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Abstract 

Background:  Owing to the rising levels of multi-resistant pathogens, antimicrobial 
peptides, an alternative strategy to classic antibiotics, got more attention. A crucial 
part is thereby the costly identification and validation. With the ever-growing amount 
of annotated peptides, researchers leverage artificial intelligence to circumvent the 
cumbersome, wet-lab-based identification and automate the detection of promising 
candidates. However, the prediction of a peptide’s function is not limited to antimi-
crobial efficiency. To date, multiple studies successfully classified additional properties, 
e.g., antiviral or cell-penetrating effects. In this light, ensemble classifiers are employed 
aiming to further improve the prediction. Although we recently presented a workflow 
to significantly diminish the initial encoding choice, an entire unsupervised encoding 
selection, considering various machine learning models, is still lacking.

Results:  We developed a workflow, automatically selecting encodings and generating 
classifier ensembles by employing sophisticated pruning methods. We observed that 
the Pareto frontier pruning is a good method to create encoding ensembles for the 
datasets at hand. In addition, encodings combined with the Decision Tree classifier as 
the base model are often superior. However, our results also demonstrate that none of 
the ensemble building techniques is outstanding for all datasets.

Conclusion:  The workflow conducts multiple pruning methods to evaluate ensemble 
classifiers composed from a wide range of peptide encodings and base models. Con-
sequently, researchers can use the workflow for unsupervised encoding selection and 
ensemble creation. Ultimately, the extensible workflow can be used as a plugin for the 
PEPTIDE REACToR, further establishing it as a versatile tool in the domain.

Keywords:  Biomedical classification, Antimicrobial peptides, Encodings, Machine 
learning, Ensemble learning

Background
Multi-resistant pathogens are a major threat for modern society [1]. In the last dec-
ades, a rising number of bacterial species developed mechanisms to elude efficiency to 
widely used antibiotics [1]. The importance of developing and implementing alternative 
strategies is further underpinned by a recent study, which detected a certain baseline 
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resistance in European freshwater lakes [2]. The study confirmed resistance specifically 
against four critical drug classes in human and veterinary health in freshwater, which is 
typically considered as a pathogen-free environment [2]. Moreover, already concerning 
levels of antibiotic resistance in Indian and Chinese lakes emphasize the requirement 
of alternative biocides [3, 4]. One promising approach to replace or even support com-
mon antibiotics refers to the deployment of peptides with antimicrobial efficiency [5]. 
However, identifying and validating active peptides requires intensive, hence, costly and 
time-consuming wet-lab work. Thus, in the pre-artificial intelligence (AI) era, the man-
ual classification and verification of antimicrobial peptides (AMPs) engaged research-
ers. Although the in vitro confirmation of activity is still necessary, the application of AI, 
i.e., in particular machine learning (ML) algorithms, simplifies the identification process 
drastically and pushed several AMPs to the second or third phase of clinical trials [6]. In 
addition, online databases provide access to thousands of annotated sequences and pave 
the way automatic peptide design and classification [7]. For instance, Chung et al. (2019) 
developed a method, which demonstrated good performance on classifying AMPs 
using a two-step approach, which first predicts efficiency, and afterward the precise 
target activity [8]. Another study employed a variational autoencoder to encode AMPs, 
mapped the probability of being active to a latent space, and predicted novel AMPs [9]. 
Fingerhut et al. (2020) introduced an algorithm to detect AMPs from genomic data [10]. 
For more information on computational approaches for AMP classification, we refer to 
the recent review of Aronica et al. (2021) [11].

However, the prediction of amino acid sequence features is not limited to AMPs. In 
the literature, one can find various applications, e.g., in oncology for predicting antican-
cer peptides [12], in pharmacology for the discovery and application of cell-penetrating 
peptides as transporters for molecules [13], or in immunotherapy, for classifying of pro- 
or antiinflammatory peptides [14, 15]. Other applications include antiviral peptides [16], 
or peptides with hemolytic [17] or neuro transmitting activity [18].

Unequivocally, the success of ML methods for the prediction of AMPs was enabled by 
the development and advances of peptide encodings. Encodings are algorithms mapping 
the amino acid sequences of different lengths to numerical vectors of an equal length, 
hence, fulfilling the requirement of many ML algorithms [19]. Moreover, peptides or 
proteins can be described by their primary structure, i.e., the amino acid sequence, and 
the aggregation in higher dimensions, denoted as the secondary or tertiary structure. 
Encodings derived from the primary structure are known as sequence-, and encodings 
describing a higher-order folding are structure-based encodings. To date, a large num-
ber of sequence- and structure-based encodings have been introduced and employed in 
various studies [19]. A significant amount of encodings has been recently acknowledged 
by another study, specifically benchmarking these by considering multiple biomedical 
applications [20]. It turned out that most encodings show acceptable performance, partly 
also beyond single biomedical domains [20]. In addition, Spänig et al. (2021) developed a 
workflow, which can dramatically reduce the number of initial encodings [20]. However, 
encoding selection is still challenging, and user-friendly approaches are required.

Furthermore, hyperparameter optimization is additionally aggravated by the model 
choice. Albeit Support Vector Machines (SVM) and Random Forests (RF) are widely 
employed in peptide classification [11], the variety of models used in a broad range of 
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studies is large. For instance, Khatun et al. (2020) utilized several ML algorithms, includ-
ing Naïve Bayes, AdaBoost, and a fusion-based ensemble for the prediction of proin-
flammatory peptides [21]. The fusion-based model outperformed the other ML models 
significantly for this task [21]. Plisson et al. (2020) employed Decision Trees (DT) and 
Gradient Boosting (GB), among others, to classify non-hemolytic peptides and dem-
onstrated that the GB ensemble has superior performance [22]. In contrast, Timmons 
et al. (2020) used Artificial Neural Networks to characterize therapeutic peptides with 
hemolytic activity [23]. Singh et al. (2021) compared several base classifiers, e.g., Linear 
Discriminant Analysis and ensemble methods, e.g., GB and Extra Trees to detect AMPs 
[24]. They demonstrated that the GB performed best [24]. These studies clearly show 
that ensemble classifiers typically show superior performance than single classifiers, 
owing to the fact that they can compensate for weaknesses of single encodings and base 
classifiers [25].

