by a triggered serum creatinine rule at a later 
timestep in 3950 cases. Moreover, in 55.9% of all patients, the max_AKI_stage was at 
some point detected by a drop in urine output (here, not necessarily exclusively). In 
97.6% of these cases, the time of detection corresponds to max_AKI_time, which is to 
say whenever the urine criterion was met, it was most likely the criterion that was met 
first. To further substantiate these findings, Table 3 compares the AKI criteria divided 
by stages and in an exclusive manner. Strikingly, in 95.5% of cases where max_AKI_stage 
was AKI 2, max_AKI_time is analogous to the time the urine criteria needed to be met. 
The remaining 4.5% are solely attributable to a rise in creatinine level as the KRT rule 
directly and exclusively implies AKI 3.

Characterization of subgroups

In order to compare patients’ characteristics after applying automatic AKI detection, we 
divided our cohort into different (sub-) groups: AKI and no AKI group as well as a group 
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for each possible max_AKI_stage. The significance of the discrepancy between the AKI 
and no AKI group was validated with either appropriate categorical or numerical statis-
tical tests and reported by p-values with significance levels of 5% (see Table 4).

Table 3 Comparison of AKI detection across each KDIGO criteria

Distinction is made between the general detection of a patient’s max AKI stage and the explicit time of detection. 
Percentages are computed with N of each subgroup

Disease group AKI stages

Characteristic AKI (n, %)
N = 13755

AKI 1 (n, %)
N = 3707

AKI 2 (n, %)
N = 6423

AKI 3 (n, %)
N = 3625

Detection of max_AKI_stage

 Drop in urine output 10,284 (75%) 2023 (55%) 5862 (91%) 2399 (66%)

 Rise in creatinine 1845 (13%) 1272 (34%) 273 (4.3%) 300 (8.3%)

 Drop in urine output and rise in creatinine 835 (6.1%) 412 (11%) 288 (4.5%) 135 (3.7%)

 Drop in urine output and initiation of dialysis 
and rise in creatinine

334 (2.4%) 0 (0%) 0 (0%) 334 (9.2%)

 Drop in urine output and initiation of dialysis 313 (2.3%) 0 (0%) 0 (0%) 313 (8.6%)

 Initiation of dialysis 72 (0.5%) 0 (0%) 0 (0%) 72 (2.0%)

 Initiation of dialysis and rise in creatinine 72 (0.5%) 0 (0%) 0 (0%) 72 (2.0%)

First detection of max_AKI_stage

 Drop in urine output 11,484 (83%) 2388 (64%) 6132 (95%) 2964 (82%)

 Rise in creatinine 2032 (15%) 1319 (36%) 291 (4.5%) 422 (12%)

 Initiation of dialysis 239 (1.7%) 0 (0%) 0 (0%) 239 (6.6%)

Table 4 Characterization of subgroups after AKI detection

Percentages are computed with N of each subgroup. Distinction is made between general patient info (age, sex), length of 
ICU stay, medication and comorbidities.
a Wilcoxon rank sum test; Pearson’s Chi-squared test

Total cohort Disease group AKI stages

Characteristic N = 21045
Median (IQR) 
/ n (%)

AKI 
N = 13755
Median (IQR) 
/ n (%)

No AKI 
N = 7290
Median 
(IQR) / n (%)

p-valuea AKI 1 
N = 3707
Median (IQR) 
/ n (%)

AKI 2 
N = 6423
Median (IQR) 
/ n (%)

AKI 3 
N = 3625
Median (IQR) 
/ n (%)

Age at  
admission

71 (62, 78) 72 (63, 78) 70 (61, 78) < 0.001 72 (63, 78) 72 (63, 78) 72 (64, 78)

Male 15,048 (72%) 10,010 (73%) 5038 (69%) < 0.001 2724 (73%) 4667 (73%) 2619 (72%)

Length ICU 
stay (day)

7.8 (5.8, 11.8) 8.8 (6.1, 12.5) 6.6 (4.9, 9.4) < 0.001 7.6 (5.9, 11.1) 8.8 (6.2, 12.1) 10.1 (6.9, 13.5)

