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Abstract

This work presents mSRFR (microalgae SMOTE Random Forest Relief model), a
classification tool for noncoding RNAs (ncRNAs) in microalgae, including green algae,
diatoms, golden algae, and cyanobacteria. First, the SMOTE technique was applied to
address the challenge of imbalanced data due to the different numbers of
microalgae ncRNAs from different species in the EBI RNA-central database. Then the
top 20 significant features from a total of 106 features, including sequence-based,
secondary structure, base-pair, and triplet sequence-structure features, were selected
using the Relief feature selection method. Next, ten-fold cross-validation was applied
to choose a classifier algorithm with the highest performance among Support Vector
Machine, Random Forest, Decision Tree, Naïve Bayes, K-nearest Neighbor, and Neural
Network, based on the receiver operating characteristic (ROC) area. The results
showed that the Random Forest classifier achieved the highest ROC area of 0.992.
Then, the Random Forest algorithm was selected and compared with other tools,
including RNAcon, CPC, CPC2, CNCI, and CPPred. Our model achieved a high
accuracy of about 97% and a low false-positive rate of about 2% in predicting the
test dataset of microalgae. Furthermore, the top features from Relief revealed
that the %GA dinucleotide is a signature feature of microalgal ncRNAs when
compared to Escherichia coli, Saccharomyces cerevisiae, Arabidopsis thaliana, and
Homo sapiens.
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Introduction
Microalgae are a large and diverse group of organisms, with eukaryotic and prokaryotic

species found in freshwater, marine, and terrestrial habitats [1–3]. They possess a

broad range of biochemical compounds that potentially impact public health, the econ-

omy, foods, pharmaceuticals, medicine, bioenergy, environment, and waste treatment

[4–7]. Research has sought to understand the mechanisms of beneficial compound

production and ways to apply and commercialize them by exploring gene manipulation
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and regulation, metabolic pathways, omics, and several advanced technologies [8].

Many publications have reported that noncoding RNAs (ncRNAs) play an important

role in regulating gene expression, including mRNA destruction, inhibition of transla-

tion, post-transcriptional regulation, and control of chromosome dynamics [9–11].

Moreover, many ncRNAs can be found in various organisms, such as mammals, plants,

bacteria, and viruses. A system of RNA interference in the post-transcriptional modifi-

cation process was first found in unicellular green algae [12]. There are many reports

about ncRNAs and their functions in plants [13]. However, identifying ncRNAs from

laboratory experiments can be time-consuming and costly. Over the last decade, ma-

chine learning algorithms have been used in many research fields and for the identifica-

tion of ncRNAs. In addition, they have facilitated the comparisons of ncRNAs and the

identification of homologous structures in databases using BLAST [14]. These conven-

tional approaches rely on the similarity of sequences and only allow for sequences with

a high percentage of identity and coverage with previously reported ncRNAs. In con-

trast, supervised machine learning integrates many informative features and data learn-

ing to create models for the identification of candidate ncRNAs. A number of ncRNA

identification tools based on computational prediction are available [15–19]. Neverthe-

less, these tools were not designed for a specific group of microalgae and might not

have discriminative features for microalgae ncRNA identification.

Presently, there are many transcriptome data from next-generation sequencing for

microalgae. In addition, RNA sequencing has enabled the discovery of many coding

transcripts and ncRNAs in particular conditions. This research intends to develop an

ncRNA identification tool that can discriminate ncRNAs from partial coding or coding

sequences (CDS) in microalgae, including diatoms, golden algae, green algae, and

cyanobacteria, using classifier algorithms in a machine learning approach. We applied

the synthetic minority oversampling technique (SMOTE), which uses the k-nearest

neighbor to synthesize new data from a minority class, to address the challenge of data

imbalance due to the different numbers of samples in each data class. The significant

features for ncRNA identification were selected to improve performance, increase ac-

curacy and reduce false positives. The proposed tool will facilitate discovering and clas-

sifying novel ncRNAs from the huge amounts of data from transcriptome studies

enabled by next-generation sequencing technologies.

