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Abstract

Background: Cardiopulmonary exercise testing (CPET) provides a reliable and
reproducible approach to measuring fitness in patients and diagnosing their health
problems. However, the data from CPET consist of multiple time series that require
training to interpret. Part of this training teaches the use of flow charts or nested
decision trees to interpret the CPET results. This paper investigates the use of two
machine learning techniques using neural networks to predict patient health
conditions with CPET data in contrast to flow charts. The data for this investigation
comes from a small sample of patients with known health problems and who had CPET
results. The small size of the sample data also allows us to investigate the use and
performance of deep learning neural networks on health care problems with limited
amounts of labeled training and testing data.

Methods: This paper compares the current standard for interpreting and classifying
CPET data, flowcharts, to neural network techniques, autoencoders and convolutional
neural networks (CNN). The study also investigated the performance of principal
component analysis (PCA) with logistic regression to provide an additional baseline of
comparison to the neural network techniques.

Results: The patients in the sample had two primary diagnoses: heart failure and
metabolic syndrome. All model-based testing was done with 5-fold cross-validation
and metrics of precision, recall, F1 score, and accuracy. As a baseline for comparison to
our models, the highest performing flow chart method achieved an accuracy of 77%.
Both PCA regression and CNN achieved an average accuracy of 90% and outperformed
the flow chart methods on all metrics. The autoencoder with logistic regression
performed the best on each of the metrics and had an average accuracy of 94%.

Conclusions: This study suggests that machine learning and neural network
techniques, in particular, can provide higher levels of accuracy with CPET data than
traditional flowchart methods. Further, the CNN performed well with a small data set
showing that these techniques can be designed to perform well on small data
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problems that are often found in health care and the life sciences. Further testing with
larger data sets is needed to continue evaluating the use of machine learning to
interpret CPET data.

Keywords: Machine learning, Convolutional neural networks, AutoencoderClassifier

Background
Research over the last four decades has given us conclusive evidence that physical activ-
ity plays a major role in the prevention and treatment of chronic diseases, with at least a
quarter of million deaths per year in the U.S. in 2003 attributable to a lack of cardiores-
piratory fitness [1–3]. Cardiopulmonary exercise testing (CPET) provides an objective,
reliable, and reproducible assessment of cardiorespiratory fitness and, as such, represents
an effective instrument for use by clinical practitioners to improve the health outcomes of
their patients [4, 5]. CPET measures physiological response to physical exercise through
an array of pulmonary, cardiovascular and metabolic measurements, built around breath-
by-breath gas exchange analysis. These measurements produce multivariate time-series
that when viewed by trained personnel can yield understanding of health and disease
through the interpretation of complex and dynamic ventilatory, cardiovascular and gas
exchange variables across a dynamic range of external power outputs.
Unfortunately, the amount and form of data provided by CPET means that it is dif-

ficult to understand and, hence, use in clinical practice [6–8]. To address this problem
researchers developed flowcharts, which have become a well-documented and com-
monly taught approach to using CPET to determine the pathophysiology of a patient [9].
Flowcharts allow the health care practitioner to follow a series of binary, branching ques-
tions to produce an interpretation or diagnosis. However, flowcharts have been around
for more than 20 years [10] and CPET remains underutilized and difficult to interpret.
This paper provides a first study to determine if machine learning methods improve

upon flowcharts as way to obtain diagnostic information from CPET. Specifically, the
paper compares deep learning neural networks and a simpler regression-based approach
to flowcharts for integrating CPET results from a small number of cases to produce diag-
nostic assessments. The small size of the data set is important for this study because
it often assumed that deep learning approaches are not suitable for health care prob-
lems, like this one, with small numbers of well-labeled data. Hence, this research is also
important for assessing the feasibility of using these new methods in health care.
Interpretation of CPET data derives from the biochemical processes that transform

energy into physical movement. These processes efficiently link the O2 and CO2 gas
transport among three interconnected organ systems at the core of exercise respon-
siveness and capacity: pulmonary, cardiac, and skeletal muscle [11, 12] (Fig. 1). The
pulmonary system (lungs) transfers inspired O2 from the air to deoxygenated blood in
pulmonary circulation. The cardiac system (heart) then pumps oxygenated blood from
pulmonary circulation to peripheral circulation.
Skeletal muscle mitochondria utilize O2 derived from the peripheral circulation for

aerobic cellular energy metabolism to fuel movement and locomotion. CO2 generated
from cellular metabolism is then transferred in reverse order from skeletal muscle back
to the heart and is subsequently expired from the lungs. Given the interconnectedness



