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Abstract

Cancer is one of the leading causes of death worldwide and can be caused by environ-
mental aspects (for example, exposure to asbestos), by human behavior (such as smok-
ing), or by genetic factors. To understand which genes might be involved in patients’
survival, researchers have invented prognostic genetic signatures: lists of genes that can
be used in scientific analyses to predict if a patient will survive or not. In this study, we
joined together five different prognostic signatures, each of them related to a specific
cancer type, to generate a unique pan-cancer prognostic signature, that contains 207
unique probesets related to 187 unique gene symbols, with one particular probeset
present in two cancer type-specific signatures (203072_at related to the MYO1E gene).
We applied our proposed pan-cancer signature with the Random Forests machine
learning method to 57 microarray gene expression datasets of 12 different cancer
types, and analyzed the results. We also compared the performance of our pan-cancer
signature with the performances of two alternative prognostic signatures, and with
the performances of each cancer type-specific signature on their corresponding
cancer type-specific datasets. Our results confirmed the effectiveness of our prognostic
pan-cancer signature. Moreover, we performed a pathway enrichment analysis, which
indicated an association between the signature genes and a protein-protein interac-
tion analysis, that highlighted PIK3R2 and FN1 as key genes having a fundamental
relevance in our signature, suggesting an important role in pan-cancer prognosis for
both of them.

Keywords: Genetic signature, Prognostic signature, Microarray, Gene expression,
Cancer, Pan-cancer, Ensemble machine learning, Random forests, Pan-cancer prognosis

Introduction

During gene expression, the information encoded in a gene is used for the synthesis of a

protein or of another functional gene product. In biological sciences, gene expression is

considered as the activity of a gene: the higher its expression, the more active the gene.
The measurement of gene expression is called gene expression profiling, and can be

performed through several techniques and technologies, including DNA microarrays. A
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microarray is a grid of microscope slides with thousands of tiny spots in defined posi-
tions, with each spot containing a known DNA sequence or gene [1].

Since microarrays can be generated through multiple different techniques, each gene
expression dataset is associated to a particular platform on which the gene expression
was measured. Each microarray platform has its own gene expression coordinates for
the positions of the genes in the genome. These coordinates are indicated by probesets,
that are sets of fragments of DNA known as hybridization probes [2]. Each microarray
platform therefore has its own probeset system, which is usually incompatible with the
probeset system of other platforms. Only platforms of the same brand can have com-
patible probesets between each other, and this the is case of the Affymetrix platforms
GPL96, GPL97, and GPL570, for example.

In most of the cases, a probeset corresponds to one specific gene symbol. A gene sym-
bol, instead, can be related to multiple probesets. This aspect represents a problem in
bioinformatics: given a gene symbol alone, it is impossible to know to which probeset of
a specific platform it refers. On the contrary, given a probeset and a platform, it is always
possible to identify the related gene symbol.

To alleviate this problem, Qiyuan Li and colleagues [3] recently released Jetset, a bioin-
formatics tool that associate a probeset to its most likely gene symbols for some specific
platforms. Even if useful, this tool does not completely solve the probeset-gene associa-
tion problem.

Even though most of scientific studies still rely on gene symbols, an article by
Li Li et al. [4] showed that using different probesets related to the same gene symbol
would lead to different results, and advocated for the usage of probesets instead of gene
symbols in bioinformatics analyses. We agree with that approach and decided to build
our whole analyses on probesets rather than gene symbols.

Genetic signatures Groups of particular of genes together can have an important role
in the characterization of diseases; these groups of genes are usually called a genetic sig-
natures. When a signature can be used to differentiate patients from healthy controls, it
is called a diagnostic signature. When a signature can be employed to differentiate sur-
vived patients from deceased patients, instead, it is called prognostic signature. Here we
focus on the latter kind.

Cancer affects around 20 million people and causes approximately 10 million deaths
globally each year [5], and the study of potential cancer signatures has been widespread
in bioinformatics research worldwide. In the past, prognostic signatures have been used
for specific cancer types, such as lung cancer [6] and breast cancer [7].

Here, instead, we propose a prognostic pan-cancer signature able to identify surviv-
ing patients and death-risk patients on gene expression datasets of any possible cancer
types. In fact, an analysis done on multiple cancer types is called pan-cancer [8].

Several researchers already proposed pan-cancer signatures and pan-cancer studies in
the past. Jia and colleagues [9], for example, investigated the role of a gene signature
related to the COL11A1 gene for the identification of pan-cancer associated fibroblasts.
Xu et al. [10] proposed a 154-gene expression pan-cancer signature derived from a tran-
scriptome data analysis.

In another study, de Almeida and coauthors [11] proposed a centrosome ampli-
fication-related signature for clinical outcome across different cancer types.
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Izzi and colleagues [12] analyzed matrisome data of the extracellular matrix (ECM)
to propose 29 cancer types-specific signatures. Data from the ECM were used
by Yu and colleagues [13] as well to propose a 5-gene pan-cancer signature for
prognosis.

Luo et al. [14] analyzed telomerase reverse transcriptase (TERT) activation data
from The Cancer Genome Atlas (TCGA) to propose a TERT"#-specific mRNA
expression signature for multiple cancer types.

Yuanyuan Li and coauthors [15] analyzed RNA-Seq data of the The Cancer Genome
Atlas to detect a 20-gene pan-cancer signature for survival prediction. More recently,
Nagy et al. [16] analyzed the same data to detect an 8-gene pan-cancer signature.

A list of prognostic genes for a specific disease can be found not only through gene
expression, but by also integrating multi-omics data. Zhou et al. [17], for example,
applied deep machine learning models to data of gene expression, copy number alter-
ations (CNAs), and messenger RNA (mRNA) and detected 12 prognostic genes for
breast cancer [17].

