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Abstract

Background: Calcific aortic valve stenosis (CAVS) is a fatal disease and there is no
pharmacological treatment to prevent the progression of CAVS. This study aims to
identify genes potentially implicated with CAVS in patients with congenital bicuspid
aortic valve (BAV) and tricuspid aortic valve (TAV) in comparison with patients having
normal valves, using a knowledge-slanted random forest (RF).

Results: This study implemented a knowledge-slanted random forest (RF) using
information extracted from a protein-protein interactions network to rank genes in
order to modify their selection probability to draw the candidate split-variables. A
total of 15,191 genes were assessed in 19 valves with CAVS (BAV, n = 10; TAV, n = 9)
and 8 normal valves. The performance of the model was evaluated using accuracy,
sensitivity, and specificity to discriminate cases with CAVS. A comparison with
conventional RF was also performed. The performance of this proposed approach
reported improved accuracy in comparison with conventional RF to classify cases
separately with BAV and TAV (Slanted RF: 59.3% versus 40.7%). When patients with
BAV and TAV were grouped against patients with normal valves, the addition of prior
biological information was not relevant with an accuracy of 92.6%.

Conclusion: The knowledge-slanted RF approach reflected prior biological
knowledge, leading to better precision in distinguishing between cases with BAV,
TAV, and normal valves. The results of this study suggest that the integration of
biological knowledge can be useful during difficult classification tasks.

Keywords: Machine learning, Calcific aortic valve disease, Random Forest, Prior-
knowledge, Gene-selection

Introduction
Calcific aortic valve stenosis (CAVS) is one of the main causes of morbidity and mortality in

the elderly. In cases with CAVS, a restriction of blood flow occurs attributed to the narrowing

of the aortic valve between the left ventricle and the aorta. The incidence of CAVS is strongly

related to age, ranging from 0.2 to 9.8% between the fifth and eighth decade of life [1].

Although a normal aortic valve has three leaflets, a congenital bicuspid aortic valve (BAV)
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composed of two leaflets is found in approximately 1–2% of the population [2]. Patients with

BAV and tricuspid aortic valve (TAV) are susceptible to develop CAVS and its etiology can

be classified as congenital or degenerative associated with a chronic process by progressive

mineralization. Currently, no conservative treatment is available to prevent the progression of

CAVS and valve replacement is still the only treatment option to treat severe cases [3]. Conse-

quently, the identification of candidate genes that are relevant in the CAVS process is impera-

tive to improve the understanding of the mechanisms behind calcified BAV and TAV and

discover potential medical treatments.

On the other hand, differential gene expression analysis from RNA-sequencing

(RNA-Seq) experiments is the most common statistical analysis to reveal differences in

gene expression levels between samples. Generally, the identification and selection of

differentially expressed genes have been carried out using hypothesis testing through

statistical models based on a Poisson distribution or a Negative Binomial distribution.

This conventional approach performs a univariate statistical test for each gene, which

can lead to the identification of thousands of genes with small effects, and thus, this

approach could become increasingly difficult [4, 5].

In the last few years, machine learning (ML) techniques have been applied to several genetic

problems to analyze the large amount of data allowing the simultaneous manipulation of hun-

dreds to thousands of genes, although their results can be difficult to interpret [6]. Random

forest (RF) algorithm is one of the commonly used tree ensemble methods in genomic high-

dimensional datasets due to its ability to capture non-linear relationships, handle categorical

and continuous variables and allow integration of information from multiple data sources [7].

RF has been successfully implemented in prediction applications using omic variables (e.g,

gene and protein expression, single nucleotide polymorphisms), pathway analysis [8], or

reconstruction of protein-protein interactions [9].

The potential of ML and RF to select important genes related to particular conditions

has been recognized in life science [7, 10], but they are considered as black-box models,

hindering decisions making based on their results. For this reason, the involvement of

prior knowledge encapsulated through networks that describe gene-gene interaction

has been explored, improving the performance of the models [11–14].

Accordingly, the objective of this study was to identify genes potentially implicated with

CAVS in patients with congenital bicuspid aortic valve (BAV) and tricuspid aortic valve

(TAV) in comparison with patients having normal valves. In this article, we implemented a

knowledge-slanted random forest (RF) using information extracted from a protein-protein in-

teractions (PPI) network to rank genes. For this, a random walk with restart (RWR) algorithm

was used to determine the relevance of each gene based on its connection and localization

with respect to other genes. We explored how the use of biological knowledge can improve

RF performance in classification tasks. Furthermore, not many studies have compared the

gene expression profile of BAV and TAV patients in order to identify gene targets differentiat-

ing the development or progression of CAVS with respect to aortic valve configuration.