Material and methods
Datasets

Noncoding RNAs (ncRNAs) and partial/coding sequences of microalgae were retrieved

from the European Bioinformatics Institute (EBI) RNA-central database (ftp://ftp.ebi.ac.

uk/pub/databases/RNAcentral) and the NCBI database, respectively. The microalgae in-

cluded diatoms, golden algae, green algae, and cyanobacteria. In addition, we removed

partial or coding sequences that are longer than 800 nt according to the size limitation

of the secondary structure folding tool. The retrieved sequences were randomly divided

into two parts; 80% of the data was used as a training dataset and the remaining 20% as

a test dataset. The data was, unfortunately, highly unbalanced. For example, in the

training dataset, there was a much higher number of cyanobacterial ncRNAs (13,116

sequences) compared to those from eukaryotes (3375 sequences). To address the
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problem, we applied random-sampling and over-sampling techniques to the original

training dataset to create a balanced training dataset.

Since the numbers of ncRNA and CDS sequences from golden algae and CDS from

diatoms were much fewer than 1125, we applied the SMOTE technique to the datasets.

SMOTE was implemented in Weka [20] using the default parameter. It works by recre-

ating new instances from two or more neighbor instances of the same class in the fea-

ture space. On the other hand, the over-represented samples, such as the 13,116

prokaryotic ncRNAs and 5448 prokaryotic CDS, were each reduced to 3375 sequences

by random selection. The balanced dataset includes 3375 cyanobacterial ncRNAs, 3375

eukaryotic ncRNAs (1125 sequences from each of the three eukaryotic species), 3375

cyanobacterial CDS sequences, and 3375 eukaryotic CDS sequences (1125 sequences

from each of the three eukaryotic species) (Table 1).

Features

Four categories of the total 106 features, namely sequence-based, secondary structure,

base-pair, and triplet sequence-structure features (Table 1s), were collected from the

HLRF tool [21, 22]. Other features in HLRF such as the tetra-nucleotide (4-mer) and

the group of structural robustness features, were removed because the performance of

4-mer features was similar to that of 3-mer and 2-mer features combined with second-

ary structure features [14] and the group of structural robustness features that are suit-

able for the identification of precursor miRNAs, respectively. Descriptions of the

features are provided in Supplementary Material 1s – 4s.

Feature selection

Student’s t-test, Wilcoxon rank-sum test, Information gain [23], OneR [24], and Relief

[25] were used to select the top 20 features that potentially discriminate between

ncRNAs and coding sequences of the four groups of microalgae. For Student's t-test

and Wilcoxon rank-sum test, the p-values according to the statistical testing were uti-

lized to rank features. Information gain ranks features using the entropy score. OneR

uses a rule-based classification algorithm to calculate feature importance. Lastly, the

Relief feature selection technique ranks features using the distance to the nearest

neighbors.

Table 1 Datasets of ncRNAs and CDS of microalgae

Group of
microalgae

Types of
sequences

Training
dataset

Training dataset after
balancing

Test
dataset

Diatom ncRNAs 1234 1125a 308

CDS 356 1125* 88

Golden algae ncRNAs 168 1125* 41

CDS 60 1125* 15

Green algae ncRNAs 1973 1125a 493

CDS 6818 1125a 1704

Cyanobacteria ncRNAs 13,116 3375a 3280

CDS 5448 3375a 1363
aData generated by random selection; * Data generated by SMOTE
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Performance measurement

We used the accuracy (ACC), sensitivity (Sn), specificity (Sp), and false-positive rate

(FPR) to evaluate the performance of the classifier model prediction. The performance

indices were calculated as ACC = (TP + TN)/(TP + TN + FP + FN), Sn = TP/(TP + FN),

Sp = TN/(TN + FP) and FPR = FP/(TN + FP), where TP, TN, FP, and FN are the num-

bers of true positives, true negatives, false positives, and false negatives, respectively.

For algorithm selection, six classifier algorithms, namely Naïve Bayes (NB), Random

Forest (RF), Neural Networks (NN), K-nearest neighbor (KNN), Decision Tree (DT),

and Support Vector Machine (SVM), were evaluated. They were trained, tested, and

compared using default parameters on the open-source data mining software Weka

[20]. For the Random Forest model, in particular, the number of trees was set to 100,

and the maximum depth of the tree was set to unlimited.