Recently, Chen et al. (2021) introduced a comprehensive tool, which allows less pro-
gramming experienced researchers to simply select encodings and base or ensemble 
classifiers through a graphical user interface, allowing easy access to the underlying algo-
rithms [26]. Nevertheless, the approach assumes that the user selects proper settings for 
the parameterized encodings, which has been previously shown to affect the classifica-
tion process significantly [20]. Moreover, the encoding selection is independent of the 
classifier settings, meaning that the tool can set up the classifier automatically; however, 
the encoding selection is not part of it. Thus, it remains a challenge to pick good encod-
ings and classifiers for a biomedical classification task at hand. To this end, we assessed 
unsupervised encoding selection and the performance and diversity of multiple ensem-
ble methods. We added different overproduce-and-select techniques for ensemble prun-
ing, facilitating an automatic ensemble generation. In addition, we utilized Decision 
Trees, Logistic Regression, and Naïve Bayes as base classifiers, owing to their prevalence 
in the field of biomedical classification [11, 19, 27].

Besides demonstrating the benefit of an unsupervised encoding selection, we also 
examined how the RF performs as a base and ensemble classifier. Specifically, we exam-
ined whether the RF, also an ensemble method, is performance-wise already saturated or 
whether a subsequent fusion can improve the final predictions. Fusion of RFs has been 
shown in other studies to improve overall performance, e.g., for HIV tropism predic-
tions [28, 29]. All in all, we complement our recent large-scale study on peptide encod-
ings [20] with an automatic encoding selection and a performance analysis of multiple 
base and ensemble classifiers. Ultimately, the present research bridges the gap between 
many peptide encodings and available machine learning models.

Results
We developed an end-to-end workflow, which automatically generates and assesses clas-
sifier ensembles using different pruning methods and a variety of encoded datasets from 
multiple biomedical domains (see Table 3). Researchers can easily extend the workflow 
with different base and ensemble classifiers, pruning methods, and encoded datasets. 
The results can be reviewed using the provided visualizations, and the performance is 
further revised using multiple statistics. We demonstrate that the Pareto frontier prun-
ing is a valuable technique to generate efficient classifier ensembles. However, the 
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utilized base classifiers show comparable performance. We address the results in more 
detail in the following. We use the example of the avp_amppred dataset throughout 
the manuscript. The results for the remaining datasets can be found in the supplement. 
Moreover, the code is publicly available at https://​github.​com/​spaen​igs/​ensem​ble-​perfo​
rmance. The workflow produces interactive versions of all charts (see supplements).

Pruning methods

All pruning methods generate ensembles, i.e., combined encodings, superior to the 
single classifiers (see Tables 1 and 2). In the case of the Pareto frontier (pfront) prun-
ing, which is mainly ranked among the best pruning methods, we observe a signifi-
cant ( p ≤ 0.001 ) performance improvement compared to the the single classifiers. We 
also observed that the pfront pruning generates larger ensembles than the convex hull 
(chull) pruning, which can be visually verified in Fig. 4 (red line). Notably, including the 
Random Forest (RF) classifier (see Table 1, pfront) does not, or very slightly, affect the 
ensemble performance without RF (see Table  2), although the single classifier perfor-
mance is improved with the RF included (see Table 1). Consequently, the RF increases 
the overall performance of the ensembles generated by the best encodings pruning.

The multi-verse optimization (MVO) suffers from high computational demand, i.e., 
a long pruning time, however, demonstrates at least comparable performance (see 
Tables 1, 2 and 3). The fitness of the models increases rapidly in the first generations (see 
Fig. 1). However, towards the last generations the curve flattens. The RF-based models 
show already higher fitness in the beginning, only increasing slightly in the course of the 
generations. The robustness of the RF classifier is also highlighed by the low standard 
deviation across the folds (see Fig. 1).

Table 1  The table shows the performance comparison (including RF) of classifier ensembles 
derived from different pruning methods, i.e., best, chull, mvo, pfront, rand, and the single best 
classifier. We used the best ensemble/base model combination, respectively. Numbers refer to the 
mean performance of a 100-fold Monte Carlo cross-validation. Standard deviation (SD) is added 
in brackets. Mean and SD are rounded to 2 decimal places. The top base/ensemble classifier 
combination is always used (see Fig. 2). Classifier ensembles are significantly better than the single 
best classifiers. In particular, except for one case, the Pareto frontier pruning (pfront) generates the 
best ensembles. Significance levels are as follows: ** p ≤ 0.001, * p ≤ 0.01, and p ≤ 0.05. Refer to 
Table 1 for the reported MCC values from the original studies

best chull mvo pfront rand single

acp_mlacp 0.69 (±0.09) 0.68 (±0.1) 0.82. (±0.03) 0.7 (±0.09) 0.7 (±0.1) 0.7 (±0.09)

aip_antiinflam 0.48 (±0.07) 0.47 (±0.07) 0.45 (±0.04) 0.48. (±0.06) 0.45 (±0.06) 0.47 (±0.05)