A genetic signature can be applied to a bioinformatics dataset mainly in two ways:
through statistics survival models [13, 16] or supervised machine learning mod-
els [10-12, 14, 15]. Our approach belongs to the latter group: in our analysis, in fact,
we employed the Random Forests [18] ensemble machine learning method. Random
Forests resulted being effective in numerous computational biology studies [19] and
on gene expression data in particular [20].

Our proposed pan-cancer prognostic signature In this study, we propose a pan-
cancer prognostic signature merged from 5 already-existing cancer type-specific
prognostic signatures available in the literature (breast cancer, lung cancer, prostate
cancer, colon cancer, and neuroblastoma).

Three aspects make our proposed pan-cancer signature an effective tool for progno-
sis on gene expession data: (i) The usage of probesets instead of gene symbols; (ii) The
207 probesets derived from 5 different signatures related to a different cancer type;
(iii) The application of the signature with Random Forests.

We applied our proposed pan-cancer prognostic signature on 57 gene expression
datasets publicly available on GEO, made of 12 different cancer types. Moreover, to
better understand the roles and the functions of the genes of our proposed signature,
we then employed a gene set enrichment tool and a protein-protein interaction analy-
sis tool, and elaborated their results [21].

Our results confirm the predictive power of our proposed pan-cancer prognostic
signature, and the functional validation task unveiled relevant information about the
signature genes, that can pave the way for further studies on this topic.

This study We organize the result of this study this way. After this Introduction,
we describe the 5 original cancer type-specific signatures that we used to generate
our pan-cancer signature and the 57 datasets we employed for testing (Section 2).
We then describe the machine learning method we used to predict the survival of
the patients and the network and pathway analysis techniques we employed for
functional validation (Section 3), and the results obtained in these two steps (Sec-
tion 4). Lastly, we outline some conclusions about these study and its potential future
developments (Section 5).
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Datasets
In this section, we first explain how we retrieved the gene expression cancer datasets
we employed in our study (Section 2.1) and then we describe how we generated our

proposed pan-cancer signature (Section 2.2).

Gene expression data of multiple cancer types

We collected gene expression datasets of the most common cancer types [5] from
Gene Expression Omnibus (GEO) through Bioconductor [22, 23] packages such as
GEOquery [24] and BioMart [25]. We selected only the prognostic datasets, that are
the ones which include a feature about the status of the patient: alive or deceased.
We filtered in only the datasets derived from platforms compatible with our pan-
cancer signature probesets, that are Affymetrix Human Genome U133 platforms HG-
U133A (GPL96), HG-U133B (GPL97), or HG-U133 Plus 2 (GPL570).

For this scope, we developed a Perl script [26] that retrieved 57 different prognos-
tic cancer datasets: 17 of breast cancer, 13 of lung cancer, 10 of colorectal cancer, 5
of lymphoma, 4 of leukemia, 2 of multiple myeloma, and 1 of adrenocortical cancer,
bladder cancer, neuroblastoma, ovarian cancer, skin cancer, and stomach cancer.

We included the 11 most common cancer types, plus a rare children cancer, neu-
roblastoma, to verify both the universal effectiveness of our pan-cancer signature in
most cancer types and in one specific rare disease. We wanted to include a dataset of
prostate cancer, but we could not find any prognostic one compatible with the GPL96,
GPL97, or GPL570 platforms unfortunately.

We reported all the information and the quantitative characteristics of these data-
sets in Table 1.

Our pan-cancer signature
To generate our proposed pan-cancer prognostic signature, we joined five different
prognostic signatures available in the scientific literature. Each of these five signatures
was proposed for a specific cancer type, and its probesets are compatible with the
GPL96, GPL97, and GPL570 Affymetrix platforms.

In particular, the five known prognostic signatures contribute to our pan-cancer

signature this way (Fig. S1):

+ The sigCangelosi2020 signature for neuroblastoma, with 9 probesets (Table
S1) [27] contributes to our pan-cancer signature for 4.33%;

« The sigChen2012 signature for prostate cancer, with 7 probesets (Table S1) [28]
contributes to our pan-cancer signature for 3.37%;

+ The sigGyorfty2013 signature for lung cancer, with 15 probesets (Table S1) [29]
contributes to our pan-cancer signature for 7.21%;

« The sigHallett2012 signature for breast cancer, with 14 probesets (Table S1) [30]

contributes to our pan-cancer signature for 6.73%;
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Table 1 List of gene expression datasets employed in our analysis, sorted by cancer type

