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Abstract

Background: With the increase in the size of genomic datasets describing variability
in populations, extracting relevant information becomes increasingly useful as well as
complex. Recently, computational methodologies such as Supervised Machine
Learning and specifically Convolutional Neural Networks have been proposed to make
inferences on demographic and adaptive processes using genomic data. Even though
it was already shown to be powerful and efficient in different fields of investigation,
Supervised Machine Learning has still to be explored as to unfold its enormous
potential in evolutionary genomics.

Results: The paper proposes a method based on Supervised Machine Learning for
classifying genomic data, represented as windows of genomic sequences from a
sample of individuals belonging to the same population. A Convolutional Neural
Network is used to test whether a genomic window shows the signature of natural
selection. Training performed on simulated data show that the proposed model can
accurately predict neutral and selection processes on portions of genomes taken from
real populations with almost 90% accuracy.

Keywords: Genomic data, Inference of natural selection, Deep Learning,
Convolutional Neural Networks

Introduction
The technological advancements in DNA/RNA sequencing is sustaining an unprece-
dented growth in the amount of genomic data. At the same time, population geneticists
are increasingly interested in finding new and more accurate models to understand the
evolutionary processes generating the observed patterns [1] and predict future changes
[2]. In particular, many studies addressed the problem of quantifying the relative contri-
butions of natural selection and random drift in shaping the genetic variation observed in
living organisms [3].
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Recently, many authors have shown that inferences regarding patterns and distributions
of the effects of selection in genes and genomes can offer the key to understanding the
functions of different genomic regions. For example, in the human genome, Mendelian-
disease genes are largely under purifying selection whereas genes responsible for complex
traits could be subjected to either purifying or positive selection [4]. Therefore, it might
be possible to identify alleged genetic factors related to diseases or to relevant traits by
identifying regions in the human genome that are currently under selection [3]. More-
over, in wild or domesticated species, uncovering the pattern of natural selection in
their genomes can help identify the genomic basis of their adaptation, e.g. [5]. Inferring
the signature left by natural selection is typically addressed comparing the theoretical
expectations predicted in case of random drift (neutral evolution) or natural selec-
tion with the real data, and the comparison is based on summary statistics of genetic
variability [6, 7].
New advancements in Big Data Analysis are essential to meet the computational chal-

lenge that genomics poses [8].ModernMachine Learningmethods are able to exploit very
large datasets, often represented by images, to find hidden patterns and make accurate
predictions. The interaction between biological knowledge and Machine Learning archi-
tectures is very promising for searching hidden patterns in large amounts of genomic data
[9]. Instead of using summary statistics or mathematical models of population genetics,
we rely onMachine Learning techniques to identify patterns of genetic variability [10, 11].
Interestingly, genetic data can easily be converted into images and can be analyzed by
Convolutional Neural Networks, an innovative Machine Learning technology for image
classification [12]. Experiments performed on simulated genetic data show that Convolu-
tional Neural Networks can accurately predict Neutral and Natural selection phenomena
on real genetic data.
The paper is organized as follows: after a brief presentation on Convolutional Neural

Networks and genetic models in the Convolutional neural networks and Genetic models
and machine learning sections respectively, Related work section presents related work.
In the Dataset generation section describes how the genetic data was generated and
experiment on simulated data is presented in the Experiments section. An application to
real genomic data is presented in the Application to real data and Conclusion sections
concludes the paper.

Convolutional neural networks
Machine Learning (ML) [13] and Deep Learning (DL) [14] are fields of Artificial Intel-
ligence which study algorithms for analysing and inducing knowledge from data. They
are defined as a set of methods that can automatically identify patterns in data and then
use these patterns to predict future (unseen) data or to perform decision-making under
uncertainty [15]. Recently, a DL algorithm called Convolutional Neural Network (CNN)
[16] has shown a good ability to extract patterns from data, such as images. CNNs are con-
sidered the state of the art for solving classification problems and have been successfully
applied to image classification and object detection [17].
A CNN, see Fig. 1, is divided into two parts: the first part, feature learning, extracts pat-