Methods
Medical dataset used

We analyzed 27 men with a mean age of 62.6 ± 4.7 years. Cases with BAV (n = 10),

TAV (n = 9), and controls without evidence of CAVS with a normal aortic valve
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function (n = 8) were included. Selection criteria consisted of patients with BAV/TAV

who underwent aortic valve replacement with a valve fibro-calcific remodeling score of

3 and without type 2 diabetes, renal insufficiency, or ascending aorta replacement. Pa-

tients with CAVS were matched by age ± 10 years with respect to the controls who

were selected because they underwent orthotopic heart transplantation without CAVS.

All procedures were performed between 2005 and 2011 at the Institut universitaire de

cardiologie et de pneumelogie de Québec. RNA extraction was performed from one

leaflet of normal and CAVS valves. Specified details about clinical and echocardio-

graphic characteristics of patients, tissue description, RNA extraction, and RNA se-

quencing can be consulted in Guauque-Olarte et al. [15]. Finally, this dataset consisted

of expression levels of 15,191 genes from RNA-seq in 27 samples. Expression counts

were normalized using the trimmed mean of M values “TMM”.

PPI network and gene prioritization

Prior knowledge represented through a PPI network is relevant because the genes asso-

ciated with a specific disease share similar functions and tend to be located in neigh-

boring regions on the PPI network, which helps to identify new disease-related genes

and perform the candidate-gene prioritization [16]. In this study, a PPI network was

downloaded from the STRING website (https://string-db.org/), which reports for each

gene-gene interaction a score from 0 to 1 as a measure of confidence that the reported

interaction is true given the available evidence [17]. An undirected weighted graph G =

(V, E) is retrieved, where nodes i, j ∈V correspond to each gene, and edges or connec-

tions (i, j) ∈ E are weighted with a weight matrix W created using the scores from STRI

NG. Finally, the resulting PPI network contained the information of 15,191 nodes

(genes).

For gene prioritization, an RWR algorithm was applied to rank the genes on the PPI

network [18]. RWR simulates a random walker that explores the PPI network from

node i to node j using a transition probability matrix A =D−1W, where D is a diagonal

matrix with elements dij = ∑jwij. In addition, the random walker can move from i node

to a randomly neighbor node or goes back to the initial node with a back-probability

θ ∈ (0, 1). RWR Algorithm can be represented by the following recursive equation:

p tþ1ð Þ ¼ 1−θð ÞATpt þ θp 0ð Þ;

at each step t, the RWR algorithm updates the probability p(t) that the walker is at node

i at step t, until convergence is achieved. Here, p represents the probability of each

node being a candidate-gene. To initialize the RWR algorithm, we chose 955 genes as

seed nodes, which are recognized in the literature as genes differentially expressed be-

tween calcified and normal aortic valves [15, 19]. Consequently, the initial probability

of being at node i was p(0) = 1 for 955 seed nodes (prior known genes), while p(0) = 1e −

05 for the rest of the nodes. The algorithm was repeated until the difference between

p(t + 1) and p(t) was less than 1e − 06. Restart probability equal to θ = 0.3 was used, which

is the recommended value for PPI networks from the STRING database [12, 20].

Knowledge-slanted random forest

Identification of disease-associated genes was viewed as a classification problem. RF

classifier was employed to distinguish gene expression profile of BAV, TAV, and
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controls from 15,191 genes. RF is a classifier composed of a collection of tree-structure

models [21]. The main idea is to sample several data subsets with bootstrap sampling

and build a tree in each subset generated. In the conventional RF, for each node within

each tree, a subset of features is randomly selected with equal probability and then, the

outputs from each model are aggregated by voting from all trees. RF has two parame-

ters: the number of variables available for splitting at each tree node (mtry), and the

number of trees to grow in each RF (ntree). In our knowledge-slanted RF, the selection

probability was modified using the probabilities obtained after executing the RWR algo-

rithm with p(t + 1) that represents the prior knowledge stored in PPI networks. There-

fore, the most informative genes can be selected in the first steps of the algorithm. As

shown in Fig. 1 this modification allowed the involvement of prior knowledge into RF

as an attempt to implement a knowledge-guided supervised learning approach.