dataset name GEO code cancer type neg# pos# samples# neg% pos%
1 dataHeaton2011 GSE33371  adrenocortical cancer 16 7 23 69.57 3043
2 dataReister2012 GSE31684  bladder cancer 38 27 65 5846 4154
3 dataDedeurwaerder2011  GSE20711  breast cancer 63 25 88 7159 2841
4 dataDesmedt2007 GSE7390 breast cancer 141 56 197 7157 2843
5 dataHatzis2009 GSE25066  breast cancer 152 45 197 7716 2284
6 dataHuang2014 GSE48390  breast cancer 11 69 80 1375 86.25
7 datalvshina2006 GSE4922 breast cancer 160 89 249 6426 3574
8 datalezequel2015 GSE58812  breast cancer 29 77 106 2736 7264
9 dataKarn2011 GSE31519  breast cancer 22 41 63 3492  65.08
10 dataKim2020 GSE135565  breast cancer 7 76 83 843 91.57
11 datalin2009 GSE19697  breast cancer 6 17 23 2609 7391
12 dataloi2008 GSE9195 breast cancer 63 13 76 8289 17.11
13 dataMetzgerFilho2016 GSE88770  breast cancer 19 97 116 16.38 8362
14 dataMiller2013 GSE45255  breast cancer 116 18 134 86.57 1343
15 dataSabatier2010 GSE21653  breast cancer 168 83 251 6693  33.07
16 dataSchmidt2008 GSE11121  breast cancer 154 45 199 7739 2261
17 dataSinn2019 GSE124647  breast cancer 43 96 139 3094 69.06
18  dataWang2010 GSE19615  breast cancer 14 100 114 1228 87.72
19  dataYenamandra2015 GSE61304  breast cancer 38 20 58 65.52 3448
20  dataBeauchamp2014 GSE38832  colorectal cancer 28 93 121 23.14 7686
21 dataChen2020 GSE161158  colorectal cancer 145 59 204 71.08 2892
22 dataDelRoi2017 GSE72970  colorectal cancer 32 91 123 2602 7398
23 dataGotoh2018 GSE92921  colorectal cancer 53 5 58 91.38 862
24 dataMarisa2013 GSE39582  colorectal cancer 384 194 578 6644 3356
25  dataShinto2020 GSE143985  colorectal cancer 75 15 90 8333 1667
26  dataSieber2010 GSE14333  colorectal cancer 50 176 226 2212 7788
27 dataSmith2009a GSE17536  colorectal cancer 73 103 176 4148 5852
28  dataSmith2009b GSE17537  colorectal cancer 20 34 54 3704 6296
29  dataStaub2009 GSE12945  colorectal cancer 12 49 61 19.67 8033
30 dataHerold2011 GSE22762  leukemia 26 17 43 6047 3953
31 dataHerold2013 GSE37642  leukemia 307 109 416 7380 26.20
32 dataMetzeler2018 GSE12417  leukemia 103 59 162 63.58 3642
33 dataSpivak2014 GSE47018  leukemia 7 13 20 3500 65.00
34 dataBild2005 GSE3141 lung cancer 57 53 110 5182 4818
35  dataBotling2012 GSE37745  lung cancer 144 51 195 7385 26.15
36 dataHeiskanen2015 GSE68465  lung cancer 236 207 443 5327 4673
37 datakohno2011 GSE31210  lung cancer 35 191 226 1549 8451
38  dataMicke2011 GSE28571  lung cancer 52 47 99 52,53 4747
39  dataPhilipsen2010 GSE19188  lung cancer 49 32 81 6049 3951
40  dataPintilie2013 GSE50081  lung cancer 75 105 180 4167 5833
41 dataPotti2006 GSE3593 lung cancer 54 143 197 2741 7259
42 dataRousseaux2013 GSE30219  lung cancer 199 93 292 68.15 3185
43 dataSon2007 GSEB894 lung cancer 68 69 137 49.64 5036
44 dataTsao2010 GSE14814  lung cancer 60 72 132 4545 5455
45 dataXie2011 GSE29013  lung cancer 18 36 54 3333 6667
46 dataZChen2020 GSE157011  lung cancer 219 264 483 4534 5466
47  datalgbal2015 GSE58445  lymphoma 76 50 126 60.32  39.68
48  dataKawaguchi2012 GSE34771  lymphoma 23 10 33 69.70 3030
49  dataleich2009 GSE16131  lymphoma 91 88 179 50.84 49.16
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Table 1 (continued)

dataset name GEO code cancer type neg# pos# samples# neg% pos%
50 datalenz2008 GSE10846  lymphoma 165 249 414 3986 60.14
51 dataVanLoo2009 GSE7788 lymphoma 6 9 15 40.00 60.00
52 dataMulligan2007 GSE9782 multiple myeloma 103 160 263 39.16  60.84
53 dataShi2010 GSE24080  multiple myeloma 78 480 558 13.98 86.02
54 dataHiyama2009 GSE16237  neuroblastoma 11 39 50 2200 78.00
55  dataUehara2015 GSE65986  ovarian cancer 6 48 54 1111 88.89
56  dataBogunovic2009 GSE19234  skin cancer 20 23 43 4651 5349
57 dataPasini2021 GSE38749  stomach cancer 9 5 14 6429 3571
average 7770 79.68 157.39 4829 5171
median 53 56 121 4964 5036
minimum 6 5 14 843 8.62
maximum 384 480 578 9138 9157

All these datasets are based on the GPL96, GPL97, or GPL570 Affymetrix platforms and were downloaded from Gene
Expression Omnibus (GEO) in April and May 2021.Positive sample: survived patient diagnosed with cancer. Negative sample
deceased patient diagnosed with cancer. pos# number of positive samples in the dataset. neg# number of negative samples
in the dataset. pos% percentage of positive samples in the dataset. neg% percentage of negative samples in the dataset.
These prognostic datasets refer to 12 different cancer types: 17 breast cancer datasets, 13 lung cancer datasets, 10 colorectal
cancer datasets, 5 lymphoma datasets, 4 leukemia datasets, 2 multiple myeloma datasets, 1 dataset for adrenocortical
cancer, bladder cancer, neuroblastoma, ovarian cancer, skin cancer, and stomach cancer

+ The sigVanLaar2010 signature for colon cancer, with 163 probesets (Table S2,
Table S3, Table S4, and Table S5) [31, 32] contributes to our pan-cancer signature
for 78.37%.

As one can notice, the sigVanLaar2010 colon cancer signature makes a large part of our
signature. We decided to include signatures of common cancer types (lung cancer, breast
cancer, colon cancer, and prostate cancer) plus a signature of a rare cancer (neuroblas-
toma) because we wanted to create a prognostic signature that could work effectively
both on common cancer types and on rare cancer types.

The first step we did was to check the probesets and genes shared by multiple source
signatures and therefore present multiple times in our aggregate pan-cancer signa-
ture. We used geneExpressionFromGEO [33], and BioGPS [34] for the probeset-gene
annotations.

Our proposed pan-cancer signature contains the probeset 203072_at (MYOLE gene
ENSG00000157483, myosin IE) [35, 36] that is present twice in our signature because it
is located both in the sigVanLaar2010 signature for colorectal cancer and in the sigHal-
lett2012 signature for breast cancer.