Number  
of drugs  
administered

18 (13, 24) 21 (16, 27) 13 (3, 18) < 0.001 18 (14, 22) 21 (17, 27) 24 (18, 34)

Number 
of patients 
receiving 
nephrotoxic 
drugs

1374 (6.5%) 1097 (8.0%) 277 (3.8%) < 0.001 200 (5.4%) 489 (7.6%) 408 (11%)

Number of 
different AKI 
comorbidities/ 
risk factors

2 (0, 3) 2 (1, 4) 0 (0, 2) < 0.001 2 (1, 3) 3 (1, 4) 3 (1, 4)
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Patient info and ICU stay

With a median age at admission of 72 years (IQR 63, 78), patients developing AKI 
at any stage were significantly older than patients without detected AKI (p <  0.001). 
Similarly, there was a significant male predominance developing AKI. In contrast, we 
cannot report any clear age and gender differences with respect to a patient’s max_
aki_stage. Not surprisingly, AKI patients showed a significantly longer ICU stay – 
median 2.1 days longer compared to the no AKI group (p <  0.001). Similarly, there is 
a significant increase in length of ICU stay (median days) when maximum stages are 
considered, starting with the lowest stage (7.6) up to AKI 3 (10.1).

Medication

Patients developing AKI seemed to receive a significantly higher median number 
(AKI, no AKI) of medication during ICU stay (21, 13). The difference in the number 
of patients receiving nephrotoxic drugs was significantly greater in the AKI group as 
well, at N = 1097 compared to N = 277 for patients without any AKI. Of far greater 
importance, however, is considering the administration of nephrotoxic medications 
with relation to the timing of AKI detections. We have found that the administration 
of nephrotoxic drugs after the first automatic detection of an AKI stage decreases as 
the condition progresses. That is, N = 574 patients received at least one nephrotoxic 
drug after the first detection of an AKI 1. By comparison, after the first detection of 
stage 2 and 3, we found N = 476 and N = 221 patients, respectively.

Comorbidities and risk factors

When comparing the mean number (IQR) of different comorbidities and risk factors 
considered, we found a significantly higher incidence in the AKI group: 2 (1, 4) com-
pared to the group with no AKI with 0 (0, 2). The differences when incorporating the 
individual maximum levels were minor. Table  2 breaks down the frequency of each 
comorbidity and risk factor by the subgroups in 72.1% of patients having at least one 
documented comorbidity. Our intention to comprehensively outline comorbidities 
and risk factors related to AKI is supported by the fact that the incidence was signifi-
cantly higher for patients developing AKI in almost all cases. Particularly, the greatest 
differences were seen in diseases of type aortic aneurysm and dissection and chronic 
kidney disease, which were more common in patients with AKI by a factor of 2.8 and 
2.2, respectively.

Underrepresentation in patient records

In contrast to the high incidence of detected AKI, we found evidence of explicitly 
documented AKI only for N = 375 (1.8%) patients within the corresponding PDMS 
records. This shows that the documented AKI diagnoses remarkably underrepresent 
the actual occurrence of AKI in the cohort by a factor of 36.7. However, it is note-
worthy that in 38 incidents we could not reconcile the documented AKI with the 
results of automated detection. Reasons for this were: (1) incorrect parsed diagnoses 
caused by unconventional abbreviation such as aortic valve regurgitation (in german  
‘Aortenklappeninsuffizienz’) as AKI; (2) documentation of previous diagnoses without 
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time reference; (3) clinically determined AKI by indicators not related to KDIGO 
definition such as pathological findings postmortem examination. Nevertheless, our 
algorithm detected 89.9% of documented AKI cases.