Brown et al. BioDataMining           (2022) 15:16 Page 3 of 15

Fig. 1 Coupling of external to cellular respiration. Adapted from Wasserman K. Am J Physiol.1994 Apr;266(4 Pt
1):E519–39.(2)

from internal to external respiration, CPET assessment of the rate of inspired volumes of
oxygen (V̇O2 mL/min) and expired carbon dioxide (V̇CO2 mL/min) can identify small
perturbations in each of these vital organ systems. CPET analysis can thus yield insight
into the underlying causes for clinical manifestations of dyspnea, fatigue, and associated
exercise intolerance.
CPET clinical assessment of simultaneously generated heart rate (HR beats/min), ven-

tilation, and gas exchange data is reported as averaged values over fixed intervals (e.g.,
every 30 seconds for the duration of a 12±6 minute test). Tabular CPET data are used to
identify key physiologic responses to exercise at test end. For example, CPET measure-
ment of the highest rate of oxygen consumption during progressive exercise normalized
to body mass (peak V̇O2 mL/min·kg) is the gold standard assessment of cardiorespira-
tory fitness. Importantly, peak V̇O2 is one of the strongest predictors of health outcomes
and mortality across various patient populations [13–15]). Peak V̇O2 is also used in spe-
cific clinical scenarios such as the evaluation of response to therapies in heart failure
patients being considered for transplant [16–18]. In addition to CPET data collected at
peak exercise, submaximal data collected over the course of CPET provide clinicians with
important information regarding a patient’s etiology of exercise limitation [13, 19]. An
example is the relationship between pulmonary ventilation (VEmL/min) and V̇O2, where
the slope of these parameters (VE/V̇CO2) has strong associations and prognostic implica-
tions in systolic heart failure and pulmonary arterial hypertension [3, 9]. The challenge of
CPET clinical assessment is that test interpretation requires careful attention to multiple
variable relationships simultaneously over time.
To assist analyses of the high volume of multivariate data generated from each test,

graphical visualization of CPET data is essential for proper interpretation. For more than
20 years, the most commonly used display for CPET data visualization has been the
Wasserman nine-panel plot, which shows multiple channels of data on a one-page sum-
mary consisting of 9 distinct scatter plots (Fig. 2) [9, 20]. Using theWasserman nine-panel
plot, flowcharts are used to guide diagnostic and prognostic considerations [9]. Nonethe-
less, there remains significant inter-individual variability in CPET interpretation [7, 21].
Attempts to refine CPET assessment over the past 30 years have thus far failed to substan-
tially improve the diagnostic power of CPET or simplify interpretation to guide clinical
care and promote wider adoption of exercise testing.
Modern machine learning techniques have promise for making CPET more readily

accessible to physicians. Akay, et al. [22] developed a support vector regression to predict
one of the most used measures of fitness from CPET, the maximum VO2 for the per-
son under test. Akay and his colleagues later showed that this task could be done with
improved accuracy using neural networks [23]. Neural networks have also been shown
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Fig. 2 Nine-panel plot cardiopulmonary exercise testing data visualization

to predict coronary artery disease using data from exercise stress testing (a more data
intensive test than CPET) [24]. Sakr, et al. [25] compared a number of machine learning
techniques with exercise data and showed that machine learning can effectively predict
all-cause mortality. A subsequent paper by this group showed that it might be possible
to improve the interpretability of machine learning techniques used on exercise data by
clinicians [26].
A survey by Javan et al. [27] discusses machine learning applications to cardiac arrest