Our proposed signature contains 207 unique probesets related to 187 unique gene

symbols in total. Some gene symbols occur multiple times:

+ 3 gene symbols appear four times (CTSB, FN1, and TM4SF1);

+ 7 gene symbols appear three times (ANXA2, CD55, DUSP6, KLF6, PLAUR, RPL3,
and RPL3P4);

+ 17 gene symbols appear twice (APOE, BGN, C100rf99, CD59, CH507-513H43,
CH507-513H44, CH507-513H46, DNAJA3, IGFBP3, IRS2, NNMT, PDK1, PGK1,
PRDX5, TMBIM4, TNFRSF21, VCAN, and VEGFA9);

+ All the other gene symbols appear only once.


https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE10846
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE7788
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE9782
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE24080
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE16237
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE65986
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE19234
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE38749
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We report our pan-cancer signature in the Supplementary information (Table S1, Table
S2, Table S3, Table S4, and Table S5).

Methods

In this section, we first describe how we applied ensemble machine learning for the
prediction of the survival (Section 3.1), and then we report the methods we used for
the protein-protein network and pathway analysis of our pan-cancer signature genes
(Section 3.2).

Survival prediction through machine learning

In our survival prediction, we first selected the probesets of a specific signature and the
survived/deceased label on each gene expression dataset, and we then applied Random
Forests [18] for binary classification. Random Forests is an ensemble machine learn-
ing method based on decision trees: at each execution, it selects random subsets of the
training set (randomly picking some features and some data elements), and trains a deci-
sion tree on each of these subsets. At the end of the execution, Random Forests applies
each of these decision trees, which generate a binary response. Random Forests eventu-
ally applies a majority vote to these responses: if most of these decision trees generated a
true outcome, Random Forests will return a true outcome; if most of these decision trees
produced a false outcome instead, Random Forests will return a false results too.

Since it is known that changes in the hyper-parameters of Random Forests do not sig-
nificantly affect results when the method is applied to small datasets [37], we used the
default values of the R method, with 500 trees to grow [38].

In this phase we employed traditional best practices for machine learning, by splitting
the data into training set (80% of the patients, randomly selected) and test set (remain-
ing 20%) [39, 40]. For imbalanced dataset, with one of the two classes greater than 70%,
we applied the ROSE oversampling technique [41]. We measured the results on the test
set with several confusion matrix rates, focusing on the Matthews correlation coeffi-
cient (MCC) [42], since it is more informative than other scores [43—-47]. To avoid hav-
ing results due to a particular configuration of the training set and of the test set, we
repeated the execution of Random Forests 100 times, and reported the average results
obtained for each statistic.

Moreover, we also applied several alternative methods to Random Forests: Cat-
Boost [48], lightGBM [49], k-Nearest Neighbors [50], and Decision Tree [51]. Since
Random Forests obtained better average MCC results than the other algorithms (Sup-
plementary File S4), we decided to base our study on Random Forests.

Network and pathway analysis

To better understand the biological functions associated to our pan-cancer signature,
we employed g:Profiler g:GOSt [52], an online web tool for functional enrichment
analysis [29, 53]. g:Profiler g:GOSt reads in a list of genes and associates functions and
pathways from several bioinformatics databases, such as the Gene Ontology (GO),
WikiPathways (WP), and the Human Protein Atlas (HPA). g:Profiler g:GOSt associates a
p-value to each term annotated to the input gene list. We used its g:SCS significance algo-
rithm with 0.005 as significance threshold, as suggested by Benjamin and colleagues [54].
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Knowledge about the function and the behavior of the genes of our pan-cancer sig-
nature can come from their protein-protein interactions (PPIs), too. For this reason, we
looked for the protein-protein interactions associated to our pan-cancer signature on
the STRING [55] database. We decided to use only the real, physical interactions pro-
vided by STRING, with confidence threshold 0.4, and to discard the predicted interac-
tions. This way, we can focus only on the real, existing protein-protein interactions, with
a high level of confidence regarding our scientific discoveries.

For network analysis, we used experimentally detected physical protein-protein
interactions (PPIs) obtained from the Integrated Interactions Database (IID, June 2021
version) [56]. For pathway enrichment analysis we used two pathway sets from path-
DIP (version 4) [57], core and extended pathways (predictions based on experimentally
detected physical connectivity of proteins with pathway members at an association-
score 0.95 and higher).

Results

In this section, we first report and describe the results on the survival prediction
obtained by our pan-cancer signature (Section 4.1), and the results obtained through the
functional validation of the genes of our pan-cancer signature (Section 4.2).

Survival prediction on all the datasets

Our prognostic pan-cancer signature

We applied our pan-cancer signature with several machine learning methods: Random
Forests, CatBoost, lightGBM, k-Nearest Neighbors, and Decision Tree. Among them,
Random Forests obtained the highest average Matthews correlation coefficient (MCC)
on average, and therefore we highlighted this method’s results. We list the results
obtained with CatBoost, lightGBM, k-Nearest Neighbors, and Decision Tree in Supple-
mentary File S4.

We report the results obtained by our prognostic signature with Random Forests on
the 57 datasets in Table 2 and Fig. 1. Our pan-cancer signature achieved at least a suf-
ficient score among the employed rates (MCC, F1 score, accuracy, sensitivity, specificity,
precision, negative predictive value, PR AUC, and ROC AUC) on 55 out of 57 data-
sets (all except the dataMicke2011 and dataLeich2009 datasets).

As expected, our signature achieved its best results among the colon cancer datasets,
with 6 datasets out of 10 where the MCC is above +0.2. Our proposed signature obtained
good MCC results also on the single datasets of neuroblastoma, skin cancer, and stomach
cancer. It was able to generate good predictions measured with MCC on 2 leukemia data-
sets out of 4. Overall, regarding the Matthews correlation coefficient, our pan-cancer sig-
nature obtained sufficient results on 19 datasets out of 57, corresponding to the 33.33%.