Discussion
To date, a comprehensive multi-faceted analysis relating to automated AKI detection in 
a large and defined ICU study population is scarce in the medical literature. Here we 
report on a successful implementation of algorithm-based AKI detection, which we 
applied to a large collective of postoperative cardiac surgical intensive care patients. To 
the best of our knowledge, no data exist to date on postoperative AKI after cardiac sur-
gery in this large number of cases with inclusion of urinary output. In this study, we 
could demonstrate the following:

The overall incidence of AKI after cardiac surgery is as high as 65%. Most reported 
AKI rates range between 20 and 40% depending on AKI definition and criteria [15–19]; 
studies employing the complete KDIGO criteria [20, 21] showed similar AKI rates using 
the KDIGO definition and including urine output as criterion. In fact, we demonstrated 
that urine output is of great importance as one of the earliest clinical indicators for the 
development of AKI. Moreover, urine output was also the most frequent trigger in our 
automated AKI detection model. We found urine output to be a far more relevant indi-
cator for the onset and subsequent evolution of AKI compared to other parameters such 
as serum creatinine levels and onset of KRT. This is in accordance with current literature 
[22] and reflects the known limitation of the static kidney function marker creatinine. Of 
note, onset of KRT defines high-grade kidney failure but provides little applicability in 
preventing AKI. Serum creatinine levels are relevant but depend on the frequency and 
consistency of bloodwork. While it is performed relatively frequently on a monitoring 
ward, urine output has a much better temporal resolution because it is registered on an 
hourly basis and can provide a more dynamic overview. As every cardiac surgical patient 
receives a urinary catheter prior to surgery monitoring output is relatively straightfor-
ward and should provide no hindrance in identifying AKI. The only source of potential 
error is the human factor, as these values are manually registered. Finally, the compari-
son of AKI criteria further showed that in the majority of cases the urine criterion was 
met first for AKI detection. In slightly more than one-third of these cases, a subsequent 
increase in creatinine levels was observed to such an extent that the creatinine criteria 
was met as well. This reinforces the fact that urine output - although quite unspecific - is 
an early marker of imminent AKI.

The relevance of AKI in intensive care medicine, especially following cardiac surgery, 
cannot be over-emphasized as it has been proven by a variety of publications to greatly 
elevate mortality, major adverse cardiac and cerebrovascular events (MACCE) rates and 
length of ICU and hospital stay [15–20, 22, 23]. Therefore, early detection is the cor-
nerstone and first prerequisite of any preventive or therapeutic strategies. Timely inter-
vention has the potential to reduce the incidence and severity of postoperative AKI as 
recommended by KDIGO [14, 24].

In the majority of patients, there is a considerable time window between devel-
oping their first and maximum AKI stages, especially when including urine output 
data, so most cases showed a gradual disease progression after onset. With this time 
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interval, early diagnosis allows for the application of nephroprotective care bundles with 
the potential to prevent or attenuate a progressive decline of kidney function [19, 24]. 
To enable early intervention increasing AKI awareness is essential. Based on the present 
data there is a huge discrepancy between documented cases of acute kidney injury and 
automatically detected cases (1.8% vs. 65.4%). As outlined above, this automated detec-
tion provided a very high accuracy rate in the patient population. Such underrepresenta-
tion, most likely due to inadequate detection, has recently been reported both in overall 
patient populations and in a post-cardiac surgery setting [9, 25]. Detecting AKI-defining, 
slight decreases of urine output can be challenging as in clinical routine urine output is 
mostly not documented in relation to body weight and changes can be overseen quickly. 
Automated detection can alert physicians, reduce workload and provide assistance in an 
otherwise intricate multifaceted diagnostic and therapeutic process. Furthermore, the 
definition and automated detection of AKI can serve as a starting point for further devel-
opments including machine-learning based prediction algorithms that can calculate the 
risk of developing an AKI far before any clinical manifestations are present [3].

Our data underline the detrimental effects of AKI: ICU stay is prolonged significantly 
in AKI patients with a consequent stage-dependent increase up to median 10 days in 
cases requiring KRT. Frequently associated secondary complications such as volume 
overload, low cardiac output syndrome, edemas, respiratory failure and infection result 
in an elevated risk of morbidity and mortality as well as greatly increased treatment costs 
[23, 26]. However, the consequences are not limited to the individual patient, as short-
ening ICU stays and lowering complication rates can ultimately reduce workload and 
costs and increase efficiency of the intensive care unit as a whole. The global need for a 
responsible distribution of sometimes limited material and human resources became all 
too obvious in the previous years because of the COVID pandemic crisis.