terns or features from the image while the second part, classification, classifies the image
based on the extracted features. The first part relies on two operations: the convolutional
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Fig. 1 Convolutional Neural Network

operation, Fig. 2a scans the image from the top to the bottom to extract possible fea-
tures using a certain number of filters also called kernels. Each filter extracts a different
type of feature. After convolution, pooling operation, Fig. 2b, is applied to downsam-
ple the extracted features and reduce the complexity of the representation. It also scans
the features and performs an operation (generally Maximum) which summarizes a set
of values into one. A function, called activation function, e.g the Rectified Linear Unit
(ReLu), is generally applied to the output of each convolution operation to introduce
nonlinearity in the model. The convolution and pooling operations are organized into
layers. The first layers identify common features like corners and edges. The deeper the
layer the more complex the features extracted are. The classification portion of the net-
work, [18], is a shallow (dense) artificial neural network also called fully connected neural
network, see Fig. 3, in which artificial neurons are organized into layers. Each neuron
receives inputs from all neurons in the previous layer, and performs a linear combination
on these inputs whose result is passed through an activation function, generally ReLu.
The first layer is the input layer which represents features extracted in the convolutional
part and the last layer is the output layer yielding the predicted responses. The num-
ber of neurons in the output layer is equal to the number of classes to identify or to the
number of objects to detect. Intervening layers of the classification portion are called
hidden layers.
Once the architecture of the network is defined, it should be trained to perform a

certain task. In the case of binary classification (two classes), training a CNN means
repeatedly adjusting, for example bymeans of gradient descent [19] and back-propagation

Fig. 2 Convolution and pooling operations
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Fig. 3 Fully connected neural network

[20], both the filters in the convolutional layers and the weights in the dense lay-
ers using a set of examples called training set. These adjustments are done such that
eventually the model is able to correctly classify almost all the examples in the train-
ing set and hopefully acquires the ability to correctly classify new examples, called
generalization capacity.
Training a neural network is also repeatedly updating its weights in order to minimize

an objective or loss function. The loss function measures how well a network behaves
at each iteration. It recapitulates in a single value the differences between the expected
classes of examples in the training set and the ones provided by the network. The training
accuracy of the network is the fraction of examples correctly classified with respect to
the whole examples. Training a network is therefore gradually updating its weights which
progressively reduces the loss (or increases the accuracy) in order to correctly classify
almost all examples in the training.
The standard gradient descent algorithm computes gradients at each iteration using

all examples in the training set. If the training set is large, the algorithm can con-
verge very slowly. To avoid slow convergence, gradients can be computed using a single
example, randomly selected in the training set. Even if in this case the algorithm can
converge quickly, it is generally hard to reach high training set accuracy. A compromise
often used is the mini batch stochastic gradient descent (SGD) [21]: at each iteration
a mini batch of examples from the training set is randomly sampled to compute the
gradient. The training process is divided into epochs. An epoch occurs when all the
examples in the training are used. This method usually provides fast converge and high
accuracy.
Since the construction and the training of a network rely on a set of parameters

named hyper-parameters, a validation set of examples is often useful to find the hyper-
parameters values which lead to better generalization. If the model provides acceptable
accuracy (or loss) on the training set and bad on the validation set, this phenomenon
is called overfitting. Many techniques are available to avoid overfitting. A technique
called Dropout [22] drops a fraction of neurons in some layers at training time. This
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prevents a net with lot of weights to overfit on the training data. Other techniques to
avoid overfitting called L1 and L2 regularization [23] add another term (that depends
on the weight) to the loss function in order to favor small weights (∼ 0). Small
weights can then be dropped during the evaluation of the network. Then the accu-
racy of the model is assessed by running the model on a set of unseen examples called
test set.