Regarding sensitivity, our prognostic signature obtained sufficient results (TPR >
0.6) on 58.18% of the datasets, confirming its capability to recognize survived patients
with cancer in the gene expression datasets. Our signature, however, obtained sufficient
results for specificity only on 21.82%, showing that it is not well performing when clas-
sifying deceased patients with cancer.

We also computed the precision-recall curve AUC and the ROC curve AUC to
evaluate the performances when no confusion matrix threshold is provided. Our
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normMCC accuracy F1 score

ROC AUC PR AUC TPR

TNR PPV NPV

Fig. 1 Barcharts of the average results obtained by our pan-cancer signature on each cancer type.
Adrenocortical cancer: results on the dataHeaton2011 dataset. Bladder cancer: results on the dataReister2012
dataset. Breast cancer: average results on 18 breast cancer datasets. Colorectal cancer: average results on 11
colorectal cancer datasets. Leukemia: average results on 5 leukemia datasets. Lung cancer: average results on
14 lung cancer datasets. Lymphoma: average results on 6 lymphoma datasets. Multiple myeloma: average
results on 3 multiple myeloma datasets. Neuroblastoma: results on the dataHiyama2009 dataset. Ovarian
cancer: results on the dataUehara2015 dataset. Skin cancer: results on the dataBogunovic2009 dataset.
Stomach cancer: results on the dataPasini2021 dataset. We reported the complete suvival prediction results
in Table 2. normMCC: normalized Matthews correlation coefficient (normMCC = (MCC + 1)/2). TPR: true
positive rate, sensitivity, recall. TNR: true negative rate, specificity. PPV: positive predictive value, precision. NPV:
negative predictive value. PR: precision recall curve. ROC: receiver operating characteristic curve. AUC: area
under the curve. normMCC, F4 score, accuracy, TPR, TNR, PPV, NPV, PR AUC, and ROC AUC have worst value 0
and best value 1. The formulas of MCC, F 1 score, accuracy, TPR, TNR, PPV, NPV, PR AUC and ROC AUC can be
found in the Supplementary information. We report additional information about these datasets in Table 1
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pan-cancer signature obtained sufficient scores for the PR AUC and the ROC AUC on
almost 60% of the datasets, confirming its predictive power.

Among the rankings generated with all the employed rates (Fig. 1), four cancer types
result being among the first four positions on average: neuroblastoma, stomach cancer,
skin cancer, and colorectal cancer. Our prognostic signature obtained more sufficient
results on multiple rates on the datasets of these cancer types.

Other cancer type-specific signatures and pan-cancer signatures

To further verify the predictive efficacy of our prognostic pan-cancer signature, we
applied each original cancer type-specific signatures with Random Forests to each can-
cer type-specific dataset, and compared its results with the results obtained by our pan-
cancer signature. We measured the results with the Matthews correlation coefficient.

Our pan-cancer signature outperformed the sigVanLaar2010 signature on 9 colon can-
cer datasets out of 10 (all except the dataSmith2009a dataset).

Our prognostic pan-cancer signature also defeated the sigHallett2021 signature on 13
breast cancer datasets out of 17 (all except the dataSinn2019, dataKarn2011, dataLin2009,
and dataMetzgerFilho2018 dataset). Our proposed pan-cancer signature outplayed the sig-
Gyorffy2013 signature on 7 lung cancer datasets out of 13 (all except the dataPhilipsen2010,
dataRousseaux2013, dataSon2007, dataTsa02010, dataXie2011, dataZChen2020 dataset).

However, our prognostic pan-cancer signature was outperformed by the sigCan-
gelosi2020 signature on the only neuroblastoma dataset. We do not have prognostic
datasets of prostate cancer unfortunately so we cannot test the sigChen2012 signature

singularly.

Table 3 Pathways associated to our pan-cancer signature genes

g-value g-value

source pathway name p-value (FDR) (Bonferroni)
WikiPathways Photodynamic therapy-induced 1.05 x 107/ 182 x 1074 182 %1074

HIF-1 survival signaling
WikiPathways Androgen receptor signaling 443 x 107 154 x 1072 767 x 1072
PID Direct p53 effectors 193 x 107° 167 x 1072 334 %1072
REACTOME Extracellular matrix organization 397 x 107° 1.73 x 1072 6.90 x 1072
PID HIF-2-alpha transcription factor network 319 x 107° 1.85 x 1072 5.54 x 1072
PID Betal integrin cell surface interactions 7.02 x 107 203 x 1072 122 x 107!
PID Beta3 integrin cell surface interactions 088 x 10~ 245 x 1072 172 x 107!
WikiPathways Primary Focal Segmental 115 x 107% 248 x 1072 199 x 107!

Glomerulosclerosis FSGS
PID Alpha9 betal integrin signaling events 131 x 1074 252 x 1072 227 x 107!
REACTOME ECM proteoglycans 201 x 1074 3.18 x 1072 3.50 x 107!
KEGG MicroRNAs in cancer 190 x 107* 330 x 1072 330 x 107!
ACSN2 MOMP_REGULATION 322x107%  430x 1072 559 x 107!
WikiPathways Mammary gland development pathway 312 x 1074 451 x 1072 542 x 107!

— Puberty (Stage 2 of 4)

List of pathways enriched with genes mapped to the probesets in the combination signature. Enrichment analysis was done
using pathDIP (core pathways). p-value: probability value of the association. g-value: minimum false discovery rate at which
the test may be considered significant [63]
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Finally, we compared the results obtained by our proposed pan-cancer signature with
the results obtained by other pan-cancer signatures found in the literature: the sig-
Nagy2021 signature [16] (Table S6) and the sigYu2021 signature [13] (Table S7).

