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Abstract

Background: Long noncoding RNAs (lncRNAs) have dense linkages with various
biological processes. Identifying interacting lncRNA-protein pairs contributes to
understand the functions and mechanisms of lncRNAs. Wet experiments are costly and
time-consuming. Most computational methods failed to observe the imbalanced
characterize of lncRNA-protein interaction (LPI) data. More importantly, they were
measured based on a unique dataset, which produced the prediction bias.

Results: In this study, we develop an Ensemble framework (LPI-EnEDT) with Extra tree
and Decision Tree classifiers to implement imbalanced LPI data classification. First, five
LPI datasets are arranged. Second, lncRNAs and proteins are separately characterized
based on Pyfeat and BioTriangle and concatenated as a vector to represent each
lncRNA-protein pair. Finally, an ensemble framework with Extra tree and decision tree
classifiers is developed to classify unlabeled lncRNA-protein pairs. The comparative
experiments demonstrate that LPI-EnEDT outperforms four classical LPI prediction
methods (LPI-BLS, LPI-CatBoost, LPI-SKF, and PLIPCOM) under cross validations on
lncRNAs, proteins, and LPIs. The average AUC values on the five datasets are 0.8480,
0,7078, and 0.9066 under the three cross validations, respectively. The average AUPRs
are 0.8175, 0.7265, and 0.8882, respectively. Case analyses suggest that there are
underlying associations between HOTTIP and Q9Y6M1, NRON and Q15717.

Conclusions: Fusing diverse biological features of lncRNAs and proteins and
exploiting an ensemble learning model with Extra tree and decision tree classifiers, this
work focus on imbalanced LPI data classification as well as interaction information
inference for a new lncRNA (or protein).
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Introduction
Motivation

Noncoding RNAs are molecules regulating various fundamental cellular processes in
complex organisms on a genome-wide level [1]. The type of molecules are lack of tis-
sue specificity and conserved motifs [2, 3]. Long noncoding RNAs (lncRNAs) are a class
of noncoding RNAs with more than 200 nucleotides. Researches suggest that the types
and number of lncRNAs are far from those of protein-coding mRNAs [4, 5]. However,
only few lncRNAs have been revealed their biological functions. Aberrant expression of
lncRNAs densely links with various complex diseases [6, 7], for example, hepatocellu-
lar carcinoma [8], liver cancer [9], breast cancer [10], pituitary tumors [11], coronary
heart disease [12], ovarian cancer [13], Alzhermer’s diseases [14], and Huntington’s dis-
eases [15]. Therefore, identifying the biological functions of lncRNAs helps to boost our
knowledge about this class of molecules [16].
Studies demonstrate that lncRNAs regulate post-transcriptional genes, control poly-

adenylation, splicing and translation by interacting with proteins [17–19]. Probing
lncRNA-protein interactions (LPIs) contributes to the understanding of lncRNAs’ bio-
logical functions. Wet experiments found multiple potential LPIs. However, experimental
techniques are costly and time-consuming [20, 21]. Computational methods are increas-
ingly exploited to uncover the underlying associations between lncRNAs and proteins [19,
22, 23].
Computation-based LPI identification methods can be roughly classified into two main

groups: network-basedmethods and supervised learning-basedmethods. Network-based
LPI prediction methods construct a heterogeneous lncRNA-protein network and prop-
agate the labels of LPIs on the network. Lu et al. [24] proposed a matrix multiplication-
based method to score RNA-protein pairs. Li et al. [25] integrated lncRNA similarity
network, protein interaction network, and LPI network and used a random walk with
restart to infer LPIs. Yang et al. [26] designed a HeteSim algorithm for LPI prediction. Ge
et al. [27] and Zhao et al. [21] explored two bipartite network-based LPI inference models.
Zheng et al. [28] found a few LPIs based on the built multiple protein-protein similar-
ity networks. Zhang et al. [29] used the KATZ measure to identify the linkages between
lncRNAs and proteins. Hu et al. [30] proposed an eigenvalue transformation-based LPI
prediction algorithm. Zhang et al. [31] exploited a linear neighborhood propagation
algorithm by integrating expression profiles, interaction profiles, and sequence composi-
tion of lncRNAs and CTD features and interaction profiles of proteins. Zhao et al. [32]
explored a logisticmatrix factorization-based LPI discoverymethod combining neighbor-
hood regularization and random walk. Zhou et al. [33] developed a Laplacian regularized
least square model (LPI-SKF) to identify new interactions between lncRNAs and pro-
teins by integrating similarity kernels. Network-based methods effectively propagated
LPI labels on the heterogeneous lncRNA-protein network. However, they can not find
underlying associations for an orphan protein or lncRNA.
Supervised learning methods take LPIs as positive samples and characterize LPI pre-