amp_antibp2 0.89 (±0.04) 0.88 (±0.03) 0.9ns (±0.01) 0.89 (±0.03) 0.89 (±0.03) 0.87 (±0.04)

atb_antitbp 0.7 (±0.11) 0.69 (±0.1) 0.72* (±0.07) 0.72 (±0.09) 0.72 (±0.1) 0.7 (±0.11)

avp_amppred 0.78 (±0.04) 0.78 (±0.04) 0.78 (±0.04) 0.79** (±0.04) 0.78 (±0.04) 0.77 (±0.05)

cpp_mlcpp-
complete

0.76 (±0.04) 0.77 (±0.04) 0.78 (±0.06) 0.78** (±0.04) 0.78 (±0.04) 0.76 (±0.04)

hem_hemopi 0.87 (±0.05) 0.87 (±0.05) 0.84 (±0.04) 0.88 (±0.05) 0.89** (±0.05) 0.87 (±0.05)

isp_il10pred 0.56 (±0.08) 0.56 (±0.07) 0.57 (±0.07) 0.57 (±0.07) 0.57 (±0.07) 0.58ns (±0.08)

nep_neuropipred 0.79 (±0.05) 0.79 (±0.05) 0.8 (±0.05) 0.81** (±0.04) 0.8 (±0.04) 0.79 (±0.04)

pip_pipel 0.5 (±0.05) 0.51 (±0.05) 0.48 (±0.05) 0.53** (±0.05) 0.48 (±0.05) 0.51 (±0.05)

https://github.com/spaenigs/ensemble-performance
https://github.com/spaenigs/ensemble-performance
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Ensemble classifiers

The ensemble performance mainly depends on the pruning and the choice of the base 
classifiers; hence, using individual encodings. The performance between the best, ran-
dom (rand), and chull pruning is insignificant, which stresses the effectiveness of the 
Pareto frontier (pfront) pruning (see Fig. 2). Furthermore, no significant difference can 
be observed for ensembles with the same base classifiers, e.g., the RF or Decision Tree 
(DT). Thus, the fusion method impacts the overall performance only slightly. How-
ever, various base classifiers result in significant different ensembles, i.e., employing, for 
instance, the RF, generates significantly different ensembles compared to the application 
of other base classifiers (see Fig. 2).

Moreover, we observed that the Naïve Bayes (NB), the Logistic Regression (LR), and 
the Multi-Layer Perceptron (MLP) classifiers result in ensembles with higher variance 
(see Fig. 4). In contrast, the area covered by RF and DT models is more compact. There-
fore, the variables, i.e., diversity and the pairwise error, are revised by a multivariate 
analysis of variance (MANOVA), which revealed a significant difference ( p < 0.001 ). 
A separate examination of the variables utilizing variance analysis (ANOVA) followed 

Table 2  The table shows the performance comparison (excluding RF) of classifier ensembles 
derived from different pruning methods and the single best classifier. See Table  1 for more 
details. Significance levels are as follows: ** p ≤ 0.001, * p ≤ 0.01, and p ≤ 0.05

best chull mvo pfront rand single

acp_mlacp 0.69 (±0.1) 0.68 (±0.1) 0.82ns (±0.03) 0.7 (±0.09) 0.7 (±0.09) 0.68 (±0.11)

aip_antiinflam 0.47 (±0.06) 0.47 (±0.07) 0.44 (±0.05) 0.48** (±0.06) 0.44 (±0.07) 0.46 (±0.06)

amp_antibp2 0.89 (±0.04) 0.88 (±0.03) 0.9ns (±0.01) 0.89 (±0.03) 0.89 (±0.03) 0.87 (±0.04)

atb_antitbp 0.69 (±0.11) 0.68 (±0.12) 0.69 (±0.12) 0.7ns (±0.11) 0.68 (±0.1) 0.7 (±0.11)

avp_amppred 0.75 (±0.05) 0.75 (±0.05) 0.75 (±0.03) 0.78** (±0.05) 0.77 (±0.05) 0.74 (±0.05)

cpp_mlcpp-com-
plete

0.74 (±0.05) 0.74 (±0.05) 0.75. (±0.06) 0.75 (±0.05) 0.75 (±0.05) 0.72 (±0.05)

hem_hemopi 0.87 (±0.05) 0.87 (±0.05) 0.84 (±0.04) 0.88* (±0.05) 0.88 (±0.05) 0.87 (±0.05)

isp_il10pred 0.56 (±0.08) 0.52 (±0.09) 0.56 (±0.06) 0.56 (±0.08) 0.52 (±0.07) 0.58ns (±0.08)

nep_neuropipred 0.79 (±0.05) 0.78 (±0.05) 0.8. (±0.05) 0.79 (±0.04) 0.77 (±0.04) 0.79 (±0.04)

pip_pipel 0.46 (±0.05) 0.45 (±0.06) 0.42 (±0.02) 0.47ns (±0.06) 0.45 (±0.05) 0.46 (±0.04)

Table 3  Employed datasets in this study. The function refers to the positive class, i.e., sequences of 
class + possess the respective function. The stated MCC refers to the performance reported in the 
original study. See Reference or [20] for more details

Function MCC Size (+,-) Reference

acp_mlacp Anti-cancer 0.698 581 (185,396) [12]

aip_antiinflam Anti-inflammatory 0.45 2124 (863,1261) [14]

amp_antibp2 Anti-microbial 0.84 1975 (981,994) [30]

atb_antitbp Anti-tubercular 0.52 492 (246,246) [31]

avp_amppred Anti-viral 0.8 1476 (738,738) [16]

cpp_mlcpp Cell-penetrating 0.793 1901 (737,1164) [13]

hem_hemopi Hemolytic 0.52 1013 (522,461) [17]

isp_il10pred Immunosuppressive 0.59 1242 (394,848) [32]

nep_neuropipred Neuropeptides 0.67 1750 (875,875) [18]

pip_pipel Pro-inflammatory 0.454 3228 (833,2395) [15]
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by a post-hoc analysis using Tukey’s HSD, demonstrates that all variables are signifi-
cantly different ( p < 0.001 ). Finally, we conducted an ANOVA on the particular area 
values, which disproves the initial observation, i.e., all areas are significantly different 
( p < 0.001 ). However, considering the average values for all datasets, the DT and RF are 
commonly ranked as the base classifiers with low variance (see Table 4).