We also found our AKI patients received more medication (including nephrotoxic 
drugs). A causative association cannot be proven as the overall quantity of prescribed 
medication might only be a surrogate indicator for the severity of a patient’s condition 
which can itself carry a higher risk of developing AKI. Moreover, the impact of nephro-
toxic drugs on AKI progression has to be taken into consideration from a cost/benefit 
perspective related to patient care, as some nephrotoxic drugs are essential for treating or 
preventing diseases that pose a more serious threat than kidney failure, e.g. antibiotics in 
endocarditis. Nonetheless, early detection of AKI can facilitate a better-tailored multidis-
ciplinary medication and treatment concept, with the timely identification and modifica-
tion/reduction of non-essential or replaceable potentially nephrotoxic drugs.

Limitations

Due to the used methods, some limitations have to be discussed. Errors in the assign-
ment of inclusion criteria may have occurred due to automatic case detection. However, 
we could not detect an increased error rate in random manual sampling. Furthermore, 
our approach facilitated the study of a very large collective over a long period of time, 
which compensates for possible isolated errors. Regarding the coded diagnoses, undoc-
umented AKI does not automatically exclude clinical diagnosis. However, such large 
discrepancies can only be attributed to non-recognition. In addition, another (manual) 
evaluation by the study group also showed significant under-diagnosing of postoperative 
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kidney injury [9]. In terms of data quality for urine output documentation, we put a lot 
of effort into evaluating the data quality. In average (median) about 10.6 urine output 
observations were documented per patient and day. Furthermore, 95% off all patients 
had less than 4.5 hours (on average) between two urine observations and hence less than 
the 6 h time window from the definition. However of course, it is clear that in individual 
cases incorrect or missing documentation of the urine output influences AKI detection. 
Nevertheless, we could not find any indications of a systematically missing documen-
tation. Furthermore, this study is of retrospective nature, therefore causal relationships 
and the actual clinical impact of AKI detection cannot be investigated.

Future perspectives

Based on the developed AKI detection algorithm, a prediction model is under develop-
ment. This model will be prospectively evaluated and ultimately introduced into clinical 
practice.

Conclusions
We demonstrated that algorithm-based detection of AKI is feasible, and demonstrated 
exceptionally reliable detection of AKI after cardiac surgery. This resulted in a strikingly 
high rate of AKI recognition in our patient cohort compared to conventional routine 
documentation. Automated AKI detection has the potential to facilitate early thera-
peutic intervention to prevent or attenuate disease progression and improve patient 
outcomes.

Abbreviations
AI  Artificial intelligence
AKI  Acute kidney injury
API  Application programming interface
ICD-10  International Classification of Diseases 10th Revision
ICU  Intensive care unit
IMC  Intermediate care
IQR  Interquartile range
KDIGO  Kidney Disease: Improving Global Outcomes
KRT  Kidney replacing therapy
MACCE  Major adverse cardiac and cerebrovascular events
PDMS  Patient documentation management system
SQL  Structured Query Language

Supplementary Information
The online version contains supplementary material available at https:// doi. org/ 10. 1186/ s13040- 023- 00323-3.

Additional file 1: Supplemental Appendix. Table S1. Diagnosis parsing from free text to ICD-10 codes: Accuracy is 
assessed by manually detecting incorrect assignments for each of the 15 diagnoses for 400 randomly selected free-
text diagnoses. Accuracy considers true positives and negatives. Table S2. Distribution over nephrotoxic drug within 
the cohort. Absolute number of patients and percentages are given. Multiple administration of the same drug for a 
patient is not considered. Table S3. Summary of applied cleaning and selection steps during data processing. While 
the former ensures data consistency, the latter selects relevant data which is then forwarded to AKI detection.

Authors’ contributions
NS, MC conception, design of the work; acquisition, analysis of data; creation of new software; drafted and substantively 
revised the work. MG, SS design of the work; analysis, interpretation of data; drafted and substantively revised the work. 
MS, NG conception, design of the work; analysis, interpretation of data; drafted and substantively revised the work. MK, 
MDA, UF conception of the work; substantively revised the work. All authors approved the submitted version and agreed 
both to be personally accountable for the author’s own contributions and ensure that questions related to the accu-
racy or integrity of any part of the work, even ones in which the author was not personally involved, are appropriately 
investigated, resolved, and the resolution documented in the literature.

https://doi.org/10.1186/s13040-023-00323-3


Page 14 of 15Schmid et al. BioData Mining           (2023) 16:12 

Funding
The study was funded by a financial grant of the federal state ministry of social, health and integration Baden- 
Wuerttemberg (file reference: 5–5409.0-001.01/6). The funding body had no influence on design of the study and 
collection, analysis, and interpretation of data and in writing the manuscript.