diction as a binary classification problem. Muppriala et al. [34] extracted the sequence
features of RNAs and proteins based on k-mer composition and combined SVM and
random forest to predict RNA-protein associations. Wang et al. [35] took RNA-protein
interactions as positive samples, randomly screened twice number of RNA-protein pairs
without any association information as negative samples, and then built a naive Bayes-
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based prediction model. Suresh et al. [36] developed an SVM-based estimator (RPI-Pred)
for RNA-protein interaction identification. Xiao et al. [37] utilized a HeteSim measure
and SVM to classify interactions between lncRNAs and proteins. Deng et al. [38] selected
diffusion and HeteSim features for lncRNAs and proteins and built a gradient tree boost-
ingmodel (PLIPCOM) to classify each lncRNA-protein pair. Fan and Zhang [39] designed
a stacked ensemblemodel (LPI-BLS) to infer potential new LPIs based on ensemble learn-
ing [40]. Wekesa et al. [41] proposed a categorical boosting algorithm (LPI-CatBoost) for
LPI prediction.
Although supervised learning methods uncovered multiple potential associations

between lncRNAs and proteins, the type of classification models are susceptible to the
imbalanced ratio between positive samples and negative samples. There exists numerous
unlabeled lncRNA-protein pairs and much less positive LPIs on LPI data resources. That
is, the existing LPI data are severely imbalanced. More importantly, most models are eval-
uated on one individual LPI dataset, which may produce the prediction bias. To address
the two problem, in this paper, we develop an Ensemble framework (LPI-EnEDT) with
Extra tree and Decision Tree classifiers to infer new LPIs.

Materials andmethods
Data preparation

In this study, five different LPI datasets are arranged. Dataset 1 was compiled by Li et
al. [25] and contains 3479 associations between 59 proteins and 935 lncRNAs after our
removing lncRNAs and proteins without any sequence information in NONCODE [42],
NPInter [43], and UniProt [44] databases. Dataset 2 was built by Zheng et al. [28] and
contains 3265 associations from 84 proteins and 885 lncRNAs after preprocessing similar
to dataset 1. Dataset 3 was retrieved by Zhang et al. [31] and contains 4158 associations
between 27 proteins and 990 lncRNAs. The three datasets are from human.
Datasets 4 and 5 provide LPI data fromArabidopsis thaliana and Zeamays, respectively.

lncRNA and protein sequence information is achieved from the plant lncRNA database
(PlncRNADB [45]). LPIs are downloaded at http://bis.zju.edu.cn/PlncRNADB/. The two
datasets provide 948 LPIs from 35 proteins and 109 lncRNAs and 22,133 LPIs from 42
proteins and 1704 lncRNAs, respectively. Table 1 describes the details of five datasets.
We represent LPI network as a matrix Y with the element:

yij =
{
1, if lncRNAs li interacts with protein pj
0, otherwise

(1)

Overview of LPI-EnEDT

In this study, we develop an Ensemble framework with Extra tree and Decision Tree clas-
sifiers for imbalanced LPI data classification (LPI-EnEDT). Figure 1 depicts the pipeline
of LPI-EnEDT.

Table 1 The statistics of LPI information

Dataset lncRNAs Proteins LPIs

Dataset 1 935 59 3,479

Dataset 2 885 84 3,265

Dataset 3 990 27 4,158

Dataset 4 109 35 948

Dataset 5 1,704 42 22,133

http://bis.zju.edu.cn/PlncRNADB/
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Fig. 1 The Pipeline of the LPI-EnEDT framework. (1) Dataset arrangement. (2) Feature description. (3) Feature
selection. (4) LPI classification

As shown in Fig. 1, the LPI-EnEDT framework are grouped into four main steps: (1)
Dataset arrangement. Five LPI datasets are arranged. (2) Feature description. lncRNA-
protein pairs are described using Pyfeat [46] and BioTriangle [47], respectively. (3)
Feature selection. The described features are reduced to d dimensions and concatenated
as a 2d-dimensional vectors applied to characterize each lncRNA-protein pair. (4) LPI
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classification. An ensemble framework with Extra tree and decision tree classifiers is
exploited to implement imbalanced LPI data classification.

Feature selection

lncRNA feature selection

PyFeat [46] provides diverse features for RNA sequences. These features contain: zCurve,
gcCotent, ATGC ratio and cumulative skew, Chou’s Pseudo composition, monoMonoK-
Gap, monoDiKGap, diTriKGap, triDiKGap, triMonoKGap, monoTriKGap, diMonoKGap,
and diDiKGap. We use this tool and learn a vector applied to depict each lncRNA.