Single classifiers

In general, the performance of the individual classifiers (single) is lower compared to the 
classifier ensembles (see Fig. 3). In addition, we noticed that the RF is relatively saturated, 
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i.e., using the RF as a single classifier and as a base model for ensembles does not have a 
significant effect on performance improvement. The low-performance variance is in line 
with the observation that weak models benefit most from ensemble learning; however, 

Table 4  The table lists the average area (±SD) covered by the base classifiers across the 100-fold 
Monte Carlo cross-validation. The lowest area per dataset is highlighted in bold. The DT classifier has 
the lowest area for most of the datasets, i.e., the predictions are more stable. Refer to Fig. 4 (bottom) 
for the example showing the avp_amppred dataset

bayes dt lr mlp rf

acp_mlacp 3.36 (±0.099) 2.93 (±0.084) 2.81 (±0.078) 2.8 (±0.076) 2.81 (±0.101)

aip_antiinflam 2.82 (±0.077) 2.48 (±0.051) 2.53 (±0.043) 2.34 (±0.076) 2.33 (±0.059)

amp_antibp2 3.09 (±0.087) 2.71 (±0.076) 3.16 (±0.129) 2.93 (±0.131) 2.82 (±0.091)

atb_antitbp 3.42 (±0.107) 3.2 (±0.087) 3.44 (±0.124) 3.31 (±0.106) 3.09 (±0.105)

avp_amppred 3.06 (±0.087) 2.6 (±0.065) 3.21 (±0.09) 2.98 (±0.168) 2.6 (±0.074)

cpp_mlcpp-complete 2.99 (±0.099) 2.55 (±0.081) 2.57 (±0.063) 2.48 (±0.078) 2.59 (±0.097)

hem_hemopi 3.3 (±0.073) 2.86 (±0.145) 3.16 (±0.105) 2.87 (±0.143) 2.86 (±0.156)

isp_il10pred 3.08 (±0.089) 2.72 (±0.055) 2.49 (±0.041) 2.53 (±0.064) 2.61 (±0.069)

nep_neuropipred 3.28 (±0.153) 2.81 (±0.096) 3.26 (±0.288) 3.16 (±0.347) 2.84 (±0.122)

pip_pipel 3.21 (±0.08) 2.36 (±0.044) 2.3 (±0.031) 2.33 (±0.048) 2.39 (±0.051)
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the example of the avp_amppred dataset
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RFs are ensemble models [33, 34]. In contrast, the performance of other single classifiers 
revealed more distinct differences to the ensembles (see Fig. 3 and Tables 1 and 2).

Data visualization

We leveraged two standard visualization techniques, which we adapted and extended 
for our particular application. First, we enhanced the kappa-error diagram [25] for the 
presentation of multiple folds, i.e., 100 in the current study, by aggregating the cross-
validation results into a two-dimensional histogram (see Fig. 4). The color code allows 
the viewer to spot the peak at one glance. Hence, the tendency of ensembles to use a 
specific base classifier. Moreover, considering the distribution of the variables, one can 
make conclusions about the robustness.

Second, we extended the critical difference (CD) chart [35] with a categorical heatmap 
displaying the actual performance. The extension enables viewers to compare classifiers 
and review the individual encoding performance, i.e., Matthews correlation coefficient 
in the present case, at one glance. In addition, the thickness of the vertical and horizon-
tal rules is directly related to the critical difference, i.e., the thicker the rule, the closer 
the classifiers to the critical difference. Thus, the rule thickness provides an additional 
visual channel to access the CD.

Discussion
We developed a workflow for unsupervised encoding selection and performance assess-
ment of multiple ensembles and base classifiers. Thus, we implemented and compared 
several algorithms to facilitate ensemble pruning, including convex hull, Pareto frontier 
pruning, and multi-verse optimization (MVO). Our results demonstrate that the crucial 
factors are the base classifiers and the individual encodings. The ensemble technique was 
not relevant, i.e., we could not observe performance variations using one of hard or soft 
voting or stacking. In general, applying the Random Forest (RF) or Multi-Layer Percep-
tron (MLP) as a base classifier yielded good performance across all datasets. The Pareto 
frontier pruning selected suitable encodings throughout the experiments. In addition, 
we observed similar performance as reported in the original studies (see Tables 1 and 3).