Model building

In total, samples in the training dataset include 6750 ncRNAs (positive dataset) and 6750

partial coding sequences (negative dataset) from eukaryotic and prokaryotic algae. A total of

106 features were extracted from the sample data. Then the best classifier algorithm among

NB, DT, RF, NN, KNN, and SVM was chosen based on their performance in classifying the

positive and negative datasets using all 106 features. Subsequently, the selected classifier al-

gorithm was used to classify the positive and negative datasets again, but with only the top

features extracted by the five feature selection methods (Student’s t-test, Wilcoxon rank-

sum test, Information gain, OneR, and Relief). Top features that yielded the highest per-

formance were used in the next step for 10-fold cross-validation with the six classifier algo-

rithms. Finally, the best-performing classifier algorithm was selected as the final model and

was further evaluated with the test dataset (20% of all data shown in Table 1). The overall

workflow of the present work is shown in Fig. 1.

Fig. 1 The overall workflow of this work. Feature selection was performed, and machine learning models
were applied. Finally, the models were evaluated by 10-fold cross-validation, and the best model was tested
with a test set
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Identification of unique features of ncRNAs of microalgae

The unique and common top features extracted by the feature selection methods were

analyzed and illustrated with a Venn diagram.

Results
Feature selection model for microalgal ncRNA classification

Firstly, a suitable classifier was chosen by comparing the performance of six different

classifier algorithms, NB, DT, RF, NN, KNN, and SVM, using all 106 features. Results

of the 10-fold cross-validation of each classifier algorithm are shown in Table 2s. RF

gave the highest ROC area, while NN had slightly higher accuracy, sensitivity, specifi-

city, and a lower false-positive rate. Nevertheless, RF is less computationally intensive

regarding training and less prone to overfitting compared to NN [26], and its built-in

feature importance graphical plots are easier to interprete and comprehend [27]. More-

over, RF has been widely used in many classification tools for ncRNAs prediction [21,

22]; therefore, we selected it as a classifier to compare the performance of a set of top

features from different feature selection methods in the following step.

Various feature selection methods, namely Information gain, OneR, Relief, t-test, and

Wilcoxon rank-sum test, were used to identify features that can potentially distinguish

microalgae ncRNA sequences from coding sequences. The top features identified by

each feature selection method are shown in Table 3s. They comprise 5 sequence-based

features, 12 secondary structure features, and 3 base-pair features by Information gain,

15 sequence-based features, 3 secondary structure features, and 2 base-pair features by

OneR, 13 sequence-based features, 4 secondary structure features, 2 base-pair features,

and 1 triplet sequence-structure feature by Relief, 4 sequence-based features, 14 secondary

structure features, 10 base-pair features and 4 triplet sequence-structure features by Stu-

dent’s t-test, and 4 sequence-based features, 16 secondary structure features, 13 base-pair

features, and 5 triplet sequence-structure features by Wilcoxon rank-sum test. Results of

the 10-fold cross-validation of the top features from each feature selection method using

the Random Forest algorithm are shown in Table 2. The Relief method yielded the best

performance in terms of the accuracy, sensitivity, specificity, and false-positive rate. This

may be because Relief employs filtering algorithms, and weights computed for individual

features can guide downstream machine learning. In addition, this technique does not re-

move feature correlations or feature redundancies [28].

We used a Venn diagram to visualize the top features (Fig. 1s) and compare the fea-

ture selection methods (Table 4 s). Only four features, namely TmL, Prob, CM, and

Table 2 Performance of different feature selection methods with Random Forest algorithms using
10-fold cross validation

Feature selection
methods

Performance measurement

ACC (%) Sn (%) Sp (%) FPR ROC area

Infogain 98.7 98.7 98.7 0.013 0.999

OneR 98.9 98.9 98.9 0.011 0.999

Relief 98.9 99.0 99.0 0.01 0.999

t-test 98.3 97.7 98.9 0.011 0.999

Wilcoxon 98.6 98.4 98.9 0.011 0.999
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GA, were commonly selected by all methods. To prove the importance of these features

for the identification of ncRNAs in microalgae, we constructed a Random Forest model

using only the four common top features (F4model) and then compared its perform-

ance to that of the original model (F20model), which was based on the 20 features

(Table 5 s). The F4 model achieved a 95% accuracy compared to 97% for the F20

model, indicating that the four features contributed majorly to the identification of

ncRNAs in microalgae. In addition, three of the features (TmL, Prob, CM) are second-

ary structure features, a probable indication of the relevance of secondary structure fea-

tures. For instance, the structural entropy-derived dS feature, also found in the top 20

significant features, represents the fold stability of RNA sequences and can be used to

classify precursor miRNAs from pseudo precursor miRNA sequences [29]. In addition,

the TmL feature, which represents the melting energy of structure normalized by the

sequence length, has been reported to discriminate between ncRNAs and coding RNAs

[30]. In fact, secondary structure features have been used in a wide range of ncRNA

identification tools such as HeteroMirPred [21] and HLRF [22], and to identify mature

miRNAs from precursor miRNAs [31]. Therefore, the top 20 features selected by the

Relief method (F20 model) were used for further analysis.