Our pan-cancer signature outperformed the sigNagy2021 signature on 71.93% of
the datasets (Supplementary File S1). Moreover, our prognostic signature defeated the
sigYu2021 signature on 75.44% of the datasets (Supplementary File S2).

Analysis of associated pathways and protein-protein interactions

Pathway analysis

We input gene symbols of the probesets of our signature to pathDIP [57], and found
that 139 of these genes were present in core (literature-based) pathways and were
enriched in 13 pathways (Table 3). These pathways related to hypoxia-inducible fac-
tors 1 and 2 (HIF1A and HIF2A) and cell-surface signaling (ECM and integrin signal-
ling) both of which have been shown to be implicated in cancer [58—62]. The latter
also suggests potential role of protein products of these genes in interaction of cancer
cells with other cells present in the tumour micro-environment. Enrichment analysis
using extended pathways highlights immune system pathways (such as TLRs, inter-
leukins, NFKB, and PDGF) as well as cell-death (apoptosis and autophagy) (Fig. S2
and Supplementary File S3).

However, despite these findings are interesting, they are highly biased due to the
imbalance in the sizes of the five source signatures. In order to subdue this bias, in the
next step of pathway analysis we considered genes in each of the five source signatures
separately. Using PPIs available in IID [56], we identified proteins that have physical
interactions to at least one protein in each source signature. Four proteins (FANCD?2,
EEF1A1, YWHAE, PGLS) have PPIs with at least one protein in all signatures and one
protein in the breast cancer signature (ALDOC) interacts with all other four signa-
tures. Pathway enrichment analysis of these four genes (core pathDIP) returned a list
of 88 pathways. At the top of this list there is “HSF1 activation’, whose importance in
several cancer types has been demonstrated [64]. The most highlighted keyword in titles
of these 88 pathways are pentose phosphate, glycolysis, and fanconi all of which have
strongly been linked to several cancer types [65—69].

Furthermore, we identified 42 proteins interacting with four out of five source signa-
tures. One of these proteins (TRIM25) is a member of the colorectal cancer signature.
Except for ALDOC and TRIM25, no other signature member interacts with more than
three signatures. Figure 2 shows membership of proteins that interact with protein prod-
ucts of genes that are members of more than three (out of five) signatures.

Intriguingly, the pathway enrichment analysis of these genes returned pathways that
belong to main cancer hallmarks [70]. Examples of these pathways include metabolism
(glycolysis, gluconeogenesis, pentose phosphate cycle, citrate-cycle), cell proliferation
and maintenance (M2G, DNA-damage checkpoint, growth factors, WNT, PI3K-AKT-
mTOR), cell-death (apoptosis, autophagy), immune system (TLRs, cytokine signaling,
neutrophils), cell invasion (focal-adhesion, extracellular vesicle-mediated signaling,
EMT), inflammation (fibroblast, integrins, TRAFs), angiogenesis (VEGEF, HIF). This cov-
erage for cancer hallmarks can partly explain reasonable performance of our combined
signature on most cancer datasets (Fig. 3 and Supplementary File S3).
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Fig. 2 Network of integrated interactions of proteins associated to our pan-cancer signature genes.
Membership of proteins that interact with protein products of genes that are members of more than three
(out of five) signatures. Four proteins (FANCD2, EEF1AT, YWHAE, PGLS) have PPIs with at least one protein
products of genes in all signatures and one protein in breast cancer signature (ALDOC) interacts with all other
four signatures. These five genes are shown with orange labels. Genes in different signatures are shown with
different outline colors: grey for colorectal cancer, red for lung cancer, carbon blue for neuroblastoma, orange
for breast cancer, and green for prostate cancer. Nodes with pink outline show interacting proteins with
protein products of genes of different signatures. We produced this network with 11D [56]

RET EGER Y VIRAL P75 RB IGFILY
PO INHiBITOR AL
H QALY HIFI-ALPHA WEGP&EJE%LEBEN NEGFA ERBE D‘s’%r?‘sss PI3K
MYOLATE MITOPHAGY NMD ESTROGENCOCAINE poGF THYROID VGl vEiNE oDY
GUIDANCE TELOMERASENICOTINE. PERMEABILITY - - TNE-ALPHA o\ AN EAR BRANCH TLRS.
L3 GENERATION THROMBOXANE AKTEADOCTTONS FBROBLASTAPOPTOSIS -, INNATE Jni
A SynTEssiAs ATV R TR ORI SH SENESCENCE ENHANCED HDAC
TGF EUKARY%'I&E RNA. pRQCEssmgTHERAP’V HUNTINGTON; TION MYOGENESIS SUCCINYL LR9
IL5 PLKTKERATINOCYTE "WNT-BETA-CATENIN TRANSACTIVATIONDOWNREGULATION STRESSJNDUCED ENDOSOME R 1Y 268
GLUCAGON CARCINOGENES!SSTIMULATING SIGNAL TRANSDUCTION csmnosomsz RO FOLLICLERH0A
EGFR8S-C NSCRIPTION NANEMM GLYCOL Y SIS Hrocamon TR ADRENERGIC PROSTATETSH

2ADECARBOXVIA GLUCONEQGENESIS AL PENTOSEnatis X,

TRKB HEAT EAR RTK Igveer
COMPLEX FOCAL- ASDHES|ON DECAY DOPAM'NERG'CTLR DNAPDFXOA?‘{{&N%E&: CELLE DTEATH
-Cf DEATH

R
MATURATION
arraon] RANSLA TION ouerseunscN -MEDIATED A DAACE CHECKPONT OEAT,
& WTHFACTOR KECEFTORDNA KEPATR JLR10
AROMATASE SGNAUKE NEBIRTED Co ESTROGEN-DEPENDENT!LR'0"BREDNISOLONE INITIATION
ENDOVETRIAL U ISR GRS LA R SELARECEPTOR O oxnoﬁ?\% ANBE?%%SEE O ADPQONCOGENIC RICH
Aol FACTORWNTMTORJUNCTIONS CIATHRIN-VIEDIATED TLRVESIGLEMEDIATED RESPONSE FonoA