However, since we used one encoding per base classifier, we restricted the employed 
ensemble methods, i.e., majority voting, averaging, and stacking, which do not modify 
the base classifiers. These ensemble types are in contrast to others, e.g., boosting, where 
weights are adapted for misclassified training instances in base classifiers [36]. More 
research is necessary to investigate how performance and more sophisticated ensemble 
methods are associated. The employed ensemble types are also the reason for the kappa-
error point cloud shape solely depending on the base classifiers. Consequently, comput-
ing the kappa-error diagram for all ensemble methods was not necessary. Our encoding/

(See figure on next page.)
Fig. 4  The kappa-error diagram depicts pairs of base classifiers (dots) using the kappa diversity on the x-axis 
and the average error on the y-axis (left column). Each classifier pair denotes two particular encodings. Rows 
depict the base classifiers. The dark blue line indicates the convex hull, and the red line the Pareto frontier. 
Pruning methods are represented as colors. The left column shows the first fold. The right column groups the 
results of all folds in a 2D histogram. The darker the color, the more classifier pairs are binned in one group. 
The dashed line in all panels depicts the theoretical boundary (refer to the method section for more details). 
The plot shows the example of the avp_amppred dataset
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classifier approach is also contrary to other studies, e.g., [12, 14], or [16], which concat-
enated several encoded datasets to one final dataset (hybrid model) and applied feature 
selection before training. In the present study, we solely scaled the datasets to stand-
ardize the feature range, and used the encoded datasets largely unprocessed, potentially 
affecting the final performance. Furthermore, we neglected hyperparameter optimiza-
tion of the base classifiers and focused on encoding, pruning and model selection. In 
this respect, more research is necessary to investigate the impact of hyperparameter 
optimization of the base models on the ensemble performance. However, since our tool 
determines important components of effective ensembles, researchers can subsequently 
improve the hyperparamters, if necessary.

In general, utilizing the Pareto frontier pruning generates good ensembles; however, 
requiring the calculation of the Cartesian product of all base classifiers; thus, encod-
ings. Although only the (lower) triangular matrix is necessary, the computation is still 
CPU-intensive.

Another point of concern refers to the selection of exactly 15 classifier pairs per fold 
for the random and best encoding ensembles. In contrast, the size of classifier the Pareto 
frontier and convex hull pruning ensembles depend on the number of classifier pairs 
on the Pareto front and convex hull, respectively. Thus, a fair comparison is difficult. 
However, we repeated the experiments multiple times using a 100-fold MCCV, which 
rules out any selection bias. Considering the performance between individual models 
and ensembles, the contribution of the diversity is only slight, however, more research is 
required in this direction.

The results of the MVO also acknowledge the impact of diversity. One can observe 
that the MVO generates inferior ensembles (see Fig.  3). However, due to the limited 
number of generations, the MVO could be stuck in local optimum (see Fig.  1). More 
research is also required to examine specific advantages and disadvantages of the MVO 
for encoding selection [37].

In the kappa-error chart, which depicts preferable classifier pairs towards the lower-
left corner, one can readily recognize the inferiority of the MVO (see Fig. 4). The clas-
sifier pairs are distributed across the kappa-error area, i.e., the MVO screens the entire 
solution space and adds weak classifiers to the final ensemble. Nevertheless, since we 
limited the maximum number of generations to 15, we cannot rule out that more gener-
ations would yield better results. Moreover, due to high resource consumption, we lim-
ited the MVO to 5 folds, which hampers the comparison.

Moreover, the Random Forest (RF) deployment as a single classifier reveals good 
performance, which is not surprising since it is already an ensemble algorithm. In this 
respect, the other base classifiers are less accurate (see Fig. 3). However, it could be dem-
onstrated that RFs as base classifiers, i.e., using different encoded datasets per model, 
slightly improves the performance. This further highlights the importance of different 
encodings, hence the projection of different biological aspects, for the classification 
process.

The implemented methods demonstrate usability on a broad range of datasets from 
various biomedical domains. We incorporated the MVO owing to its good performance 
on several benchmark datasets [38]. The comprehensive Monte Carlo cross-validation 
copes with the variance, ultimately increasing the robustness of the results. In addition, 
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the Pareto frontier and convex hull pruning consider simultaneously the performance 
and the diversity of encodings and base classifiers; hence, compensating their strength 
and weaknesses and revealing their potential for ensembles [39]. Our proposed exten-
sion to the critical difference chart allows the viewer at one glance to grasp significant, 
i.e., critical, performance differences of encodings, models, and pruning methods jointly 
with the actual performance.

Conclusions
In summary, we employed two overproduce-and-select methods, namely Pareto frontier 
and convex hull pruning, as well as the multi-verse optimizer for exhaustively searching 
the encoding/base classifier space. We employed Logistic Regression, Decision Trees, 
Naïve Bayes, Multi-Layer Perceptron, and Random Forest as base models and majority 
vote, averaging, and stacked generalization for the fusion. The experiments and visuali-
zations enable the comparison of the respective components; however, further research 
is necessary to examine other ensemble classifiers, e.g., boosting. We considered ten 
datasets as case studies.

All in all, we propose an extensible workflow for automated encoding selection 
through diverse ensemble pruning methods. Depending on the use-case, i.e., the initial 
encoding space, our workflow can be used stand-alone, or as an extension for our recent 
work [20], ultimately easing the access for non-technical users. In case of the avp_amp-
pred dataset, we observed good performance using the Pareto frontier pruning. Our 
workflow determines the best encodings, base models, as well as pruning, and fusion 
method for the classification task at hand. This allows researchers to built upon an effec-
tive model and focus on hyperparameter optimization afterward.

Methods
We developed a workflow using Snakemake v6.5.1 [40], Python v3.9.1, and R v4.1.0. For 
the machine learning algorithms, we employed scikit-learn v0.24.2 [41]. We will use the 
following definitions throughout the manuscript: the original unprocessed dataset is 
denoted as the dataset. One dataset can be encoded in manifold ways, which we refer to 
as encoded datasets. Finally, encodings specify particular encoding algorithms.

The peptide datasets are taken from the PEPTIDE REACToR [20]. We also utilized 
this tool to reduce the initial set of encoded datasets. Ultimately, the goal of our work-
flow is the selection of the best encodings from the reduced set of encoded datasets. 
Note that best encodings refers to datasets, encoded with specific, i.e., effective, encod-
ing algorithms. Afterward, the encoded datasets are used to train the base classifiers.