Protein feature selection

BioTriangle [47] is a feature-rich toolkit appied to characterize proteins. These features
contain amino acid composition, autocorrelation, CTD, conjoint triad, quasi-sequence
order, pseudo amino acid composition. We use this toolkit and devise a vector to
characterize each protein.

Dimension reduction

The dimensions of lncRNA and protein features are decreased via principle component
analysis. The reduced lncRNA and protein features are concatenated as a 2d-dimensional
vector to denote each lncRNA-protein pair.

LPI prediction framework

Problem description

There exists a few known LPIs and numerous unknown lncRNA-protein pairs on LPI
datasets. The ratios of known LPIs to all lncRNA-protein pairs is 0.0631, 0.0439, 0.1556,
0.2485, and 0.3093 on the five LPI datasets, respectively. That is, existing LPI data is imbal-
anced. In the imbalanced LPI datasets, positive LPIs are outnumbered. To solve with the
LPI data imbalanced problem, we develop an ensemble model (LPI-EnEDT) to improve
the classification ability of individual classifier.
Suppose that D = (X,Y ) denotes a known LPI dataset, where x ∈ X represents a train-

ing sample characterized by an LPI feature vector of 2d-dimension and y ∈ Y denotes the
corresponding label. The proposed LPI-EnEDT framework alternately mix two weak esti-
mators including Extra tree and decision tree classifiers to reduce the overfitting problem
in the imbalanced LPI data.

Extra tree

The Extra tree model [48] constructs an ensemble algorithm based on unpruned regres-
sion or decision trees. It differs from other tree-based ensemble models. First, it splits
nodes based on the chosen cut-points at fully random. In addition, instead of a bootstrap
replica, it uses the whole learned samples to grow the trees.
Algorithm 1 describes the splitting procedure in Extra tree. In Algorithm 1, the number

of attributes K at each node is set as K = √
2d, and nmin denotes the minimum example

size for splitting a node. Extra tree is used for a few times to construct an ensemble model.
The predictions from multiple Extra trees are aggregated to generate the final prediction
based on the voting method.
The explicit randomization for cut-points and attribute integration by ensemble aver-

aging may more strongly reduce variance than the weaker randomization algorithms. To
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minimize the bias, instead of bootstrap replicas, Extra tree uses full original learning sam-
ples. More importantly, while ensuring the simplicity during the node splitting, Extra tree
obtainsmuch smaller constant factor than in the other ensemble-basedmodels. The Extra
tree algorithm contains three main phases:

Algorithm 1: The Extra tree splitting algorithm

Part I: Splitfeature (X)

Input: LPI data D = (X,Y ), K
Output: the labels of lncRNA-protein pairs or a split [a ≤ ac]
1: If (Stopsplit (X)==true) then
2: Return the labels of lncRNA-protein pairs
3: Else
4: Select K different LPI features a1, ..., aK from X;
5: Conduct K splits s1, ..., sK where si =Picksplit (X, ai)(i = 1, 2, ...,K)

6: Obtain an optimal LPI feature split s∗ by Score(s∗,X) = maxi=1,...,KScore(si, X)
7: End if
8: Classify lncRNA-protein pairs based on the split s∗

Part II: Picksplit (X, a)

Input: LPI data D = (X,Y ), a feature a
Output: a split
1: Suppose that amax and amin represent the maximum and minimum value of an LPI
feature a in X, respectively
2: Draw a random cut-point ac uniformly in [amin, amax]
3: Obtain the split [a < ac]

Part III: Stopsplit (X)

Input: LPI data D = (X,Y ), nmin
Output: a boolean value
1: If |X| < nmin, then return True
2: If all features in X are the same, then return True
3: If the classes of all lncRNA-protein pairs in X is consistent, then return True
4: Else
5: return False
6: End if

In Algorithm 1, Score(s∗,X) denotes the normalized Shannon information gain and can
be computed by Eq. (2):

Score (s,X) = 2I (X)

Hc (X) + Hs (X)
(2)

where
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Hc (X) = −
2∑

i=1

|X i|
|X| × log2

( |X i|
|X|

)
(3)

Hs (X) = −
2∑

j=1

|X j|
|X| × log2

( |X j|
|X|

)
(4)

I(X) = Hc (X) −
2∑
j

|X j|
|X| × Hc

(
X j

)
(5)

where X is the LPI sample set with the labels, s denotes a split where the nodes with the
values smaller than the split value are put into the left on the tree; otherwise, the nodes
are on the right. X i denotes two classes composed of LPIs or non-LPIs. X j denotes two
sample sets on the left and right of the split node.
Extra tree has three advantages. First, each sub-decision tree in the Extra tree model

uses the original dataset to train the model. Second, it randomly selects a feature to split
the decision tree. Finally, it demonstrates the powerful generalization ability. Therefore,
we select the Extra tree algorithm as one class of weak classifiers in the LPI-EnEDTmodel.