FOXQBETA TINTEGRIN o1 TR ANSITION
TRANSACTIVATING VA
”°RM°?#4‘F‘£'S$.'8USE§S‘;5§%%D;@XAO il LRA Eakaorybrate RACTVATON W 1 NetRoPrass GARICINA
OXYTOCIN .2- MEDIATED IL11MICROTUBULE SILENC|NG PLURIPOTENCY ERLOTINIE HEDGEHOG  VE! W AzNFGF R
RIBOSOME NEUTROPHI ONCOSTAT NFLLENZA REPULSIONINFECTION A BREAST
TSLPGASTRINPRA%RHN HOR'NG HEPATITIS &P AR‘{,EI,SEEW"AJ\F:"KABEXON
MAP DUBS A O A RiaM ﬁPuREKN E ENOS ERBB P53

1 RAGE™
Fig. 3 Key-term enrichment analysis. Key-term enrichment analysis of proteins that interact with protein
products of genes of at least four different signatures signatures. Size of different key-terms is proportional
with -log of statistical significance of appearance of each key-term in title of enriched pathways. We

generated this image with pathDIP [57]
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STRING protein-protein interaction networks
To better understand the relationships between the genes of our proposed pan-cancer
signature, we insert it into STRING [55] and generated a network of physical protein-

protein interactions (Fig. 4).
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Fig. 4 Protein-protein physical interaction network of our proposed pan-cancer signature. We generated
this network with STRING [55]: each node represent a protein generated by a protein-coding gene of our
proposed pan-cancer signature, and each edge represents a physical interaction between two proteins.
Some nodes contain the known or predicted 3D structure of their proteins. The colors of the edges can
represent several types of interactions [55]. Confidence threshold: 0.4 medium

The network produced by STRING showed some interesting relationships between
proteins. PIK3R2 and FN1 resulted being the proteins with the highest number of pro-
tein-protein interactions, and therefore can be considered as pan-cancer gene hubs.

The PIK3R2 gene (ENSG00000105647, phosphoinositide-3-kinase regulatory subu-
nit 2 [71, 72]) that has 5 physical interactions in the protein-protein interaction net-
work of STRING, which is the highest number of edges. PIK3R2 belongs to a family
of genes known to be involved in pan-cancer [73]. The protein subnetwork of PIK3R2
could be used for further pan-cancer studies in the future: DUSP10, DUSP6, FHL2,
IRS2, PIK3R2, and RIPK2.

The FN1 gene (ENSG00000115414, fibronectin 1 [74, 75]), that occurs 4 times in the
signature (top occurrence), has 4 interactions in the STRING physical interaction net-
work. FN1 has a key role in phosphaturic mesenchymal tumors [76]. The subnetwork of
FN1 could be used for further pan-cancer studies in the future: CTGF, CYR61, DDIT4,
DSTN, EN1, IGFBP3, LCP1, PAPSS1, PLAUR, SPP1, VCL, and VEGFA.
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Fig. 5 Functional annotation analysis terms associated to the genes of our proposed pancancer signature.
We generated this list of functional annotations using g:Profiler g:GOSt [52] with the following options
and list of abbreviations. Statistical domain scope: only annotated genes. Significance threshold: 0.005, as
suggested by Benjamin and colleagues [54]. Significance method: g:SCS algorithm. GO: Gene Ontology.
BP: biological process. CC: cellular component. MF: molecular function. WP: WikiPathways. TF: Transcription
Factors. HPA: Human Protein Atlas

Addditionally, in the STRING physical protein-protein interaction network there are
7 proteins with 3 physical interactions, 13 proteins with 2 physical interactions, and 44
proteins with 1 physical interaction.

Functional enrichment analysis
The functional enrichment tool g:Profiler g:GOSt associated to our prognostic pan-can-
cer signature several pathways related to pan-cancer (Fig. 5). Gene Ontology annotations
related to cancer, such as response to hypoxia apoptotic process, negative regulation of
kinase activity, cellular response to hypoxia, extracellular matrix organization, extracel-
lular structure organization, response to oxygen levels, and extracellular matrix, clearly
confirm the relationship between our prognostic signature and pan-cancer. This tool
also detected lung and adrenal gland as tissues from the Human Protein Atlas. g:Profiler
g:GOSt associated to our pan-cancer signature several annotations related to the immune
system, confirming the relevance of the genes of our pan-cancer signature in this context.
To discover additional aspects about the functional annotations related to our signa-
ture, we applied Enrichr [77] to our signature gene list. Among the annotations found by
Enrichr, we found two diseases from PheWeb [78] of interest for our analysis. PheWeb
associated macular degeneration to our signature gene list. We know vascular endothelial
growth factor (VEGF)-A can affect cancer treatment and age-related macular degenera-
tion [79]. PheWeb also associated lipoma of skin and subcutaneous tissue to our signature
genes; a lipoma is a benign tumor made of fat. Both g:Profiler g:GOSt and Enrichr con-
firmed the relationship between our prognostic signature gene list and pan-cancer.
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Discussion and conclusions

In this study, we proposed a prognostic pan-cancer signature of probesets merged
together from 5 different cancer type-specific signatures available in the scientific litera-
ture. Our prognostic pan-cancer signature is made of 207 unique probesets related to
187 unique gene symbols, and is based on the Affymetrix platforms GPL96, GPL97, and
GPL570. We applied our proposed signature, with Random Forests and other machine
learning methods, to 57 different gene expression datasets related to 12 different cancer
types, and noticed that Random Forests outperformed the other algorithms with respect
to the average MCC results. We analyzed the results obtained by Random Forests and
our prognostic pan-cancer signature on these 57 datasets to verify its capability to clas-
sify deceased patients and survived patients. Our pan-cancer signature achieved a suf-
ficient MCC on 33.33% of these datasets, at least one sufficient confusion matrix rate on
55 datasets out of 57, and sufficient ROC AUC and PR AUC on almost 60% of these 57
datasets.