There are two approaches to harness multiple encodings in a single model, namely 
the fusion and the hybrid model [21]. Fusion models train one encoding per base clas-
sifier and fuse the output for the final prediction. Contrary, hybrid models use the con-
catenated features of multiple encodings for single model training. The concatenation 
approach is particularly problematic for entropy-based models such as DT or RF due 
to the bias in variable selection. Thus, in the present study, we implemented the fusion 
design, i.e., each ensemble consists of an arbitrary amount of base classifiers using one 
particular encoding, respectively. Finally, the employed datasets from a wide range of 
biomedical domains ensure broad applicability and the robustness of our results.
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The workflow conducts the following steps. First, train, validation, and test indices are 
calculated to ensure equal samples for the cross-validation. More precisely, we computed 
the indices before the experiments such that all base and ensemble models use the same 
train, validation, and test data in each fold. Second, we standardized the encoded data-
sets using a min-max normalization between 0 and 1. Afterward, we trained and assessed 
models for all encoded datasets and ensemble types using a 100-fold Monte Carlo cross-
validation. Besides the pruning algorithms, we selected the best and random encodings 
and compare the results to individual models. Finally, we statistically assessed and visual-
ized the results (see Fig. 5). Significant steps are described in more detail below.

Note that we used Matthews correlation coefficient (MCC) throughout the study to 
handle the imbalance in the datasets [42]:

a is the number of true positives, d is the number of true negatives, b is the number of 
false negatives, and c is the number of false positives.

Datasets

For a comprehensive analysis on peptide encodings, Spänig et  al. (2021) gathered and 
encoded a variety of datasets from multiple biomedical domains [20]. Details about the 
dataset preprocessing and encoding algorithms can be found in this publication [20]. 
We selected datasets with low to medium classification performance from this collec-
tion, i.e., a reported MCC of 0.63± 0.15 on the independent test set; additionally, cover-
ing diverse biomedical applications. Moreover, we excluded datasets for which accurate 
models have been published to investigate the potential effects of different classifiers 
and ensembles. We limited our study to ten datasets to cope with the computational 
complexity. The dataset size ranges from 492 to 3,228 sequences with an average of 
1, 580.8± 812.1 sequences. The datasets comprise 15,782 sequences with a mean length 
of 21.17± 13.23 amino acids. 6,404 sequences belong to the positive and 9,378 to the 
negative class. The average sequence length is 22.47± 15.88 and 20.29± 10.97 , respec-
tively. Duplicated sequences have been removed. Refer to Table 3 for more details.

(1)MCC =
a× d − c × b

√
(a+ c)(a+ b)(d + c)(d + b)

.

Fig. 5  Overview of the workflow. (a) For each fold of the MCCV, the preprocessing is conducted, i.e., the 
indices of the train/test splits are determined, and the data is scaled. (b) The pruning methods, e.g., Pareto 
frontier and MVO, select the current fold’s encodings and the number of base classifiers. (c) Different 
ensembles with various base classifiers are trained and validated on the test data. (d) The results are collected, 
statistically validated, and illustrated. The workflow accepts an arbitrary number of datasets as input (arrows). 
For each dataset (bold arrows), the steps a to d are executed successively. Refer to the method section for 
more details
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Monte Carlo cross‑validation

We applied a 100-fold Monte Carlo cross-validation (MCCV) [43]. The MCCV improves 
the generalization and diminishes the variance of the results, i.e., results are more robust, 
hence comparable. In addition, we ensured that the n-th fold is identical across all experi-
ments leading to improved comparability across all base classifiers and ensembles. Each 
fold is composed of one split using 80 % of the data for training, 10 % for validation, and the 
remaining 10 % for testing (see Fig. 6). In contrast to k-fold cross-validation, MCCV follows 
a sampling with replacement strategy, i.e., splits can contain identical samples multiple times. 
However, duplicate samples do not occur in the train, validation, and the test split [43].

Base classifiers

We used the following base classifiers for our experiments: Naïve Bayes, Logistic Regres-
sion, Decision Tree, Multi-Layer Perceptron, and Random Forest. Each classifier will be 
briefly described hereinafter. We used the implementations provided by the scikit-learn 
library [41]. We utilized the default hyperparameters.

Naïve Bayes

The Naïve Bayes (NB) classifier (naively) assumes conditional independence of the feature 
vectors and applies the Bayes theorem for the prediction [25]. Model training is enabled via 
a probability density function (PDF) and the prior probability of a given class. For simplicity, 
we assume a Gaussian distribution of the features. Hence, we applied the Gaussian NB using

as the PDF, whereby σ denotes the standard deviation and µ the mean of features x given 
a class y [44].

Logistic Regression

The binary Logistic Regression (LR) is another probability-based classifier, i.e., it derives 
the probability of a class y given a feature vector x [45]. The LR predicts probabilities 
between 0 and 1 using the logistic function denoted as

(2)p(x|y) =
1

σ
√
2π

e
− 1

2

x−µ
σ

2

Train/
ValTrain/

ValTrain/
Val

Compute
kappa-error

Best
encodings

Random
encodings

Pareto frontier
encodings

Convex hull
encodings

Train
ensembles

Train single
encodings

Run
MVO

Test final
model(s)

Train/
ValTrain/

ValTest

Fig. 6  Overview of the cross validation. (Orange) In the preprocessing the train/test splits are created, 
and the kappa-error diagram is calculated. (Yellow) The pruning methods, including MVO, select the best 
encodings and base classifiers based on the validation data. (Blue) All models are trained with the entire 
training data and tested on the unseen test set. (Purple) The results are collected, statistically validated, and 
illustrated
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and the maximum likelihood function to estimate the coefficients β , i.e., to train the 
model [45].