Decision tree

Extra tree randomly selects K LPI features and obtain an optimal LPI feature from the
K features to classify lncRNA-protein pairs based on Shannon information gain. Except
selecting the features used to split, other processes of decision tree are similar to Extra
tree. Decision tree [49] uses a divide-and-conquer strategy to grow the trees.
Decision tree uses gain ratio as the default splitting criterion. LPI prediction is taken as

a binary classification problem. Suppose that p
(
X; j

)
(j = 1, 2) denotes the proportion of

samples in X that belong to the j-th class. To measure the purity of the LPI sample set, the
information entropy is defined as Eq. (6):

Info (X) = −
2∑

j=1
p

(
X, j

) × log2
(
p

(
X, j

))
(6)

The corresponding information gain generated by a feature a can be computed as
Eq. (7):

Gain (X, a) = Info (X) −
K∑
i=1

|X i|
|X| × Info (X i) (7)

where the feature a(a ∈ {a1, a2, ..., ak}) has K possible values for all lncRNA-protein pairs,
X i denotes the sample set when a = ai. The feature with the maximum information gain
is used as the splitting nodes.

The LPI-EnEDTmethod

Majority of the ensemble methods used a single weak classifier to generate the model.
This may produce the prediction bias. To avoid the limitations produced by a single basic
estimator and amplify the diversity, we alternately use two different predictor, that is,
Extra tree and decision tree. The two basic classifier are instable and appropriate for the
ensemble algorithm. Each tree produced in different ways by different algorithms can
cover different subspaces, thus the combinations of multiple trees based on the ensemble
algorithm can generate good classification performance.
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At each iteration, LPI-EnEDT uses either extra tree or decision tree classifier as basic
learners to achieve the benefits from both predictors. During learning, LPI-EnEDT eval-
uates each weak classifier and discards them when the estimators can not be a weak
predictors or the error rate computed by them is no less than 0.5. The weak classifiers are
increasingly added to the model until the performance does not improve. For each node,
an feature is selected when it effectively separates the training set into multiple subsets
that belong to different classes.
The weight of the t-th weak classifier is computed to measure its importance among all

weak classification models by Eq. (8):

αt = 1
2
loge

1 − error(ft)
error(ft)

(8)

In LPI dataset, there are a few positive samples (LPIs) and numerous unknown lncRNA-
protein pairs, which result in the problem of sample imbalance. During the process of
selecting a weak classifier, to solve the imbalanced LPI data, for each lncRNA-protein pair
xi, we update its weight at the (t+1)-th iteration as Eq. (9):

wt+1 = wt ∗ eαt∗pt∗yt∑n
i=1 wt ∗ eαt∗pt∗yt

(9)

where pt and yt denote the predicted labels and real labels at the t-th iteration, respec-
tively. Based on the classification results at the last iteration, LPI-EnEDT assigns a higher
weight to a class with minor samples to reduce the affect produced by the imbalanced LPI
data.
After t iterations, the meta classifier can be built by Eq. (10):

F(t) = sign(
∑

αt ft) (10)

At each odd number of iteration, the most appropriate Extra tree is selected as a weak
classifier. At each even number of iteration, the most appropriate decision tree is selected
as a weak classifier. Based on the meta classifier Ft learned through t iterations, the per-
formance ct of the LPI-EnEDT model on the testing set is computed. Compared to the
iteration where the model obtains the best performance pbest , if the performance at the t-
th iteration is improved or keeps instable, ft will be added to the final classification model
F. After t iteration, the model Fbest , composed of t weak classifiers, computes the best per-
formance. For the following M iterations, if the performance at each iteration does not
improve, the iteration will be stopped and Fbest will be selected as the final classification
model. Algorithm 2 describes the LPI classification process based on LPI-EnEDT.