Genetic models andmachine learning
The classic model of selection in population genetics includes two alleles, typically
denoted by A and a, which are alternative variants of a DNA fragment present in a spe-
cific position of the genome. A and a can refer to a DNA fragment composed by a single
or by multiple nucleotides. Natural selection occurs when the fitness (i.e. the probability
of survival and reproduction, indicated with w) of the three genotypes that can occur in
a diploid individual (AA, Aa and aa; diploid organisms have always two copies of each
chromosome) are different. There are different types of selection which can be simplified
as positive (directional), balanced, and negative (purifying) selection. Positive selection
occurs if the fitness of a given genotype is higher than the others, i.e. if wAA > wAa > waa
or wAA < wAa < waa, and tends to get fixed in the population while the other allele is
lost. Balanced selection occurs when selection favors the maintenance of diversity within
a population ((wAA < wAa > waa). Negative selection is the selection against one of the
two alleles which appears as disadvantageous. A mutation that does not affect the fitness
of the individual in which it occurs (and therefore wAA = wAa = waa), is called neutral;
more generally, neutrality describes the condition in which the locus under consideration
is not affected by selection [3]. As genetic loci are physically arranged along a chromo-
some, the effect of selection can extend on the two sides of the selected locus and interfere
with the selective (or neutral) trajectory of allele frequencies at nearby loci. Such inter-
ference (i.e., due to linkage disequilibrium, that is the non-random association of alleles
at different loci) can be released by recombination whose probability scales proportion-
ally with the physical distance between loci. The extent of the signature of selection in
a genomic region harbouring a positively selected allele depends on its differential fit-
ness (selective coefficient) throughout its trajectory, from appearance to fixation, on the
recombination rate in that region, and on the population size. Given that drift can also
lead to fixation or loss of alleles due to random fluctuations of the allele frequencies,
and that genetic drift overwhelms selection in small populations, identifying the signa-
ture of selection from that left by drift is one of the most challenging tasks in population
genetics.
The purpose of this work is to predict whether a genomic region shows a pattern which

is more consistent with a natural selection or a neutral model, assuming that all the other
parameters of the evolutionary process are constant. Genomic regions simulated with
both models are represented as black and white images by converting the 0,1 matrices of
genomic data as described below (Dataset generation section). The rows of these matri-
ces represent the mutations of nucleotide bases of a certain genomic sequence for each
individual and the columns represent individuals belonging to a population. In this way
it is possible to summarize in a single image information on the allelic frequencies of
mutations related to a specific genomic sequence in a population. CNNs are then used to
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analyze images representing sections of the genome and classify them as produced by a
neutral or a natural selection model.

Related work
In [12], the authors propose a program called ImageGene which identifies positive selec-
tion on genetic data using CNNs. Both ImaGene and our system rely on the ms program
[24] to generate the neutral genetic data. However, to generate selection data we use a
modified version of the ms program called mssel made available by [24] as explained in
the Dataset generation section, while ImaGene uses the msms program [25]. Both mssel
and msms are modified versions of the ms program. Similar to our approach, ImaGene
converts genetic data into images and uses a CNN to extract and classify patterns from
them. Our approach strongly differs from ImaGene in the way the genetic data are gen-
erated and in the way they are converted into images. For example, while we generated
binary matrices of the same size including a fixed number of sites regardless of whether
they are variant or invariant, the ones generated by ImaGene are of different sizes as they
include only variable sites. ImaGene then transforms all binary matrices into a 128x128
pixel image with considerable loss of information. Unlike [12], we converted a single
binary matrix into a binary image with the same size which maintains all the relevant pat-
terns useful for its classification. Indeed, we obtain high performance in terms of accuracy
using less examples than those used in ImaGene.
In [26] the authors use a supervised Machine Learning approach, called support vector

machine (SVM), to discriminate between genomic regions experiencing purifying selec-
tion and those free from a selective constraint using population genomic data. Different
from our approach, the authors of [26] take as input the Site Frequency Spectrum (SFS)1

of individuals from the Phase I release of 1000 Genomes Dataset which consist of 14
population samples from diverse global locations. In [27] the authors used an unsuper-
vised ML algorithm called hidden Markov models (HMMs) to detect regions of genomes
under positive or negative selection. For an overview on how to apply Machine Learning
to genetic data see [28].