We then compared these results with the results obtained by each specific cancer
type signature on its corresponding cancer type datasets. Our signature outperformed
the sigVanLaar2010 colon cancer signature on most colon cancer datasets, the sigHal-
lett2021 breast cancer signature on most breast cancer datasets, the sigGyorfty201 lung
cancer signature on most lung cancer datasets, and was outperformed by the sigCan-
gelosi2009 neuroblastoma signature on the only neuroblastoma dataset.

Afterwards, we compared the results attained by our pan-cancer signature with the
results obtained by other pan-cancer signatures that we found in the literature on the
same 57 datasets: the sigNagy2021 signature and the sigYu2021 signature. Our prognos-
tic pan-cancer signature outperformed these two signatures on more than 70% of the
datasets.

These results show that, even if not perfect, the genes of our genetic signature have a
relevant role in pan-cancer prognosis, and they can serve as an effective starting point
for future studies on this theme. In the future, in fact, researchers can explore the genes
of our pan-cancer signature to extrapolate new signatures from subgroups of the signa-
ture genes. A clear limitation of our signature is that it obtained sufficient MCC results
only on 20 datasets out of 57. Our initial goal, however, was so ambitious that this out-
come results being relevant in any case: we initially wanted to create a pan-cancer signa-
ture made of a list of genes able to discriminate between survived patients and deceased
patients for all the possible cancer types. To this ambitious end, having a prognostic sig-
nature working well on 33.33% of the datasets represents already a sufficient and rel-
evant result.

Additionally, as mentioned earlier, our prognostic pan-cancer signature was able to
outperform other two pan-cancer signatures on most of the datasets, and almost each
cancer type-specific signature on its corresponding cancer type-specific datasets. Our
proposed pan-cancer signature was outplayed only by the sigCangelosi2009 neuroblas-
toma signature on the dataHiyama2009 neuroblastoma dataset. We believe this result
is due to the orientation of our pan-cancer signature to general common cancer types,
such as lung cancer, breast cancer, and colon cancer. Neuroblastoma is a rare, genetic,
pediatric cancer disease, and its genetic specificity makes it different from the main
cancer types such as colon cancer. We therefore believe our prognostic signature can
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be considered effective on common cancer types, but less effective than cancer type-
specific signatures on cancer type-specific datasets of rare children cancer diseases.

Our results also confirmed the efficacy of Random Forests, a relatively-new ensem-
ble machine learning method which has become widespread in biomedical informatics
studies.

To better understand the pan-cancer role of our signature, we then investigated the
pathways, the protein-protein interactions, and the functional annotations associated to
our signature’s gene list.

The pathway enrichment analysis carried out with pathDIP and g:Profiler g:GOSt
suggested that the genes of our signatures are related to interaction of cancer cells
with each other and with other cell types present in the tumour micro-environment
and to other fundamental biological aspects such as immune system and cell death.
Moreover, the analysis of protein-protein interactions related to our pan-cancer sig-
nature carried out with IID highlighted the role of proteins known to be associated
to several cancer types and to cancer hallmarks. The additional analysis on the pro-
tein-protein physical interactions found by STRING highlighted the proteins of the
PIK3R2 (phosphoinositide-3-kinase regulatory subunit 2) and FN1 (fibronectin 1)
genes as fundamental hubs in our signature, indicating an important role of these
genes for pan-cancer.

Moreover, it is interesting to notice that the most relevant pathways found by path-
DIP for our pan-cancer signature are known to be related to general aspect of cancer,
and their association has been shown through wet lab non-computational techniques
in the past: photodynamic therapy-induced HIF-1 survival signaling [80, 81], androgen
receptor signaling [82], direct p53 effectors [83], HIF-2-alpha transcription factor net-
work [84], for example.

Regarding limitations, we report that we employed here only microarray gene
expression data, and did not use RNA-Seq data, which is a more modern data type.
Additionally, we could not use the TCGA data [8], a dataset employed often nowadays
for pan-cancer studies, because we based our study on Affymetrix probesets compat-
ible among different GEO datasets, which would not have found direct compatibility
with probesets on TCGA. For the same reason, we decided to use no data from Array-
Express [85], which is a large alternative repository of gene expression.

In the future, we plan to use subgroups of genes indicated by the protein-protein inter-
action analysis as potential novel pan-cancer signatures.

Abbreviations

AUC Area under the curve
CNAs Copy number alterations
ECM Extracellular matrix

FDR False discovery rate

GEO Gene Expression Omnibus
GO Gene Ontology

GPL570  Affymetrix Human Genome U133 HG-U133 Plus 2
GPL96 Affymetrix Human Genome U133 HG-U133A
GPL97 Affymetrix Human Genome U133 HG-U133B

HPA Human Protein Atlas
1D Integrated Interactions Database
MCC Matthews correlation coefficient

mRNA Messenger RNA
NPV Negative predictive value
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PPI Protein-protein interaction

PPV Positive predictive value, precision
PR Precision-recall

RNA Messenger ribonucleic acid
RNA-Seqg  RNA-sequencing

ROC Receiver operating characteristic

ROSE Random Over-Sampling Examples
STRING Search tool for recurring instances of neighbouring genes
TCGA The Cancer Genome Atlas

TERT Telomerase reverse transcriptase
TNR True negative rate, specificity

TPR True positive rate, sensitivity, recall
WP WikiPathways
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