Decision Tree

The Decision Tree (DT) classifier, precisely the CART (Classification And Regression 
Trees) implementation, is a tree-based model, i.e., a tree structure is generated during 
training [46]. Each node is based on the most discriminating feature [25]. New splits are 
created based on the Gini impurity i of the remaining data:

where j ∈ {0, 1} for binary classification and P is the probability of class j at a node t [25]. 
If a split is pure enough, a leaf node is added. Otherwise, intermediate nodes are created 
[25]. For prediction, the tree is traced until a leaf node, which states the final class.

Multi‑Layer Perceptron

The Multi-Layer Perceptron (MLP) follows the functioning of neural networks in 
the human brain [25]. In particular, the MLP is an artificial neural network consist-
ing of multiple layers of neurons, which are connected with a certain intensity, i.e., are 
weighted. Based on the input and the activation function of the neurons, the MLP prop-
agate the input data forward and finally assigns the class in the last layer. To train the 
MLP, the data is backward propagated and the weights are updated accordingly to mini-
mize the training error [25].

Random Forest

The Random Forest (RF) classifier is an ensemble learning technique, which trains 
multiple DTs on random samples, i.e., bagging, of the input data [47]. For the final 
classification, the majority vote of the trees is used [47]. Note that we use the RF as 
a base learner, which allows comparing the performance with DTs and the actual 
ensembles techniques in general (see below).

Classifier ensembles

To combine the output of the base classifiers introduced above, we employed the fol-
lowing ensemble methods: majority vote (hard voting), averaging (soft voting), and 
stacked generalization (stacking). In the present study, each base classifier is trained 
on one encoded dataset, meaning if for one dataset n encodings are selected, the size 
of one ensemble is n. We adapted the implementations of the scikit-learn library [41], 
such that not only one dataset but several encoded datasets can be used for training. 

(3)p(x) =
eβ0+β1x

1+ eβ0+β1x

(4)i(t) = 1−
∑

j

P2
j ,
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For instance, if one passes n encoded datasets, the ensemble consists of n base classi-
fiers trained on one particular encoded dataset, respectively.

Majority voting  The majority voting ensemble (hard voting) combines the output by 
ultimately assigning the class, which has been predicted by the majority of the single 
base classifiers. We employed the customized version of scikit-learn’s VotingClassifier 
class with hard voting enabled.

Averaging  The averaging method (soft voting) computes the means of the predicted 
class probabilities per base classifier. The maximum value determines the final class. We 
used the adjusted VotingClassifier with voting set to soft.

Stacked generalization  The stacking approach utilizes the output of the base classifi-
ers to train a meta-model, i.e., the predicted class probabilities of the base classifiers are 
used as features [48]. We adapted the StackingClassifier from the scikit-learn package 
and employed Logistic Regression as the meta-model.

Ensemble pruning

Selecting the correct number of base classifiers in an ensemble is challenging. Thus, 
Kuncheva (2014) suggests several approaches to determine the ensemble size [25]. 
For instance, sequential forward selection, adding one classifier successively, in case 
the additional model improves the ensemble performance [25]. However, in the pre-
sent case, we are dealing with potentially hundreds of encoded datasets, for which 
this particular technique is not practical. To this end, we used two selection meth-
ods, namely convex hull and Pareto frontier pruning, which handle the complexity 
better [25]. Moreover, we implemented the multi-verse optimization algorithm as an 
additional encoding selection technique [49]. Finally, we employed best and random 
encodings selection as a reference. The pruning methods are described more detailed 
in the following.

Kappa‑error diagram

The kappa-error diagram, introduced by Margineantu and Dietterich (1997), is the basis 
for the convex hull and Pareto frontier pruning [50]. The graph represents pairs of clas-
sifiers by their average error and diversity, as shown in Fig. 4. The diversity measures the 
agreement of classifier outputs, i.e., the better the agreement of the classifier predictions, 
the less the diversity [25]. Specifically, the kappa diversity is denoted as

The κ statistic ranges from −1 to 1, whereby κ = 1 denotes perfect agreement, κ = 0 ran-
dom, and κ < 0 worse than random consensus [50]. The error is calculated using

(5)κ =
2(ad − bc)

(a+ b)(b+ d)+ (a+ c)(c + d)
.
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with the subtrahend being the accuracy. However, Kuncheva (2013) pointed out that 
diversity concerning the average error can not be arbitrarily low [39]. In fact, desirable 
classifier pairs approximate the lower-left corner (see Fig. 4), i.e., approximating a theo-
retical boundary, which is defined in Eq. 7 [39].

Note that the classifier pairs are composed using the lower triangular matrix of the 
Cartesian product. Afterward, the pruning methods select a subset of pairs, also likely 
include duplicated base classifiers. Thus, all pruning methods ensure that the final 
ensemble only uses unique classifiers. Hence, base classifiers are trained on individual 
encoded datasets.

Convex hull

The kappa-error diagram depicts a set of points, i.e., pairs of base classifiers, in a two-
dimensional space. The kappa diversity is the first, and the pairwise average error is the 
second dimension. We employed the Quickhull algorithm to calculate the convex hull 
[51]. Hence, the smallest convex set that contains the classifier pairs [51]. Thus, no fur-
ther classifier pairs exist beyond the convex hull. We utilized the implementation of the 
Quickhull algorithm provided by the SciPy package in the ConvexHull module [52].