Dataset generation
A dataset was created using the ms program [24] which allows the simulation of genetic
data based on a demographic model defined by the user without selection so that the
trajectory of the allele frequencies is only driven by genetic drift (i.e., Neutral). Its mod-
ified version mssel (made available by [24]) allows the effect of natural selection to be
added to the demographic model (Selection). Using this program, we simulated DNA
sequences of defined length for a sample of individuals taken from a population with a
fixed size. In each simulation, the sample of DNA sequences can be linked together by
a coalescence tree that goes back to a common ancestor in previous generations [29].
Along this tree, random mutations may appear that modify a base of the DNA sequence
with a probability set by the user. The final variability pattern of this simulated sample
of DNA sequences depends on the population size, the probability of mutation and the
demographic history set in the model. In the case of the mssel program, the pattern of

1Site frequency spectrum (SFS): the distribution of allele frequencies in a population sample.
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Fig. 4 Neutral and Selection

variability of the DNA sequences in the sample will also depend on the intensity of selec-
tion, another parameter of the model. In both cases, the program produces arrays of DNA
sequences, where one dimension corresponds to the length of the sequence while the
other to the number of simulated individuals. Since it is a simulation, it is easy to keep
track of the ancestral state and the mutated one for each single base of the DNA sequence
and then report the sequences as strings of "0" (ancestral state) and "1" (derived state,
i.e. a mutation occurred in the base). The matrix representing the individual sequences
can then be stored as a binary matrix (composed of 0 and 1) which can be easily con-
verted into a binary image, see Fig. 4. The output of each simulation (either from ms
or mssel) is parsed as a random alignment of sampled copies (i.e., 48) of the simulated
genetic region, with length as the number of base pairs in the simulation settings (e.g.,
1,000 bp). Importantly, we include both variant and invariant sites in the alignment to
produce genetic regions of fixed length. We then transpose the alignment into a matrix of
1000 rows and 48 columns and convert it into a black and white png file using a lossless
conversion (see Fig. 4). Matrices are in fact converted end to end to images by mapping
each 0 value to a black pixel and each 1 value to a white pixel. Therefore, the resulting
images are of size 1000x48 and maintain all the information from the simulated genetic
regions.
In particular in our case study, using the script available in the experiment repository

dataset_creator.py2 the data for both Selection or Neutral models were gen-
erated by iteratively running the following command ms2raster.py -bp lines

-s number-matrices -l mode -selstr intensity-of-selection -p

path-dataset -i number-individuals, which generates binary matrices as
defined previously for training, validation and testing. The parameter bp indicates the
length in bases of the DNA sequences to be simulated and corresponds to the number
of rows of the generated matrices to be generated. We set bp = 1000. The parmeter -s
provides the total number of matrices. The parameter -l indicates the mode, selection,
neural. The selstr (selection strength) parameter controls the intensity of the selection in
favor of a certain allele. Our simulations were performed considering an effective popu-
lation size of 80,000 individuals and selstr = 0.005. In addition, we used a rather large

2How to generate the dataset is in the directory Dataset_generation available at Experiments.

https://bit.ly/2XkMN8Z
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Fig. 5 Portion of Fig. 4b

effective population size which is expected to downplay the effect of genetic drift as com-
pared to selection. The parameter -p indicates path to the ms and mssel binaries. Finally
the parameter -i represents the number of individuals, which we set to 24. The generated
matrices are therefore of dimension [ 1000 × 48], where the lines represent consecutive
nucleotides in the genomic sequence and the columns represent the chromosomes of all
sampled individuals. Note that the number of columns is twice the number of individuals
since each diploid individual has 2 chromosomes (and therefore two copies of each
nucleotide in the sequence). The mutation and the recombination rates were both set to
10e − 8 and bp−1.
Since CNNs operate on images, the generated matrices were converted into binary

images. Examples of images representing neutral and selection phenomena are shown
in Fig. 4a and b respectively. Figure 5 shows a portion of Fig. 4b. The script
dataset_creator.py creates a user-defined number of dataset (already converted
into images) for each model (Neutral, Selection) and for each of the three sets: TRAIN,
VALIDATION, TEST as depicted in Fig. 6.