We investigated the influence of prior knowledge on the performance of knowledge-

slanted RF, randomly selecting 955 genes as seed nodes in RWR to obtain a new prob-

ability of selection for each gene. As shown in supplementary Fig. S1, the performance

of our approach was similar to that of conventional RF. This confirms that the involve-

ment of prior knowledge including the identification of seed nodes combined with the

PPI network from STRING impacts the performance of the RF algorithm.

Statistical analysis

Continuous variables were summarized with mean ± standard deviation. An RF algo-

rithm using conventional and knowledge-slanted approaches was implemented to dis-

tinguish cases of BAV, TAV, and normal valves according to their genetic profile.

Initially, the levels of gene expression in cases of BAV, TAV, and normal valves were

Fig. 1 Scheme of the Knowledge-slanted random forest for classification tasks. A) The first step is to
construct the modified selection probability using the random walk with restart (RWR) over the protein-
protein interaction network. B) In the second step, a Knowledge-slanted random forest is run using the
modified selection probability for each gene
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visualized using T-distributed stochastic neighbor embedding (t-SNE) [22], which is a

dimensionality reduction technique that projects the existing relationship in the data

from high-dimensional to low-dimensional spaces.

Due to the small sample size (n = 27), we used a leave-one-out cross-validation

(LOOCV) for tuning parameters in all conventional RF and knowledge-slanted RF. A

range of values for mtry and ntree were swept to evaluate the performance of both

methods. The values of ntree were ranged from 10 to 1000 trees and mtry from 10 to

one-third of the number of genes (5064). Comparison between the conventional RF

and knowledge-slanted RF was performed with ntree = 500 and mtry = 500 when groups

were classified into two and three categories. To evaluate the performance several mea-

sures were calculated as follows:

� Accuracy = (TP + TN)/ (TP + FN + TN + FP)

� Sensitivity = (TP)/ (TP + FN)

� Specificity = (TN)/(TN + FP)

True positives (TP) are a correct prediction of BAV/TAV cases, true negatives (TN)

are a correct prediction of normal valves cases, false negatives (FN) are a false predic-

tion of normal valves among BAV/TAV cases and false positives (FP) are a false predic-

tion of BAV/TAV cases among normal valves cases. All implementations were carried

out using the R language and the packages “ranger” [23] and “caret” [24]. Expression

levels were compared between groups by a one-way ANOVA test. A p-value < 0.05 was

considered statistically significant.

Results
Figure 2 shows the t-SNE plot for the 27 samples classifying the groups into tree CAVS

categories (BAV, TAV, and controls). The clustering of sample points evidenced that

cases with BAV and TAV share similar level gene expression profiles, with differences

compared to the controls.

Fig. 2 t-SNE visualization for cases with BAV, TAV, and controls
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Knowledge-slanted RF and RF performance measures were compared with and with-

out distinguishing between BAV and TAV patients versus control patients (Fig. 3). The

performance of knowledge-slanted RF was better than RF when comparing CAVS pa-

tients with BAV or TAV with accuracies of 54.6 ± 6.5 and 43.0% ± 7.1%, respectively.

Figure 3A-B evidenced that using the knowledge from a PPI network, ntree does not in-

fluence the precision of the RF algorithm. While setting the mtry parameter with values

higher than 400 features (genes), knowledge-slanted RF achieved better performance.

When the patients were classified only into two categories (TAV-BAV and controls),

knowledge-slanted RF and RF accuracies achieved a mean performance of 92.6% ± 1.8

and 90.3% ± 5.4%, respectively, without differences between both methods. Knowledge-

slanted RF even showed better performance when low values of mtry = 10 and

ntree = 10 were used with or without discriminating between BAV and TAV

patients (Fig. 3C-D).

After performing LOOCV, the optimal parameters of knowledge-slanted RF and RF

were set in mtry = 500 and ntree = 500. As shown in Table 1, the sensitivity of BAV and

TAV cases increased after the inclusion of the information from the PPI network with

better overall accuracy and area under the curve. The sensitivity of TAV was lower

than that of BAV, conventional RF did not distinguish any TAV cases among all

samples and the performance was similar between two-class slanted-RF and RF.