prediction and recommends improvements to external validation of the models. Other
researchers [28] hypothesized that heart failure prediction could be improved by con-
sidering the totality of the time-series data from CPET, as opposed to summary indices
alone. Their best predictive performance was obtained with a neural network that they
claimed could be improved with more training data. More recently Shandi, et al. studied
the use of a small wearable patch to be worn during CPET that could accurately estimate
oxygen uptake [29]. They used a neural network model to classify heart failure risk levels
according to the features of gas exchange variables derived from the patch device. Finally,
a recent study by Inbar, et al, used support vector machines to obtain good probability
estimates for interpretation of CPET results to distinguish among patients with chronic
heart failure (CHF) and chronic obstructive pulmonary disease (COPD) [30].
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All of this previous research provided motivation for the study described in this paper.
We wanted to further determine the usefulness of machine learning techniques to sup-
port diagnosis of important medical conditions with a bench mark comparison of the
flow sheet methods used by practitioners.We specifically wanted to determine if machine
learning, and particularly more modern deep learning approaches, could effectively inte-
grate the multiple streams of CPET results into a coherent estimate of the patient’s
condition.
A potential concern for using machine learning, and particularly deep learning, is that

many health care problems have small numbers of curated, labeled examples in data sets
for specific diseases. This is a notable concern for CPET, where the numbers of cases
with curated labels available at many health institutions is small, while the number of
potential labels is large. As noted bymany researchers in deep learning, thesemethods are
particularly data-hungry requiring thousands, if not millions of labeled training examples
[31, 32]. Hence, another motivation for this study was the need to understand if deep
learning methods have value for health care problems, such as CPET, where the data have
variety in terms of numbers and types of variables, but have limited labeled examples for
training and testing.

Methods
As noted above, the two aims of this study are 1. Use a representative set of CPET results
to compare the diagnostic performance of machine learning methods, particularly deep
learning, to the standard flowcharts; and 2. Assess the diagnostic performance of deep
learning approaches with a small CPET data set. The subsections below describe the data
used in the study and the different approaches the study compared for interpreting the
results from CPET.

Data

The data set used in the study consists of anonymized results from CPET of patients with
two clinically diagnosed conditions: heart failure and metabolic syndrome1.
We obtained the metabolic syndrome data from a study supported by a National Insti-

tute of Health/National Heart Lung and Blood Institute (NIH/NHLBI), “Exercise dose
and metformin for vascular health in adults with metabolic syndrome." Several papers
provide details on this study and the data the researchers obtained [33–35].
The heart failure data came from patient studies supported by the American Heart

Association, “Personalized Approach to Cardiac Resynchronization Therapy Using High
Dimensional Immunophenotyping,” as well as the NIH/NHLBI, “MRI ofMechanical Acti-
vation and Scar for Optimal Cardiac Resynchronization Therapy Implementation.” The
primary researchers for these studies have reported their results and described their data
in the literature [36–38].
The protocol for the testing in each of these studies used a treadmill with three phases:

rest, test, and recovery. During test phase the slope and speed of the treadmill were incre-
mentally increased. The CPET of the patients was performed by the Exercise Physiology
Laboratory (EPL) of the General Clinical Research Center (GCRC) at the University of
Virginia. This data set contains the CPET results and demographic information for 30

1https://github.com/suchethassharma/CPET

https://github.com/suchethassharma/CPET
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patients with either of the two conditions and there 15 patients with each condition.
The anonymized demographic information includes gender, age, height, weight, and body
mass index (BMI). The CPET variables collected per patient are shown in Table 1. Since
the purpose of our study was to compare machine learning results with those obtained
from flowchart analysis, only the data for the CPET variables and not the demographic
variables were used as inputs to the approaches described in the next section.

Approaches

This study compares the baseline flowchart approach with four other approaches, one
statistical and the other three using neural networks. The statistical approach uses logis-
tic regression with inputs taken from a principal component analysis (PCA) of the CPET
results. The neural network methods are autoencoder projection and a convolutional
neural networks (CNN). Descriptions of these approaches are below.