Since we are only interested in the partial convex hull, that is, pairs approaching 
the theoretical boundary defined in Eq.  7 and depicted in Fig.  4, we adapted the 
pareto_n algorithm from Kuncheva (2014), which returns only classifier pairs fulfill-
ing the criteria [25].

Pareto frontier

The Pareto optimality describes the compromise of multiple properties towards optimiz-
ing a single objective [53]. For instance, a pair of classifiers is Pareto optimal if improv-
ing the diversity is impossible without simultaneously impairing the average pairwise 
error. Analog to the partial convex hull introduced earlier, Pareto optimal classifier pairs 
approach the theoretical boundary as stated in Eq. 7, ultimately defining the Pareto fron-
tier. Again, we used the pareto_n algorithm adapted from Kuncheva (2014) to obtain all 
classifier pairs determining the Pareto frontier (see Fig. 4).

Multi‑verse optimization

The multi-verse optimization (MVO) algorithm is inspired by the alternative cosmo-
logical model stating that several big bangs created multiple, parallel existing uni-
verses, which are connected by black and white holes and wormholes [38]. In terms of 
an optimization algorithm, black and white holes are used to explore the search space 
and wormholes to refine solutions [38]. Moreover, the inflation rate, i.e., the fitness, of 

(6)e = 1−
a+ d

a+ b+ c + d
,

(7)κmin =
{

1− 1
1−e , if 0 < e ≤ 0.5

1− 1
e , if 0.5 < e < 1
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universes is used for the emergence of new holes; thus, to cope with local minima [49]. 
We selected the MVO owing to its superior performance compared to other state-af-
the-art optimization algorithms, for instance, Particle Swarm Optimization [49]. An 
outstanding property of the MVO is the efficiency of searching and optimization [49]. 
This property is beneficial for the selection process, since the parameterized encoding 
groups form a large search space [20]. For more details, refer to Mirjalili et al. (2016) and 
Al-Madi et al. (2019) [38, 49].

We implemented the binary MVO following [49] using Python. Each solution can-
didate is represented as a binary vector, where each position denotes the path to an 
encoded dataset, that is, the i-th bit set means that the i-th encoding is included in the 
final ensemble (see Fig. 4). We examined different generations, i.e., 100, 80, 50, 25, and 
15. However, we observed that performance depends mainly on the initialization and 
count of the universes. Specifically, the performance gain from the 15th generation is 
minor but requires much time. Thus, we set the optimization to a maximum of 15 gener-
ations with 32 universes each. Due to its resource intensity, we executed the MVO only 
for the first five folds (see section Monte Carlo cross-validation).

Best encodings

A further pruning method uses only the best classifier pairs. In particular, based on the 
kappa-error diagram, the algorithm selects 15 classifier pairs with the lowest pairwise 
average error (see Fig. 4).

Random encodings

The last pruning method selects 15 random classifier pairs from the kappa-error dia-
gram. Note that the selection is only performed one time. That is, the pairs are the same 
across all folds.

Statistics

We examined the areas covered by the respective base classifiers (see Fig. 4). To this end, 
we calculated the area for each fold. The area is described by multiple variables, i.e., the 
kappa diversity and the average pairwise error. Thus, we applied the multivariate analy-
sis of variance (MANOVA) to verify if the areas differ significantly. If this is the case, 
we subsequently employed an analysis of variance (ANOVA) to investigate the effect of 
the diversity and the average error separated. For post-hoc assessment, Tukey’s HSD has 
been applied. We used the tests provided by the R standard library. α was set to 0.05, i.e., 
p values ≤ 0.05 are considered as significant.

In addition, we employed the Friedman test with the Iman and Davenport correction 
for the statistical comparison of multiple single and ensemble classifiers [54]. In the case 
at least one model is significantly different, we used the Nemenyi test for post-hoc analy-
sis [54]. Refer also to Spänig et al. (2021) for more details [20]. The tests were provided 
by the scmamp R package v0.2.55 [35].

Finally, we examined if the best ensemble has a significant improvement over the best 
single classifier using Student’s t-test for repeated measures, i.e., paired samples. Again, 
α was defined as 0.05.
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Data visualization

All plots are realized using Altair v4.1.0 [55] and described in more detail hereinafter.

Kappa‑error diagram

The kappa-error diagram, suggested by Margineantu and Dietterich (1997) [50], shows 
the result of a single split in the left column and a two-dimensional histogram aggregat-
ing all folds in the right column (see Fig. 4). The rows show the base classifiers. Note 
that the kappa-error shape depends only on the base classifiers (see Discussion). The left 
column also visualizes the partial convex hull (black line) and the Pareto frontier (red 
line). The colors refer to the pruning method. Each dot is a classifier pair trained on two 
encoded datasets. Note that we display only 1000 dots per panel. Moreover, we set the 
bin size to 40 for the binned heatmap with darker colors depicting more values.

XCD chart

The extended critical difference (XCD) chart (Fig. 2) is based on the critical difference 
chart introduced by Calvo and Santafé (2016) [35]. Classifier groups not surpassing the 
critical difference (CD) are connected with black lines. The line thickness depicts the 
actual CD, meaning groups associated with thicker lines are closer to CD. The XCD 
charts present two classifier groups. The x-axis includes pruning types, and the y-axis 
the actual ensembles and the corresponding base classifier. The main area contains a 
categorical heatmap showing Matthews correlation coefficient (MCC) in 0.05 steps. The 
darker, the higher the MCC. The MCC is the median MCC of the respective group com-
bination and corresponds to the median from Fig. 3. Note that for the computation of 
the CD, we concatenated the MCCs of all cross-validation runs, e.g., 12 * 100 MCCs for 
pfront, and 6 * 100 MCCs for bayes_voting_soft.
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