Experiments
Experiments3 were performed using Python as programming language and Keras (with
TensorFlow as the backend) as Framework. Experiments were performed using the K80
NVIDIA GPU.
Initially, we considered a network consisting of 2 convolutional layers, each with a pool-

ing layer, and two densely connected layers, of which the first has a fairly high number of
units (1024) and the last has a single unit (as we are dealing with a binary classification

3The code is available at Experiments.

https://bit.ly/2XkMN8Z
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Fig. 6 Dataset sub-division

problem). ReLu was chosen as the activation function for every layer except for the last
layer in which the Sigmoid activation function was used.
Several experiments showed that both on small and large datasets the model presented

clear signs of overfitting probably due to a lot of weights in model and shallow patterns
extracted from the images. This led to performing different experiments on different
datasets. The datasets are recapped in Table 1 where 10k means 10,000 and ds means
dataset. Note that an equal number of images were generated for both Selection and Neu-
tral in all datasets. To avoid overfitting while extracting relevants patterns on the images,
the structure of the model was reviewed as follows: we expanded the model, as shown in
Fig. 7. Further convolutional layers were added (with 32, 64 and 128 filters of dimension
[10, 10] and stride (2, 2) respectively) to enable relevant patterns extraction. To prevent
overfitting, several dropout layers (with rate 0.4) were also added. The units of the first
densely connected layer where also reduced, from 1024 to 128. Initially, Adam was used
as the optimizer but led to unsatisfactory results. Then, SGD with momentum = 0.9 was
used as optimizer [30].
Regarding the hyperparameters, a mini-batch of 100 images were used in the case of

the ds1 dataset, while 50 images were used for the remaining datasets. This led to a high
accuracy from the initial training epochs on both Training and Validation sets. Differ-
ent learning rates were also tested for each dataset to try to obtain high accuracy on
the Validation set with a reduced number of epochs. Tables 2, 3, 4 and 5 report the
results of the experiments using 10 epochs, the accuracies on the test set are highlighted
in bold.
From these tables we can see that using datasets of different sizes and different learn-

ing rates led to very similar training accuracy. Dataset ds4 (i.e. 5k for Neutral class and
5k for Selection class) is the one that produces the lowest accuracy, but still in line
with the other results, since images in the datasets are still very similar. It can also be
observed that dataset ds3 provides a good balance between number of samples, accuracy
and training time. Note that, the value of the learning rate that leads to higher accuracy
is 0.001.

Table 1 Datasets

Dataset Train Validation Test

ds1 100k 20k 20k

ds2 50k 30k 30k

ds3 50k 10k 10k

ds4 10k 1k 1k
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Fig. 7 Model
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Table 2 Results with 10 epochs on ds1 dataset

L. rate Train acc. Val. acc. Test acc. Train Loss Val. Loss Test loss Time(s)

1.0e-3 0.956 0.954 0.954 0.117 0.138 0.138 1396

5.0e-4 0.950 0.955 0.955 0.133 0.141 0.141 1392

1.5e-4 0.940 0.944 0.944 0.167 0.172 0.172 1395

1.0e-5 0.938 0.943 0.943 0.175 0.177 0.177 1417

Table 3 Results with 10 epochs on ds2 dataset

L. rate Train acc. Val. acc. Test acc. Train Loss Val. Loss Test loss Time(s)

1.0e-3 0.964 0.972 0.972 0.097 0.084 0.084 641

5.0e-4 0.959 0.958 0.958 0.112 0.116 0.116 642

1.5e-4 0.950 0.960 0.960 0.136 0.122 0.122 635

1.0e-5 0.947 0.957 0.957 0.150 0.130 0.132 647

Table 4 Results with 10 epochs on ds3 dataset

L. rate Train acc. Val. acc. Test acc. Train Loss Val. Loss Test loss Time(s)

1.0e-3 0.962 0.977 0.977 0.099 0.075 0.075 581

5.0e-4 0.958 0.960 0.960 0.110 0.108 0.108 587

1.5e-4 0.951 0.957 0.957 0.136 0.122 0.122 589

1.0e-5 0.946 0.955 0.955 0.150 0.139 0.139 581

Table 5 Results with 10 epochs on ds4 dataset

L. rate Train acc. Val. acc. Test acc. Train Loss Val. Loss Test loss Time(s)

1.0e-3 0.890 0.944 0.940 0.265 0.192 0.189 118

5.0e-4 0.870 0.941 0.920 0.300 0.211 0.241 115

1.5e-4 0.790 0.900 0.870 0.450 0.370 0.398 117

1.0e-5 0.800 0.880 0.869 0.430 0.377 0.383 116
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Fig. 8 Training Accuracy and loss of datasets over 50 epochs