Unique ncRNA features of microalgae

We compared the microalgal ncRNA top features with those of other organisms, in-

cluding bacteria, yeast, plants, and humans. Venn diagrams illustrating the top 20 fea-

tures selected by the different feature selection methods, including Information gain,

OneR, Relief, t-test, and Wilcoxon rank-sum test, are presented in Figs. 2s–5s. The top

features that were commonly selected by all methods are as follows: TmL, pairprob7,

AG, CM, and GG for bacteria (Escherichia coli); dF and TmL for yeast (Saccharomyces

cerevisiae); div, pairprob8, pairprob4, dH, pairprob7, TmL, pairprob9, CM, efe, dS, pair-

prob3, mfe and Tm/Loop for plants (Arabidopsis thaliana); and dH, TmL, pairprob9,

pairprob2, diff, Tm/Loop, dS and mfe5 for humans (Homo sapiens). Interestingly, GA

and Prob features were unique to microalgae, i.e., they were not among the top features

for bacteria, yeast, plants, or humans.

Comparison of GA and Prob values of ncRNAs from microalgae to those from other

organisms

We compared the two unique features of the microalgal ncRNAs, namely the average

GA and Prob values, to the values of ncRNAs from other organisms (Fig. 2A). The

Prob feature value of ncRNAs from microalgae was significantly smaller than that of

plant and human ncRNAs but was comparable to that of yeast and bacterial ncRNAs.

Moreover, the %GA dinucleotide (GA) in microalgal ncRNAs was significantly higher

(p-value < 0.01) than in the bacterial, yeast, plant, and human ncRNAs (Fig. 2B),

whereas the %GA dinucleotide of coding sequences in microalgae was significantly less

(p-value < 0.01) in comparison (Fig. 2C). From these results, it can be concluded that

the %GA dinucleotide is potentially a signature feature of microalgal ncRNAs consider-

ing its abundance.
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Fig. 2 Comparison of the features from microalgae to bacteria, yeast, plants and humans: average Prob
values (A), average %GA values in ncRNAs (B), and average %GA values in partial coding sequences (C)
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Comparison of performance of different classifier algorithms

Results of the performance evaluation of the six classifier algorithms, namely Decision

Tree (DT), K-nearest neighbor (KNN), Naïve Bayes (NB), Neural Network (NN), Ran-

dom Forest (RF), and Support Vector Machine (SVM), using 10-fold cross-validation

with the top 20 features selected by the Relief method are shown in Table 6 s. The clas-

sifier algorithms mostly showed comparable performance. However, the Random Forest

algorithm had the highest accuracy, specificity, ROC area, and the lowest false positive

rate and was thus chosen, as the false positive rate is particularly important for identify-

ing microalgal ncRNAs. Random Forest, as an ensemble of multiple decision trees,

could be useful for the identification of noncoding RNAs in microalgae, just as it has

been used for a broad range of organisms [21].

Benchmarking of our mSRFR model performance with other tools

We evaluated the performance of the trained microalgal Random Forest model using

the top 20 features from the Relief feature selection method (mSRFR model) to identify

ncRNAs from the test dataset. We benchmarked our model against other classification

tools, namely RNAcon [14], CPC [15], CPC2 [16], CNCI [17], CPPred [18], and a Ran-

dom Forest model using the top 20 features from the Relief feature selection but with-

out applying the SMOTE technique to balance the dataset (mRFR model). As shown in

Table 3 and Fig. 3, the results are divided into four groups: cyanobacteria, diatoms, gold

algae, and green algae. The accuracy of our mRFR was high and similar to mSRFR.

However, for golden algae, the accuracy of mSRFR was higher by around 2%. In

addition, mSRFR showed the lowest false positive rate when compared with the other

tools.