Availability of data and materials
The datasets used and analysed during the current study are available from the corresponding author on reasonable 
request after internal board review.

Declarations

Ethics approval and consent to participate
The study was approved by the local data privacy protection officer as well as the Ethics Committee of the Medical 
Faculty of the University of Tuebingen (No. 963/2021BO2). The manuscript is written according to the Strengthening the 
Reporting of Observational Studies in Epidemiology reporting checklist.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Received: 3 November 2022   Accepted: 17 February 2023

References
 1. Cirillo D, Valencia A. Big data analytics for personalized medicine. Curr Opin Biotechnol. 2019;58:161–7.
 2. Meyer A, Zverinski D, Pfahringer B, Kempfert J, Kuehne T, Sündermann SH, et al. Machine learning for real-time 

prediction of complications in critical care: a retrospective study. Lancet Respir Med. 2018;6:905–14.
 3. Rank N, Pfahringer B, Kempfert J, Stamm C, Kühne T, Schoenrath F, et al. Deep-learning-based real-time prediction of 

acute kidney injury outperforms human predictive performance. NPJ Digit Med. 2020;3:1–2.
 4. Schanz M, Wasser C, Allgaeuer S, Schricker S, Dippon J, Alscher MD, et al. Urinary [TIMP-2][IGFBP7]-guided rand-

omized controlled intervention trial to prevent acute kidney injury in the emergency department. Nephrol Dial 
Transplant. 2019;34:1902–9.

 5. Lameire NH, Bagga A, Cruz D, De Maeseneer J, Endre Z, Kellum JA, et al. Acute kidney injury: an increasing global 
concern. Lancet. 2013;382:170–9.

 6. Rewa O, Bagshaw SM. Acute kidney injury—epidemiology, outcomes and economics. Nat Rev Nephrol. 
2014;10:193–207.

 7. Bagshaw SM, Laupland KB, Doig CJ, Mortis G, Fick GH, Mucenski M, et al. Prognosis for long-term survival and renal 
recovery in critically ill patients with severe acute renal failure: a population-based study. Crit Care. 2005;9:1–0.

 8. Dennen P, Douglas IS, Anderson R. Acute kidney injury in the intensive care unit: an update and primer for the 
intensivist. Crit Care Med. 2010;38:261–75.

 9. Schanz M, Schöffski O, Kimmel M, Oberacker T, Göbel N, Franke UF, et al. Under-recognition of acute kidney injury 
after cardiac surgery in the ICU impedes early detection and prevention. Kidney Blood Press Res. 2022;47:50–60.

 10. Swan JT, Moore LW, Sparrow HG, Frost AE, Gaber AO, Suki WN. Optimization of acute kidney injury (AKI) time 
definitions using the electronic health record: a first step in automating in-hospital AKI detection. J Clin Med. 
2021;10:3304.

 11. Vanmassenhove J, Steen J, Vansteelandt S, Morzywolek P, Hoste E, Decruyenaere J, et al. The importance of the 
urinary output criterion for the detection and prognostic meaning of AKI. Sci Rep. 2021;11:1–9.

 12. World Health Organization (WHO). ICD-10 : International statistical classification of diseases and related health 
problems : Tenth revision. Genève: World Health Organization (WHO); 2004.

 13. R Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Comput-
ing; 2022.

 14. Meersch M, Schmidt C, Hoffmeier A, Van Aken H, Wempe C, Gerss J, et al. Prevention of cardiac surgery-associated 
AKI by implementing the KDIGO guidelines in high risk patients identified by biomarkers: the PrevAKI randomized 
controlled trial. Intensive Care Med. 2017;43:1551–61.