To connect the observed performance by knowledge-slanted RF, we calculated the

number of times each gene was selected in the 500 trees and compared the normalized

counts (log2) in TAV, BAV, and control groups in order to identify the genes associ-

ated with CAVS (Fig. 4). Differences in gene expression profiles according to the type

Fig. 3 Accuracy performance of knowledge-slanted RF versus conventional RF. A-B). Performance for each
ntree and mtry for the identification of genes associated with BAV, TAV, and controls (Three categories). C-
D). Performance for each ntree and mtry for the identification of genes associated with BAV or TAV and
controls (Two categories)
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of CAVS and patients with normal valves were found (Fig. 4). For example, elevated

ATP6V0D2, SPP1, MMP13, KRT14, ISBP, CHRDL2, GREM1, and CD79A were found

in CAVS patients compared to controls (p < 0.001), while the expression of MUM1L1,

PNMT, and CBLN1 was lower in the controls. Among 20 of the top genes identified

with knowledge-slanted RF, the expression levels of IGF1 and RSPO2 were higher in

the BAV group than in the TAV group (p < 0.001). We also found that cases with TAV

reported higher expression levels of HLA.DPB2 than the other groups (BAV and con-

trols). The levels of HBA1, HBA2, GPHA2, and FKBP9P1 were similar between cases

with CAVS and normal valves (p > 0.05).

Discussion
In this study, we have introduced the knowledge-slanted RF for classification tasks

which integrate the accumulated knowledge in PPI networks into the RF model. Our

findings suggest that the knowledge-slanted RF approach reflects prior biological know-

ledge, leading to improved precision in distinguishing between cases with BAV, TAV,

and normal valves. Although cases with BAV and TAV had a similar pattern of gene

expression, it is not recommended to combine both groups during any statistical ana-

lysis because patients with BAV and TAV have both clinical and imaging differences.

For example, Sia et al. showed that patients with TAV compared to BAV have more

cardiovascular risk factors, less severe disease, and increased risk of mortality [25].

Table 1 Performance measures for knowledge-slanted RF and RF algorithms using the optimal
model parameters

Three Categories Two Categories

CAVS Slanted-RF RF Slanted-RF RF

Sensitivity BAV 50.00% 50.00% 100% 100%

TAV 33.33% 0.00%

Specificity BAV 64.70% 47.06% 75.00% 75.00%

TAV 72.22% 66.67%

Accuracy ALL 59.26% 40.74% 92.59% 92.59%

AUC BAV 0.671 0.589 1.000 1.000

TAV 0.623 0.451

CAVS: Calcific aortic valve stenosis; BAV: Bicuspid aortic valve, TAV: Tricuspid aortic valve; RF: Random forest; AUC: Area
under the curve

Fig. 4 A) Frequency of the 20 top genes selected in 500 trees using knowledge-slanted RF. B) Normalized
Counts comparison (log2) of the 20 top selected genes using knowledge-slanted RF comparing BAV, TAV,
and controls patients
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Interestingly, the main gene used to classify the cases in knowledge-slanted RF was

ATP6V0D2, which was not reported by Guauque-Olarte et al. [15]. However, Padang et al.

[19] had identified that the expression of ATP6V0D2 was different between cases of BAV with

minimal calcification and normal valves, concluding that this gene could be associated with

CAVS development in BAV patients. In our samples, no evidence of differences were found

in the level expression of HBA1, HBA2, GPHA2, and FKBP9P1. However, these genes have

been recognized as related genes with CAVS in the literature [19, 26].

In this study, a PPI network was downloaded for the entire gene set (15,191) from

STRING and therefore an exhaustive search was carried out requiring a high computa-

tional cost due to the large number of genes. The integration of gene interaction data

could offer a better prediction performance, specifically when class overlap exists (e.g.,

TAV vs BAV). In scenarios with easily separable classes (e.g., TAV/BAV vs Control),

we believe that the use of prior knowledge would not be useful to achieve better per-

formance because the algorithm can learn directly from the data. For example, in the

CAVS dataset among the top-20 most frequent genes, a greater number of shared

genes was identified between knowledge-slanted RF and conventional RF when the

groups were classified into two categories with 14 shared genes compared to 9 in the

multiclass classification (Supplementary Table S1 and S2).

Both knowledge-slanted RF and conventional RF identified associated genes previ-

ously recognized in the literature among the top 20 list. However, genes obtained from

knowledge-slanted RF ranked better in RWR based on PPI information with a median

position of 357.5 compared to 564.5 from conventional RF. This indicates that

knowledge-slanted RF could be more easily interpreted by users because the prediction

can be attributed mainly to associated genes that could participate in important mo-

lecular mechanisms. Additionally, unlike the conventional RF, the knowledge-slanted

RF reported three genes (IGF1, HLA-DPB2, RSPO2), with a trend towards differential

expression levels between BAV and TAV cases (Supplementary Table S3 and S4).