Flowcharts

The baselinemethod that is used to interpret CPET results is a flowchart. Flowcharts have
been used to interpret CPET results for more than 30 years. The flowchart used for this
analysis is derived from the accepted textbooks on CPET [9, 11] and is shown in Fig. 3.
This flowchart has been adapted to classify the results from a patient’s CPET into one of
the two categories, heart failure or metabolic syndrome. The resulting flowchart shown in
Fig. 3 uses both peak V̇O2 and ATmeasurements to perform this classification. However,
to implement the flowchart requires specification of normal values. This study used two
commonly accepted sources to specify the normal values for ventilatory thresholds: the
Fitness Registry and the Importance of Exercise National Database (FRIEND) [39] and the
guidelines from Hansen, et al. [40]. FRIEND was created to provide measures on CPET
variables for apparently healthy individuals in the USA. The guidelines in [40] provide
specifications for normal patient values for CPET variables. These two different sources
for normal values produce two different results for the same flowchart (Fig. 3).

Table 1 Features of the CPET data

Feature name Feature description

Time (min) Breath-by-Breath.

METS Metabolic equivalents.

HR Heart Rate.

V̇O2(L/min) Peak oxygen consumption.

V̇O2/kg((ml/min)/kg) Peak oxygen consumption is measured in milliliters of oxygen
used in one minute per kilogram of body weight.

V̇CO2(L/min) Volume of carbon dioxide released.

RER Respiratory Exchange Ratio.

VE(L/min) Ventilation.

VE/V̇O2 Ratio of Ventilation by peak oxygen .

VE/V̇CO2 Ratio of Ventilation by volume of carbon dioxide released.

RR(L/min) Respiratory rate.

VTex(L) Expiratory tidal volume(Expiratory time).

VTin (L) Inspiratory tidal volume(Inhale time).

Speed(mph) Speed of the treadmill.

Elevation Elevation of the treadmill.
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Fig. 3 Flowchart for baseline model

PCA-regression

While flowcharts provide a baseline method widely used in practice, logistic regression
provides another standard approach that can be applied to CPET results. This study
developed a regression model using the variables METS, HR, V̇O2, V̇CO2, RER, VE,
VTex, and VTin, (see Table 1). The response variable was the patient diagnosis: heart fail-
ure or metabolic syndrome. To account for the correlation between the CPET variables
this research study used principal component analysis (PCA) to project the data onto
dimensions (features) that are orthogonal and linearly independent.
The goal of PCA is to find a projection of the data from the original variable space (given

by variables in Table 1 into a new, smaller dimensional space composed of axes that are
linear combinations of the original features. The goal is to find a projection that mini-
mizes the variance of the data in the projection. So, if �̂ is the sample covariance matrix
for the features of the CPET time series, then PCA finds projections that are orthonormal
(orthogonal and with unit length). This means maximizing uT1 �̂u1, where u1 is the first
principal component. For all other principal components, i, j, we add the additional con-
straint that uTi uj = 0. For the method used in this study, we projected the data only onto
the first three principal components and the used that projection as input to a logistic
regression.
From a physiologic standpoint the PCA projection does more than produce orthonor-

mal predictor variables. It also captures the change in correlation among CPET variables
as the test proceeds. Essentially the major physiological subsystems of the human body
must work together as the well-oiled machine described by Wasserman[11]. If there is
impairment in one or more parts of these subsystems, the patient will not cope with the
increasing work in the exercise test protocol. The subsystems display differential patterns
of volatility that can be detected when projected onto a hyperplane by PCA. The weights
or loadings for each of the CPET variables in the PCA projections will change as the cor-
relations between those variables change during each of the stages of the test. Ideally the
changes in these PCA projections will capture the clinically relevant features. So for this
study to capture the volatility in patient performance to exercise testing, the predictor
variables used for the logistic regression are the interquartile ranges for each of the stages
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of the test as measured in the first three principal components. In other words, we start
by finding the first three principal components for each stage of the test and then we
obtain the interquartile range (IQR) for these components. These features should effec-
tively capture the relevant differences in the rest, test, and recovery stages for each patient
as measured across all of the CPET variables but projected into the first principal com-
ponent. A single logistic regression then converts the values in this projection into the
probability that the correct interpretation of the CPET results is metabolic syndrome or
heart failure for each of the patients.