Results
Evaluation metrics

Six evaluation metrics are applied to measure the proposed LPI-EnEDT framework:
precision, recall, accuracy, F1-score, AUC and AUPR. They are defined as follows:

Precision = TP
TP + FP

(11)

Recall = TP
TP + FN

(12)

Accuracy = TP + TN
TP + TN + FP + FN

(13)
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Algorithm 2: The LPI-EnEDT algorithm
Require: LPI data D = (X,Y ), the number of weak classifiers n,M
Ensure: An ensemble classifier F

1: Initialize: wt
i = 1/|D| for each lncRNA-protein pair xi, pbest = 0, andm = 0

2: For t = 1 to n
3: For t ∈ {1, 3, 5, ..., }
4: Select an Extra tree as an estimator ft
5: Assign each xi on the training set to a weight (wt−1

i ) by Eq. (9)
6: Learn the estimator ft using the weighted training samples
7: Calculate the error of ft , error(ft)
8: If error(ft) < 0.5 then
9: the Extra tree ft is selected as a weak classifier
10: Else
11: t = t + 1
12: Repeat Steps 3-14 to find an Extra tree
13: End if
14: End for

15: For t ∈ {2, 4, 6, ..., })
16: Select a decision tree as an estimator ft
17: Conduct the process of decision tree selection similar to Extra tree selection
18: End for

19: Update the weight wi for each xi by Eq. (9)
20: Compute the weight αi for each weak classifier by Eq. (8)
21: Learn a meta classifier Ft = sign(

∑
αt ft)

22: Compute the performance of Ft on the testing set c = ceva(Ft ,Xtest ,Y test)

23: If cbest ≤ c then
24: cbest = c
25: Fbest = Ft
26: End if

27: If c ≤ cbest then
28: m = m + 1
29: Ifm == M then
30: F = Fbest
31: End if
32: End if
33: End for

F1 − score = 2TP
2TP + FP + FN

(14)

where TP, TN, FP, and FN indicates true positive, true negative, false positive, and false
negative, respectively. AUC and AUPR are the areas under the receiver operating char-
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acteristic (ROC) curve and Precision-Recall (PR) curve, respectively. For the six metrics,
higher values demonstrate better performance.
The experiments are repeated for 20 times and the final results are computed by averag-

ing the 20 round performance. In Algorithm 2, ceva(Ft ,Xtest ,Y test) is computed according
to the AUC value because when AUCs obtained from LPI-EnEDT are higher, other five
measurements are still better.

Experimental settings

The parameters in Pyfeat is set as: kGap = 5, opti-mumDataset = 1, kTuple = 3, pseu-
doKNC = 0, gcContent = 1, zCurve = 1, cumulativeSkew = 1, monoTri = 1, monoMono =
1, diMono = 1, monoDi = 1, triMono = 1, atgcRatio = 1, triDi = 1, diTri = 1, diDi = 1. The
parameters in BioTriangle and LPI-SKF are set as the defaults provided by Dong et al. [47]
and Zhou et al. [33], respectively. The parameters in other LPI prediction algorithms are
set the corresponding values shown in Table 2.
We conduct grid search and observe that when d = 100, LPI-EnEDT computes the

best measurements. Therefore, we construct two 100-dimensional vectors applied to
lncRNA and protein feature description. Three 5-fold Cross Validations (CVs) on lncR-
NAs, proteins and lncRNA-protein pairs are conducted to evaluate the performance of
LPI-EnEDT.

1 5-fold CV on lncRNAs (CVl, LPI prediction for new lncRNAs): 80% of lncRNAs
are randomly selected as a training set and the remaining 20% is taken as a testing
set in each round.

2 5-fold CV on proteins (CVp, LPI prediction for new proteins): 80% of proteins are
randomly selected as a training set and the remaining 20% is taken as a testing set
in each round.

3 5-fold CV on lncRNA-protein pairs (CVlp, LPI prediction for lncRNA-protein
pairs): 80% of lncRNA-protein pairs are randomly selected as training set and the
remaining 20% is taken as a testing set in each round.

In addition, known LPI datasets are unbalanced. Therefore, we develop an ensemble
learning model for imbalanced data, LPI-EnEDT. In the experiments, the ratio of positive
samples to negative samples is randomly selected to solve the problem of imbalanced LPI
data classification.