 15. Englberger L, Suri RM, Li Z, Casey ET, Daly RC, Dearani JA, et al. Clinical accuracy of RIFLE and acute kidney injury 
network (AKIN) criteria for acute kidney injury in patients undergoing cardiac surgery. Crit Care. 2011;15:1–9.

 16. Bastin AJ, Ostermann M, Slack AJ, Diller G-P, Finney SJ, Evans TW. Acute kidney injury after cardiac surgery according 
to risk/injury/failure/loss/end-stage, acute kidney injury network, and kidney disease: improving global outcomes 
classifications. J Crit Care. 2013;28:389–96.

 17. Machado MN, Nakazone MA, Maia LN. Prognostic value of acute kidney injury after cardiac surgery according to 
kidney disease: improving global outcomes definition and staging (KDIGO) criteria. PLoS One. 2014;9:e98028.

 18. Warren J, Mehran R, Baber U, Xu K, Giacoppo D, Gersh BJ, et al. Incidence and impact of acute kidney injury in 
patients with acute coronary syndromes treated with coronary artery bypass grafting: insights from the harmoniz-
ing outcomes with revascularization and stents in acute myocardial infarction (HORIZONS-AMI) and acute catheteri-
zation and urgent intervention triage strategy (ACUITY) trials. Am Heart J. 2016;171:40–7.



Page 15 of 15Schmid et al. BioData Mining           (2023) 16:12  

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

 19. Nadim MK, Forni LG, Bihorac A, Hobson C, Koyner JL, Shaw A, et al. Cardiac and vascular surgery–associated acute 
kidney injury: the 20th international consensus conference of the ADQI (acute disease quality initiative) group. J Am 
Heart Assoc. 2018;7:e008834.

 20. Quan S, Pannu N, Wilson T, Ball C, Tan Z, Tonelli M, et al. Prognostic implications of adding urine output to serum cre-
atinine measurements for staging of acute kidney injury after major surgery: a cohort study. Nephrol Dial Transplant. 
2016;31:2049–56.

 21. Hoste EA, Bagshaw SM, Bellomo R, Cely CM, Colman R, Cruz DN, et al. Epidemiology of acute kidney injury in criti-
cally ill patients: the multinational AKI-EPI study. Intensive Care Med. 2015;41:1411–23.

 22. Schwager E, Lanius S, Ghosh E, Eshelman L, Pasupathy KS, Barreto EF, et al. Including urinary output to define AKI 
enhances the performance of machine learning models to predict AKI at admission. J Crit Care. 2021;62:283–8.

 23. Chertow GM, Burdick E, Honour M, Bonventre JV, Bates DW. Acute kidney injury, mortality, length of stay, and costs 
in hospitalized patients. J Am Soc Nephrol. 2005;16:3365–70.

 24. Kellum JA, Lameire N, Aspelin P, Barsoum RS, Burdmann EA, Goldstein SL, et al. Kidney disease: improving global 
outcomes (KDIGO) acute kidney injury work group. KDIGO clinical practice guideline for acute kidney injury. Kidney 
Int Suppl. 2012;2:1–38.

 25. Khadzhynov D, Schmidt D, Hardt J, Rauch G, Gocke P, Eckardt K-U, et al. The incidence of acute kidney injury and 
associated hospital mortality: a retrospective cohort study of over 100 000 patients at berlin‘s charité hospital. Dtsch 
Arztebl Int. 2019;116:397.

 26. Lau D, Pannu N, James MT, Hemmelgarn BR, Kieser TM, Meyer SR, et al. Costs and consequences of acute kidney 
injury after cardiac surgery: a cohort study. J Thorac Cardiovasc Surg. 2021;162:880–7.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


	Algorithm-based detection of acute kidney injury according to full KDIGO criteria including urine output following cardiac surgery: a descriptive analysis
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusion: 

	Background
	Methods
	Endpoint definition of acute kidney injury
	Data collection and processing

	Results
	Cohort description
	Automated AKI detection
	Temporal course and development of the degrees of AKI severity
	Comparison of AKI criteria
	Characterization of subgroups
	Patient info and ICU stay
	Medication
	Comorbidities and risk factors

	Underrepresentation in patient records

	Discussion
	Limitations
	Future perspectives

	Conclusions
	Anchor 25
	References