In order to increase the accuracy, we first increased the number of training epochs.
Further experiments with 50 epochs were performed and led to a higher accuracy. As
depicted in Fig. 8, the training accuracy and the training loss of the model trained on
the various datasets during 50 epochs are very similar. Observe that dataset ds4 initially
deviates from the others but converges similarly when the maximum number of epochs
is reached.

Fig. 9 Accuracies with 50 epochs on the datasets ds1(top left), ds2 (top right), ds3 (bottom left) and
ds4(bottom right)
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Fig. 10 Losses with 50 epochs on the datasets ds1(top left), ds2 (top right), ds3 (bottom left), ds4(bottom
right)

Figures 9 and 10 show the accuracy and loss of the training and validation set over
50 epochs respectively: the graphs of training/validation accuracy and training/validation
loss tend to converge over time. By comparing these graphs and considering also the accu-
racies (test accuracy highlighted in bold) and losses shown in Tables 6 and 7 respectively,
the similarity of the training, validation and test accuracies can be observed. This clearly
highlights the fact that the implemented model is generalizing correctly and does not
exhibit overfitting.
Further experiments were performed but they did not lead to remarkable improve-

ments. For example, we tried epoch numbers greater than 50 and investigated other
regularization techniques such as L1 and L2 regularizations without any improvement.
Let us consider Neutral and Selection examples as positive and negative examples

respectively. The Confusion Matrix (CM) is used to evaluate the performance of an algo-
rithm. In our case (binary classification), the CM consists of two rows and two columns.

Table 6 Accuracy with 50 epochs on all datasets

Dataset Train acc. Val. acc. Test acc. Time(s)

ds1 0.9928 0.9990 0.9990 16038

ds2 0.9931 0.9991 0.9991 8881

ds3 0.9926 0.9982 0.9982 8122

ds4 0.9790 0.9800 0.9980 1537
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Table 7 Loss with 50 epochs on all datasets

Dataset Train loss Val. loss Test loss Time(s)

ds1 0.0186 0.0051 0.0051 16038

ds2 0.0190 0.0041 0.0195 8881

ds3 0.0184 0.0048 0.0048 8171

ds4 0.0569 0.0582 0.0099 1537

Let A denote such matrix: in the first row, A11 (called True Positives TP) counts the num-
ber of Neutral examples correctly classified while A12 (called False Negatives FN) denotes
the number of Neutral examples wrongly classified as Selection. Similarly, in the second
row A21 (False Positives FP) andA22 (True Negatives TN) denote the number of Selection
examples wrongly and correctly classified respectively. Figure 11 presents the confusion
matrix for dataset ds3 using 50 epochs. The results are clearly in line with the values
shown in Tables 6 and 7.
Based on the confusion matrix, other metrics such as Precision and Recall can also be

computed. The Precision is the percentage of observations correctly predicted over the
total of observations predicted as positive, TP

TP+FP . The Recall (also call sensitivity) is the
percentage of positive observations correctly predicted over the total number of positive
observations, TP

TP+FN . Table 8 provides the accuracies together with other metrics of all
datasets on the test set. The results clearly show that the model is accurate, sensitive and
very precise.
Note that the validation/test accuracies are sometimes higher than the training accura-

cies (especially in ds4). The reason could be related to the fact that the model generalizes
very quickly after just a few epochs. In fact the binary images have more 0 than 1 and
relevant features necessary to have a clear distinction between neutral and selection are
extracted just after a few epochs. Moreover, in Deep Neural Networks, models with initial
random weights in some situations could provide similar performance as trained models,
see [31]