Comparison with four state-of-the-art LPI prediction methods

We compare the proposed LPI-EnEDT algorithm with four state-of-the-art LPI discovery
models to measure the classification ability for imbalanced LPI data, that is, LPI-BLS,

Table 2 Parameter Settings

Method Parameter setting

LPI-BLS s=1, c=10−10, N1=3, N2=60, N3=900

LPI-CastBoost learning_rate=0.5, loss_function=’Logloss’
logging_level=’Verbose’

PLIPCOM learning_rate=0.01,n_estimators=100
min_samples_split=2, max_depth=3

LPI-EnEDT n_estimators=10, depth=5, split=5, neighbours=3
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LPI-CatBoost, PLIPCOM, and LPI-SKF. LPI-BLS, LPI-CatBoost, and PLIPCOM are three
supervised learning-based LPI identification techniques and LPI-SKF is a network-based
inference approach.
Table 1 in the Supplementary Materials lists the results from five LPI prediction algo-

rithms under CVl. As shown in Table 1 in the Supplementary Materials, LPI-EnEDT
calculates the best average recall, accuracy, F1-score, AUC, andAUPR on the five datasets,
are much better than LPI-BLS, LPI-CatBoost, PLIPCOM, and LPI-SKF. For example,
LPI-EnEDT computes the highest AUC values on all datasets and obtains the best aver-
age AUC of 0.8480, which is better 3.48%, 10.04%, 4.20%, and 1.90% than LPI-BLS,
LPI-CatBoost, PLIPCOM, and LPI-SKF, respectively. More importantly, LPI-EnEDT cal-
culates the optimal average AUPR value of 0.8175, better 2.81%, 6.46%, 2.12%, and 1.00%
than the four methods. Figure 2 shows the ROC and PR curves of all five algorithms on
five datasets under CVl. The results demonstrate that LPI-EnEDT can more accurately
infer underlying proteins for a new lncRNA.
Table 2 in the Supplementary Materials describes the experimental results under CVp.

It can be analyzed that LPI-EnEDT computes the best average recall of 0.8311, accuracy
of 0.6626, F1-score of 0.6700, AUC of 0.7078 and AUPR of 0.7265 on the five datasets.
In particular, LPI-EnEDT obtains the best recalls on all datasets. More importantly, LPI-
EnEDT calculates the best AUCs on datasets 2-4, the best AUPRs on datasets 2 and 4,
demonstrating the powerful LPI prediction ability of LPI-EnEDT on datasets 2 and 4.
Fig. 3 describes the ROC and PR curves of five LPI prediction algorithms under CVp. In
general, LPI-EnEDT is appropriate for finding interacting lncRNAs with a new protein.
The performance under CVlp are showed in Table 3 in the Supplementary Materials.

From Table 3 in the Supplementary Materials, we can examine that LPI-EnEDT obtains
the best performance. In particular, precision, accuracy, F1-score, and AUPR computed
by LPI-EnEDT are much better than other four representative LPI identification algo-
rithms. For example, LPI-EnEDT investigates the highest average F1-score of 0.8420,
which is 3.00% better than the second-best method (PLIPCOM) and 10.68% than the
third-best method (LPI-CatBoost). The average AUPR value from LPI-ENEDT outper-
forms 2.95% and 2.98% than the second-best and the third-best models (PLIPCOM and
LPI-SKF). Figure 4 depicts the ROC and PR curves of five LPI identification models under
CVlp. The results manifest the superior learning ability of LPI-EnEDT. In addition, we
notice that LPI-EnEDT has the optimal classification performance on dataset 2 under the
three CVs. The comparative results again display that LPI-EnEDT helps to boost the LPI
classification ability and uncover new LPIs from the observations.

Case study

In this section, we further reveal possible association information by case analyses.

Finding associated proteins for new lncRNAs

LINC00294 is an lncRNA highly expressed in normal brain tissues and distinctly down-
regulated in glioma cell lines and GBM tissues. Its overexpression may prevent glioma
cell proliferation but enhance apoptosis. More importantly, NEFM, a tumor suppressor,
was reported to be significantly reduced in cancerous conditions and boost in glioma cells
through LINC00294 up-regulation [50]. LINC00294 induced by GRP78may still promote
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Fig. 2 The ROC curves and the PR curves of different methods under CVl



Peng et al. BioDataMining           (2021) 14:50 Page 13 of 22

Fig. 3 The ROC curves and the PR curves under CVp
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Fig. 4 The ROC curves and the PR curves of different methods under CVlp
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the progression of cervical cancer [51]. In addition, Bak-IIIa may improve LPS-induced
inflammatory damage in HUVECs through upregulating LINC00294 [52].
To predict new associated proteins for LINC00294, all its interaction data are masked.

The five LPI prediction models are then applied to predict the underlying associa-
tions between LINC00294 and proteins. The discovered top 5 proteins associated with
LINC00294 are described in Table 3. It can be found that Q13148 and P35637 have been
inferred to interact with LINC00294 in dataset 3. Although the interactions between
Q13148 and P35637 and LINC00294 are unknown in dataset 3, they have been reported
to related to LINC00294 in datasets 1 and 2. The results again confirm the classification
performance of LPI-EnEDT. Therefore, LPI-EnEDT is appropriate to interacting protein
prediction for a new lncRNA.