Autoencoder-regression

The next approach to CPET interpretation directly extends the PCA-regression approach
of the previous subsection by the replacing PCA linear projection of the data with a possi-
bly nonlinear projection produced by an autoencoder. Autoencoders are neural networks
with two major components. In the first part, the encoder, maps the data from the CPET
variables, METS, HR, V̇O2, V̇CO2, RER, VE, VTex, and VTin, (see Table 1), using a
restricted function that reduces the dimensionality of the data. In this study we used grid
search to determine the choices for tuning parameters including the number of principal
components and the dimensionality of the middle layer in the autoencoder and observed
the best results at three dimensions in both cases. The output from this part is then input
to the second part, the decoder, that attempts to reproduce the original data.
Let x be the input data, f be the encoding function that reduces the dimensionality of the

input, and g be the decoding function. Then autoencoder learns the weights in the neural
network by minimizing the loss function. For this study we used mean squared error,

∑N
i=1(xi − g(f (xi)))2

N

where N is the number of breath-to-breath observations for a patient.
The restriction on the encoder means that the encoding function must learn only the

essential features of the data useful in its reproduction. Like PCA the encoder is projecting
the data into a reduced space, but unlike PCA the projection can be nonlinear. Autoen-
coders have a rich history of development and use in the machine learning community
[41, 42], as well as, applications for problems in health care, such as, histopathology
[43, 44].
Figure 4 shows the architecture developed in this study to transform the CPET data into

clinically useful interpretations. In this approach the data provided by CPET are input
to an autoencoder neural network. As noted above this component performs the non-
linear projection of the CPET data into the manifold that best encodes the CPET data
for accurate decoding. As with PCA the autoencoder projection represents the combined
functioning of the physiological subsystems before, during, and after exercising. The pro-
jection from the manifold is then aggregated using the same measures of volatility (i.e.,
interquartile range) that capture and describe the functioning of the physiological sys-
tems. As with PCA, this projection reduces the dimensionality of the data into the much
smaller space that captures the latent features from the exercise testing. These features
again become inputs to a logistic regression which outputs the likelihood of a one of the
clinical interpretations.
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Fig. 4 CPET Autoencoder Architecture

Convolutional neural networks (CNN)

In addition to autoencoders, this study also investigated the use of convolutional neural
networks (CNN) for condition diagnosis using CPET data. As the name implies CNN
contain specializedmathematical structures (convolutions), designed to learn spatial hier-
archies of features [45]. Convolutions consist of three parts: the input, the kernel or the
function that operates over the data, and the output or the feature map. In most imple-
mentations the kernel function operates over a small region input values. To capture all
the input the convolution is applied iteratively across all regions of the input space. Con-
volutions are efficient and effective methods that allow us to learn structures or identify
patterns despite noise and natural variations in the data. CPET output measurements
contain many sources of natural variation, such as, measurement noise, changing experi-
mental conditions, and highly varying patient ability levels and physiology. As such, CNN
can prove useful at identifying underlying clinically relevant patterns in the CPET time
series that may assist with disease diagnosis and understanding.
CNN architectures commonly consist of multiple convolutional layers, as well as, pool-

ing layers that choose a summary value (most often the maximum or the mean) from
among the input values for each input region. Through training these layers of a CNN
architecture gradually detect more and more complex patterns [46].
Indeed, CNNs have achieved impressive results in variety of health care applications

[47–49]. For both univariate and multivariate time-series they demonstrate state-of-the-
art performance in both health care and other domains [50]. The highest performing
neural net based classifiers are all deep CNNs, and they often require less training and
prediction time than other leading time-series classification methods [51]. Sliding win-
dows used in their structures prove effective at recognizing spatial patterns extant in
time-series, and the hierarchical nature of deep architectures enables them to learn
patterns at varying scales.
Most well-known CNN architectures have been built for image recognition. For exam-

ple, AlexNet [52], VGG-16 [53] and ResNet-34 [54], each showed excellent performance,
in some cases superior to human performance, for detecting patterns in images. The use
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of CNN architectures for diagnosis and classification from multivariate time series data
has a similar set of commonly used architectures. The use of one-sided convolution ker-
nels has been used with health record data to predict the risk of congestive heart failure
and chronic obstructive pulmonary disease in patients [55]. The one-sided kernels have
also been used to find patterns in multidimensional time series electroencephalographic
(EEG) recordings [56, 57]. More recently researchers have used two sided kernels with
health record data to predict patient health care costs [58].
This study uses two sided kernels with 8 channels for each of the CPET variablesMETS,