Fig. 11 Confusion matrix of the test set on the ds3 dataset using 50 epochs
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Table 8 Evaluation metrics using 50 epochs on all datasets

Dataset Accuracy Precision Recall

ds1 0.9990 1.0000 0.9979

ds2 0.9990 0.9996 0.9985

ds3 0.9982 0.9998 0.9966

ds4 0.9990 0.9988 0.9993

Application to real data
As a proof of principle, we tested our CNN using a real dataset. We chose a clear example
of a selective sweep in the SLC24A5 gene (variant rs1426654, Chromosome 15:48134287;
Ensembl.org), which was identified as responsible for skin pigmentation loss in human
populations of European ancestry, see [32, 33]. Using the variant data from the 1000
Genome Project, we selected the genomic region from position 48000000 to 48500000 on
chromosome 15 for 24 individuals sampled in Tuscany (Italy). As the signature left by the
selective sweep in this gene spans more than 100 kb, we adjusted our CNN by training it
with a new set of simulated windows of 10,000 base pairs generated as in the experiment
before but setting an effective population size of 10,000 and a mutation rate of 2E10-8.
The training set included 3910 images (1990 as selection and 1920 as neutral), whereas
both the training and the validation set included 500 images of each type (dataset ds5).
We trained the CNN in Fig. 7 using the Adam optimizer with a learning rate of 0.001. The
training was done with early stopping, i.e., the training stops if there is no improvement
in the validation accuracy after three epochs. The trend of the accuracy and loss on both
training and validation is shown in Figs. 12 and 13 respectively. Note that, contrary to the
training described in the Experiments section in which after the first few batches of the
first epoch the model is already able to distinguish neutral and selection, the model strug-
gles in the first 7 epochs. Only from the 8th epochs onwards the model starts extracting
relevant features necessary to distinguish neutral from selected images. This is probably
due to fact that images of 10000x48 contain more information than images of 1000x48.
Table 9 recaps the accuracies and losses on the training, validation, and test sets for simu-
lated genomic images. We converted the real genomic data into 50 images of 10000 rows
and 48 columns using a custom python script (vcf2raster.py) and categorized the windows

Fig. 12 Accuracies with 50 epochs on the ds5 datasets. Training done with early stopping
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Fig. 13 Losses with 50 epochs on the ds5 datasets. Training done with early stopping

between position 48100000 and 48220000 as selection (12 windows) while the remaining
38 windows before and after those positions were labeled as neutral (38 windows). Besides
the window including the causative variant rs1426654, the other genomic windows were
labeled as under selection if nucleotide diversity was below 0.00003 substitutions per site.
This labeling implies that the identification of the regions flanking the causative variant
and characterized by a similar genetic variation pattern are also of interest. Our train-
ing model categorized the real genomic windows with 88% accuracy, 72% precision, and
84% recall, as shown in the confusion matrix in Fig. 14. Although the performance on
the real data already appears satisfactory, additional refinement of the parameters in the
simulation step to make it fully compatible with the real data (e.g., including the past
demographic history of the studied population) would surely improve it further. More-
over, a combination of CNN trained with different size windows could be used to narrow
down the region under selection around the causative variant.

Conclusion
In this paper we investigated how to identify patterns of neutral or selection model in
genomic sequences. Portions of genomes of a population were represented as images and
Convolutional Neural Networks were applied for their classification.
After various experiments with different hyperparameters, we found that it was possible

to obtain an acceptable accuracy even with a limited number of epochs. The model was
also trained on data generated with realistic parameters and provides good prediction
performance on portions of genomes taken from real populations.
As future work we plan to design and train Convolutional Neural Networks that are

able to perform prediction under neutral and different selection profiles on portions of
genomes taken from simulated data and test the networks on real populations.

Table 9 Accuracies and Losses for Training, Validation and Test on images of sizes 10000x48.
Training done with 50 epochs and early stopping

Dataset Accuracy Loss

Training 0.9949 0.0340

Validation 0.9500 0.2148

Test 0.9538 0.1744
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Fig. 14 Confusion matrix on the real dataset using 50 epochs and earling stopping
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