Finding potential lncRNAs interacting with new proteins

Q9Y6M1 is RNA-binding protein. The protein can recruit target transcripts to cytoplas-
mic mRNPs. The transcript ‘caging’ into mRNPs can promote the transport and transient
storage of mRNA. It can also modulate the rate and location where target transcripts
encounter the translational apparatus and protect them frommicroRNA-mediated degra-
dation or endonuclease attacks [53]. It can still discover novel autoimmune peptide
epitopes of prostein in prostate Cancer [54].
Q9Y6M1 associates with 364, 342, and 387 lncRNAs on the three human datasets,

respectively. We mask all interaction data for Q9Y6M1 and utilize the proposed LPI-
EnEDT framework to predict lncRNA candidates related to the protein. The top 5
lncRNAs with the highest interaction probabilities with Q9Y6M1 are listed in Table 4.
Although the predicted interactions between H19 and Q9Y6M1 are unknown in datasets
1and 2, the interaction can be found in dataset 3.
In addition, we predict that the lncRNA HOTTIP may interact with Q9Y6M1 ranked

as 2 on dataset 2. HOTTIP has dense linkages with a few disease. For example, it can
promote the proliferation, survival and migration of pancreatic cancer cells [55]. Its over-
expression may enhance chemoresistance of osteosarcoma cell [56]. It is also used as
possible diagnostic and prognostic biomarker for gastric cancer [57]. In dataset 2, there
are 885 lncRNAs possibly associated with Q9Y6M1 and the interaction betweenHOTTIP
and Q9Y6M1 is ranked as 2, 267, 66, 801, and 66 by LPI-EnEDT, LPI-BLS, LPI-CatBoost,

Table 3 The predicted top 5 proteins interacting with LINC00294

Dataset Proteins Confirmed LPI-EnEDT LPI-BLS LPI-CatBoost LPI-SKF PLIPCOM

Dataset 1 O00425 YES 1 6 4 9 3
Q15717 YES 2 1 1 8 1
Q9Y6M1 YES 3 3 2 1 5
P35637 YES 4 2 9 3 8
Q9NZI8 YES 5 5 5 2 2

Dataset 2 Q15717 YES 1 2 3 9 10
Q9NZI8 YES 2 4 9 2 3
Q9Y6M1 YES 3 1 1 3 1
P35637 YES 4 3 7 1 9
P31483 YES 5 13 5 5 15

Dataset 3 O00425 YES 1 1 4 2 2
Q9NUL5 YES 2 13 1 4 4
Q9Y6M1 YES 3 4 3 1 3
Q13148 NO 4 5 10 14 11
P35637 NO 5 9 5 9 7
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Table 4 The predicted top 5 lncRNAs interacting with Q9Y6M1

Dataset lncRNAs Confirmed LPI-EnEDT LPI-BLS LPI-CatBoost LPI-SKF PLIPCOM

Dataset 1 H19 NO 1 735 515 730 516
XIST YES 2 247 328 246 328
SNHG1 YES 3 686 494 322 495
NONHSAG073380 YES 4 361 736 185 736
SLC2A3P1 YES 5 799 700 394 700

Dataset 2 n343060 YES 1 685 4 750 4
HOTTIP NO 2 267 66 801 66
H19 NO 3 558 107 149 107
n385725 YES 4 261 12 107 12
SNHG1 YES 5 29 16 508 16

Dataset 3 LINC00638 YES 1 767 851 340 822
NONHSAG038845 YES 2 764 836 118 805
PTENP1 YES 3 647 292 161 217
NONHSAG048098 YES 4 986 504 11 242
NONHSAG058184 YES 5 969 210 777 370

LPI-SKF, and PLIPCOM, respectively. Therefore, we predict that HOTTIP may interact
with Q9Y6M1 and the interaction needs further biomedical experimental validation. In
general, LPI-EnEDT can be used to LPI prediction for a new protein.