HR, V̇O2, V̇CO2, RER, VE, VTex, and VTin. Each of theses individual CPET time series
are normalized and then presented to the neural network across the 8 channels to capture
the multi-dimensional time series output from CPET. Figure 5 shows the CNN archi-
tecture we constructed for this. In this architecture the network consists of six layers
of one-dimensional convolutional blocks organized from the first to the upper layers of
convolutions. Each of the one-dimensional layers allows for movement along the CPET
time series with a fixed kernel size (window) and also stride length which determines the
amount of overlap in adjoining windows. These convolutional blocks are followed by a
global max pooling layer and then two fully connected layers. The pooling layer changes
the output at a specified location in the network to the maximum value among all neigh-
bors to that location. The fully connected final layer consists of a softmax function that
yields the clinical interpretation and associated probability as was produced by the logistic
regression based approaches described in the previous subsections.
For this study we conducted a random search with a single fold of validation data to

derive and then confirm the overall network and associated training hyperparameters.
For this search we used the Adam optimization algorithm with a learning rate of .0001, a
batch size of 4, and early stopping with a patience of 15 epochs and a threshold of .01 for
validation loss. We did not employ dropout or batch normalization in any of the layers
during training. The kernel lengths at each level are shown in Fig. 5.

Results
Each of the approaches described in “Approaches” section was evaluated using four met-
rics: precision, recall, F1 score, and accuracy. Precision is the number of patients for
whom a medical condition is correctly classified divided by the number of patients given

Fig. 5 CPET CNN Architecture
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that classification. Recall is the number of times a medical condition is correctly classi-
fied divided by the number of times the condition occurs in the test set. The F1 score
combines precision and recall into one score using the harmonic mean of their values. So,

F1 = 2 · Precision · Recall
Precision + Recall

Finally, accuracy is simply the number of times that the patients were correctly classified
divided by the number of patients in the set.
Because of the small number of patient CPET results with clinically labeled classifi-

cations, this study used 5-fold cross validation to assess the performance of each of the
approaches. 5-Fold cross validation means that we randomly divided the dataset into 5
parts. We then trained each method on 4/5 of the dataset, tested it on the remaining 1/5
of the dataset, and repeated this 5 times. The results are the average performance of the 5
tests.
Table 2 shows the 5-fold cross-validation results for each of the approaches. The

flowchart methods have very good precision values on differing conditions, but their
accuracy for these data is less than 80%. Each of the machine learning approaches outper-
forms the flowcharts for F1 score and accuracy. The three machine approaches (PCA +
logistic regression, Autoencoder + logistic regression and, and CNN) also do well onmost
of the values of precision and recall. Overall the autoencoder with logistic regression does
the best on these data with an accuracy 97% and an F1 score of 0.97. In contrast the both
the PCA with regression and the CNN have accuracy values of 0.90 and F1 scores at or
below 0.92.

Discussion
Cardiopulmonary Exercise Testing (CPET) is considered the most effective and available
current technique to measure excise fitness in patients as evidence for diagnosis [4, 5].
This study investigated the use of neural networks approaches to improve upon the
standard flowchart method for diagnosing patient conditions using results from CPET.
Flowcharts have been used to interpret CPET results almost since the first medical uses
of CPET and remain a basic element of CPET interpretation training programs for physi-
cians in clinical practice, academics, exercise scientists, and laboratory personnel [9]. This
question posed by this study is: Can modern machine learning methods provide more
accurate classifications of underlying patient conditions using only the CPET data than
the classifications provided by the flowchart method?