Table 3 Performance comparison of our mSRFR model to others (RNAcon, CPC, CPC2, CNCI, and
CPPred) used in discriminating ncRNAs and CDS of microalgae

RNAcon CPC CPC2 CNCI CPPred mRFR mSRFR

Cyanobacteria ACC (%) 72 93 71 55 70 99 99

Sn (%) 94 90 99 70 100 99 99

Sp (%) 19 99 2 20 0 99 99

FPR 0.81 0.01 0.98 0.8 1 0.01 0.01

Diatom ACC (%) 77 94 85 73 78 99 99

Sn (%) 76 96 100 71 100 99 99

Sp (%) 80 85 34 78 0 99 99

FPR 0.20 0.15 0.66 0.22 1 0.01 0.01

Golden Algae ACC (%) 87 81 80 86 73 93 95

Sn (%) 95 83 100 97 100 92 93

Sp (%) 67 85 26 60 0 93 99

FPR 0.33 0.15 0.74 0.40 1 0.07 0.01

Green Algae ACC (%) 65 72 73 89 22 99 99

Sn (%) 70 99 100 67 100 99 99

Sp (%) 63 64 66 96 0 99 99

FPR 0.37 0.36 0.34 0.04 1 0.01 0.01

Anuntakarun et al. BioData Mining            (2022) 15:8 Page 8 of 11



Discussion
To the best of our knowledge, this tool is the first ncRNAs classification tool trained

specifically for microalgae, the most promising biofuel candidates rich in high-value

bioactive compounds. Identifying ncRNAs in microalgae might help improve our under-

standing of their regulatory functions in gene manipulation. Moreover, ncRNA investi-

gation in microalgae may provide new insights into metabolic regulation

and engineering for product improvement.

The main contributions are threefold:

First, we developed an ncRNA identification tool for microalgae-based on a Random

Forest model. Random Forest, an ensemble machine learning method, has been used

for a broad range of organisms for its robustness and minimal overfitting problems.

Second, to address the problem of imbalanced datasets of different groups of microal-

gae, for example, where the numbers of both ncRNAs and coding sequences from

golden algae were far fewer than those of the other groups, we applied the SMOTE

technique to balance the datasets. Interestingly, the SMOTE (mSRFR) model performed

better than the model without SMOTE (mRFR) in discriminating ncRNAs from CDS

in golden algae, suggesting that the SMOTE model can handle imbalanced datasets better.

Third, a group of features specific to ncRNAs in microalgae were identified. More-

over, our study also revealed four features (TmL, Prob, CM, and GA) that contributed

majorly to the performance of the model. The RF classifier model utilizing only these

four features, instead of all top 20 features, achieved a reasonably high accuracy of 95%.

Our analysis further shows that of the four features, Prob and GA are unique features

in discriminating ncRNAs from coding sequences in microalgae. They were not among

the top features, by any of the methods, for the bacterial, yeast, plant, or human

ncRNAs discrimination. We propose the GA dinucleotide as one of the microalgal

ncRNAs signature features, given its higher abundance in microalgal ncRNAs com-

pared to other species. Conversely, the coding sequences of microalgae contained fewer

GA dinucleotides in comparison to those of the other organisms. The GA dinucleotide

or GA motif is highly conserved in T box and S box sequences, which are transcription

Fig. 3 Performance comparison of our model, with or without applying the SMOTE technique and other
tools (RNAcon, CPC, CPC2, CNCI, and CPPred) to discriminate between ncRNAs and CDS in the test dataset
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termination control systems. The T box functions in regulating amino acid transporter

genes, aminoacyl-tRNA synthetase, and amino acid biosynthesis, while the S box is

related to methionine synthesis [32]. The high GA dinucleotide composition of microalgal

ncRNAs could be relevant for transcription termination control systems as microalgal

photosynthesis is highly regulated on the level of transcriptional control [33].

Conclusions
In this study, mSRFR (m for microalgae; S for SMOTE; RF for Random Forest; R for

the Relief method) was used for ncRNA identification in microalgae-based on a Ran-

dom Forest model using the top 20 features from a total of 106 features selected by the

Relief feature selection method. The tool achieved a high accuracy of about 97% and a

low false-positive rate of 2% in discriminating microalgal ncRNAs from coding se-

quences in a test dataset containing 7292 sequences. Currently, next-generation se-

quencing technologies, such as RNA-seq, have become popular for the study of gene

expression in many organisms. For future research, we aim to extend our tool to sup-

port input formats of raw reads from next-generation sequencing data, such as fastq,

and to develop a web-based computational pipeline that will enable users to identify

potential ncRNAs in microalgae from next-generation sequencing data.
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