To the best of our knowledge, a couple of approaches that involve prior biological know-

ledge have been described with respect to the RF algorithm. First, Oskooei et al. [12] consid-

ered a Network-based Biased Tree Ensembles (NetBiTE) algorithm for drug sensitivity

biomarker identification that involves prior knowledge through a probabilistic bias weight dis-

tribution constructed with the information from a biological network using RWR, modifying

the probability of selection for each featu1re for splitting a node in RF regression, not for clas-

sification tasks. Second, Guan et al. [14] proposed a knowledge-based guided regularized RF

(Know-GRRF) that performs a regularized RF using a penalty coefficient for each feature, a

score calculated with prior-knowledge obtained from different domains (e.g: published litera-

ture) deriving a composite score between 0 and 1 (higher biological relevance). However, the

composite score used in the application of Know-GRRF was not computed using the informa-

tion accumulated in biological networks, which could be considered a limitation.

In contrast to Know-GRRF [14] an advantage of our approach, knowledge-slanted

RF, is that it allows the simultaneous analysis of a huge number of features avoiding

the implementation of pre-filtering methods for gene prioritization before running

knowledge-slanted RF. Similar to Oskooei et al. [12], we show that the RF algorithm

when prior knowledge is incorporated to modify the feature selection probability dur-

ing the construction of tree ensembles outperforms the conventional RF which uses an

equal selection probability for each feature.
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Among ensemble ML algorithms, RF represents a flexible non-parametric approach with

several properties such as invariant to monotonic transformation, robustness to outliers, sta-

bility in the presence of correlated variables, or interaction among features [7, 10]. Despite

these advantages, in a high-dimensional setting “large P-variables small N-sample size”, RF

may provide poor accuracy, especially if complex variable interactions (e.g., gene-gene) exist.

Data-driven variable selection methods for classification models based on decision trees have

been proposed to minimize the number of input variables (e.g., number of genes) in order to

determine the most important predictors and at the same time, achieve more efficient models

[27, 28]. However, these approaches do not combine biological prior knowledge with statis-

tical analysis, so the information deposited in biological databases is not used for the

prioritization of genes within the models.

Given high-dimensional datasets (p> > n) generated in the biological and medical

fields, the curse of dimensionality is an inherent problem in analyzing these data, lead-

ing to two main effects called data sparsity and distance concentration. Both effects

make it more demanding to find similarities and patterns between samples. Although

ML techniques have shown better performance in classification tasks on high-

dimensional data compared to conventional statistical models [7], ML methods also

benefit from feature selection methods to mitigate the curse of dimensionality [29, 30],

as we described in this study using a feature ranking strategy.

Despite the encouraging results, this study has some limitations. First, the perform-

ance of knowledge-slanted RF could be considered limited. However, the improvement

achieved by our approach serves as the basis for complementing the knowledge about

CAVS based on valve configuration. Additionally, the number of studies that simultan-

eously compare cases with BAV and CAV is very small. Second, we do not assess the

performance of other ML algorithms. Nevertheless, we evaluated how the use of bio-

logical knowledge can improve RF performance in a difficult classification task and a

high-dimensional dataset. Third, knowledge-slanted RF was not applied in other data-

sets and therefore, it cannot be considered as a generalizable approach. However, ac-

cording to the results found in CAVS dataset, knowledge-slanted RF achieves favorable

performance when overlapping classes exist in high dimensional datasets (p> > n) and

relevant prior biological knowledge about the condition is available.

Future efforts could be focused on evaluating how to involve prior biological know-

ledge in ML techniques and statistical models and determining whether or not the use

of prior knowledge helps to achieve greater model transparency and ease of interpret-

ation using real and simulated datasets.

Conclusion
In conclusion, the knowledge-slanted RF can outperform RF, especially, when two or

more categories share similar characteristics (e.g., gene expression) and discrimination

between them could be difficult. In this study, we develop a machine learning guided

approach via RF modifying the probability of feature selection according to prior know-

ledge built with the weights over a protein-protein interaction network. The perform-

ance of this proposed approach (knowledge-slanted RF) reported better accuracy in

comparison with conventional RF to classify cases with BAV and TAV.
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