Table 2 Results Comparison Table

Model Condition Precision Recall F1 Score Accuracy

flowchart (Hansen) Heart Failure 1.00 0.53 0.70 70
MetSyn 0.76 0.87 0.81

flowchart (FRIEND) Heart Failure 0.78 0.93 0.85 77
MetSyn 1.00 0.60 0.75

PCA + Logistic Regression Heart Failure 0.93 0.87 0.90 90
MetSyn 0.88 0.93 0.90

AE +Logistic Regression Heart Failure 0.94 1.00 0.97 97
MetSyn 1.00 0.93 0.97

CNN Heart Failure 1.00 0.80 0.86 90
MetSyn 1.00 1.00 0.92
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To conduct this investigation this study used data from 30 patients who under-
went CPET testing at the Exercise Physiology Laboratory (EPL) of the General Clinical
Research Center (GCRC) at the University of Virginia. The patients were evenly split in
the diagnoses between heart failure and metabolic syndrome. The small size of the data
set is important for this study because it often assumed that machine learning methods,
particularly deep learning like CNN, require large numbers of well-labeled data. Hence,
this research is also important for assessing the feasibility of using these new methods in
health care.
The study compared two well-known and widely used neural network approaches,

autoencoders and convolutional neural networks (CNN), with both the flowchart method
and a principal component analysis (PCA) based regression. The principal compo-
nent regression provides an additional non-neural network as a baseline for the results.
Autoencoders are neural networks used for data compression and this makes them ideal
for finding latent data structures for diagnosis that might exist within the CPET data.
CNN have demonstrated excellent performance with different data types to include
images and time series, although typically with considerably more training data than what
was available for this study.
The study evaluated each of the methods using 5-fold for cross-validation and the met-

rics, precision, recall, F1 score, and accuracy. The use of cross-validation provides an
out-of-sample test with a small data set. The results showed that the architecture using
an autoencoder with logistic regression had the best performance across all metrics. The
CNN and the PCA regression produced similar and much better predictions than the
flowchart methods.
The performance of the autoencoder versus PCA logistic regression indicates that the

CPET data show patterns that are better detected with the non-linear projection of the
autoencoder rather than the linear projection of PCA. Intuitively this implies that rela-
tionships between the cardio and pulmonary variables recorded during exercise, rest, and
recovery vary in nonlinear relationships to each other.
While the performance of the CNN is not as good as that of the autoencoder, it shows

remarkably strong performance on a small data set. As one of the objectives of this study
was to determine the viability of applying deep learning techniques to typical health
studies when there is a small number of labeled results, these results are promising.
There are a number of limitations to this study that require further investigation. This

is clearly a very small data set and the results provided can only be considered hypoth-
esis generating. The differences in the CPET data between heart failure and metabolic
syndrome patients may be easily detectable by the machine learning methods because
the testing protocols used by the lab technicians for these patients was different and not
because their underlying conditions were otherwise visible in the data. Only further test-
ing with data from patients with other diseases and health conditions will allow us to
explore this. Additionally we did not use synthetic data to increase the number of cases
for training. We did this in order to be fair to the flowchart methods, since the synthetic
data will enable better training of the machine learning methods, while the flowchart
methods will be unaffected. Finally, the choice the neural network techniques and archi-
tectures was based on past performance of these methods on similar problems. Further
investigation is needed to determine if other neural network approaches could produce
even better performance on CPET data.
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Conclusions
This paper investigated whether neural network approaches could improve upon the use
of flowcharts with CPET data for the prediction of patient conditions. The results of small
sample testing showed that two commonly used neural network approaches, autoen-
coders and convolutional neural networks, do provide much improved predictions versus
the flowchart method. Additionally, the performance of the convolutional neural network
was very good despite the small size of the training data set. This suggests that the use
of deep learning methods for health care and life science problems may not be handi-
capped by data set size. Synthetic data for training was not used in this study to allow a
fair comparisons of the machine learning techniques with the flowchart methods. Future
work could explore the use of synthetic data for training of the neural network. Finally,
the overall good performance of the neural networks in this study for predicting patient
conditions signals the need for continued testing of these methods with larger and more
diverse data sets.
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