Finding new LPIs based on known LPIs

We further infer possible association information between lncRNAs and proteins based
on LPI-EnEDT. We compute the interaction probabilities for each lncRNA-protein pair.
The inferred top 50 LPIs, including known LPIs and unlabeled lncRNA-protein pairs, are
shown in Figs. 5, 6, 7, 8 and 9. In the five figures, gray solid and black dotted lines denote
labeled LPIs and unlabeled lncRNA-protein pairs inferred by LPI-EnEDT, respectively.
Lime green diamonds denote proteins. Dark orange and deep sky blue diamonds describe
lncRNAs whose interactions with given proteins are known and unknown, respectively.
It can be observed that the associations between NRON and Q15717, LINC00958

and Q9Y6M1, RP11-819C21.1 and Q9NUL5, AthlncRNA32 and 22328551, and Zmal-
ncRNA1113 and B4FPJ2 have the highest association scores among unlabeled lncRNA-
protein pairs on datasets 1-5, respectively. On the five datasets, there are separately
55,165, 74,340, 26,730, 3,815, and 71,568 lncRNA-protein pairs and the predicted top 5
LPIs are ranked as 1, 21, 7, 185, and 346, respectively.
The lncRNA NRON can regulate osteoclastogenesis during orthodontic bone resorp-

tion [58], reduce atrial fibrosis by promoting NFATc3 phosphorylation [59], inhibit breast
cancer development via regulating miR-302b/SRSF2 axis [60]. More importantly, its dys-
regulation in diabetic cardiomyopathy can prevent the injury and inflammation induced
by high glucose cardiomyocyte [61]. Q15717 is a RNA-binding protein. The protein is
involved in the differentiation of embryonic stem cells. It can enhance the stability of the
leptin mRNA [62], regulate the p53/TP53 expression, and mediate the CDKN2A anti-
proliferative activity. In dataset 2, there are 55,165 possible lncRNA-protein pairs. Among
the 55,165 lncRNA-protein pairs, the interaction between NRON and Q15717 is ranked
as 1. Therefore, we infer that NRONmay associate with Q15717 and need further valida-
tion. Although the interaction data has not been confirmed, we hope to further validate
it through biomedical experiments.
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Fig. 5 The predicted top 50 LPIs on dataset 1

Fig. 6 The predicted top 50 LPIs on dataset 2
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Fig. 7 The predicted top 50 LPIs on dataset 3

Discussion and further research
The identification of new LPIs based on computational approaches contributes to under-
standing the biological functions and mechanisms of lncRNAs. However, there are few
LPI data and a vast of unlabeled lncRNA-protein pairs. That is, existing LPI datasets are
severely imbalanced. Therefore, it is a challenging task to build a classification model to
alleviate LPI class imbalanced problem.

Fig. 8 The predicted top 50 LPIs on dataset 4
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Fig. 9 The predicted top 50 LPIs on dataset 5

To address the above problem, in this study, an ensemble model (LPI-EnEDT) with
two types of weak classifiers is designed to classify unknown lncRNA-protein pairs.
First, LPI-EnEDT arranges five LPI datasets. Second, it constructs a feature vector to
characterize lncRNA-protein pairs based on the existing bioinformatics tools and the
dimensional reduction method. Finally, it integrates Extra tree and decision tree classi-
fiers and develops an ensemble framework combining multiple weak classifiers to identify
LPI candidates.
Unlike the other boosting methods, our proposed LPI-EnEDT model alternately uses

two different estimators, extra tree and decision tree. At each odd number of iterations,
the best Extra tree is selected as a weak predictor. At each even number of iterations, the
best decision tree is selected as a weak predictor. The number of two basic classifiers is the
same, and the weight of each weak classifier is determined by its loss value. The parameter
settings in the two classifiers are still the same. By this way, we take advantages of two
basic predictors while avoiding the limitations produced by using a single basic classifier.
LPI-EnEDT is compared to LPI-BLS, LPI-CatBoost, LPI-SKF, and PLIPCOM. It com-

putes the best average AUC and AUPR on five LPI datasets under the three CVs. The
comparative results demonstrate the superior classification performance of the proposed
LPI-EnEDT model. During LPI prediction, network-based methods use the entire LPI
matrix to train a model, while machine learning-based methods only use a fraction of
LPI data to learn a model. The abundance of data may affect the prediction perfor-
mance of models, resulting in that network-based methods obtain better performance
than machine learning-based methods in a few cases. However, network-based methods
have one limitation: they can not find possible LPI for an orphan lncRNA or protein.
Therefore, machine learning-based methods may be more appropriate for LPI prediction.
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In addition, In five LPI datasets, the number of proteins is 59, 84, 27, 35, and 42, respec-
tively. Under CVp, samples are relatively smaller, and thus the performance is generally
low.
The LPI-EnEDT algorithm computes the best LPI prediction ability. The reason may

be that LPI-EnEDT alternately integrates Extra tree and decision tree classifiers instead
of using a simple weak classifier. Both Extra tree and decision tree classifiers have indi-
vidual characteristics and weaknesses. Ensemble learning helps LPI-EnEDT fully utilize
both estimator’s advantages and discard their individual limitations. In the future, we will
exploit better ensemblemodel applied to LPI classification by combining various types of
weak classifiers.
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