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Abstract

Background: Drug-drug interactions (DDIs) are a major contributing factor for
unexpected adverse drug events (ADEs). However, few of knowledge resources cover
the severity information of ADEs that is critical for prioritizing the medical need. The
objective of the study is to develop and evaluate a Semantic Web-based approach
for mining severe DDI-induced ADEs.

Methods: We utilized a normalized FDA Adverse Event Report System (AERS) dataset
and performed a case study of three frequently prescribed cardiovascular drugs:
Warfarin, Clopidogrel and Simvastatin. We extracted putative DDI-ADE pairs and their
associated outcome codes. We developed a pipeline to filter the associations using
ADE datasets from SIDER and PharmGKB. We also performed a signal enrichment using
electronic medical records (EMR) data. We leveraged the Common Terminology Criteria
for Adverse Event (CTCAE) grading system and classified the DDI-induced ADEs into the
CTCAE in the Web Ontology Language (OWL).

Results: We identified 601 DDI-ADE pairs for the three drugs using the filtering pipeline,
of which 61 pairs are in Grade 5, 56 pairs in Grade 4 and 484 pairs in Grade 3. Among
601 pairs, the signals of 59 DDI-ADE pairs were identified from the EMR data.

Conclusions: The approach developed could be generalized to detect the signals of
putative severe ADEs induced by DDIs in other drug domains and would be useful for
supporting translational and pharmacovigilance study of severe ADEs.

Keywords: Drug-drug Interaction, Adverse drug event, Data mining, Semantic web
technology, Electronic medical records
Introduction
Drug-drug interactions (DDIs) are a major contributing factor for unexpected adverse

drug events (ADEs) [1]. A semantically coded knowledge base of DDI-induced ADEs

with severity information is critical for clinical decision support systems and transla-

tional research applications. In particular, there is emerging interest in investigating

genetic susceptibility of DDI-induced ADEs and developing genetic tests to identify all

those at risk of ADEs prior to prescribing potentially dangerous medication [2,3], in

which the severity information is essential for prioritizing the medical need to evaluate

the potential impact of pharmacogenomics information in reducing ADEs [4]. How-

ever, few of knowledge resources cover severity information of ADEs.
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While recognizing, explaining and ultimately predicting DDIs constitute a huge

challenge for medicine and public health, informatics-based approaches are increasingly

used in dealing with the challenge [5]. Semantic Web technologies provide a scalable

framework for data standardization and data integration from heterogeneous resources.

For instance, Samwald et al. [6] developed a Semantic Web-based knowledge base for

query answering and decision support in clinical pharmacogenetics, in which three

dataset components are integrated. In our previous and ongoing study, we developed a

standardized knowledge base of ADEs known as ADEpedia (http://adepedia.org) lever-

aging Semantic Web technologies [7]. The ADEpedia is intended to integrate existing

known ADE knowledge for drug safety surveillance from disparate resources such as

Food and Drug Administration (FDA) Structured Product Labeling (SPL) [7], FDA

Adverse Event Reporting System (AERS) [8], and the Unified Medical Language System

(UMLS) [9].

The objective of the study is to develop and evaluate a Semantic Web-based ap-

proach for mining severe DDI-induced ADEs. We utilized a normalized FDA AERS

dataset and performed a case study of three frequently prescribed cardiovascular drugs:

Warfarin, Clopidogrel and Simvastatin. We extracted putative DDI-ADE pairs and their

associated outcome codes. We developed a pipeline to filter the associations using ADE

datasets from SIDER and PharmGKB. We also performed a signal enrichment using

electronic medical records (EMR) data. We leveraged the Common Terminology

Criteria for Adverse Event (CTCAE) grading system and classified the DDI-induced

ADEs into the CTCAE in the Web Ontology Language (OWL).

Background
FDA Adverse Event Reporting System (AERS)

FDA AERS is a database that provides information on adverse event and medication error

reports submitted to FDA [10]. By the definition of FDA, the “serious” means that one or

more of the following outcomes were documented in the report: death (DE),

hospitalization (HO), life threatening (LT), disability (DS), congenital anomaly (CA) and/

or other (OT) serious outcome. In our previous study, we produced a normalized AERS

dataset known as AERS-DM [11]. The dataset contains 4,639,613 unique putative Drug-

ADE pairs in which the drugs are represented by RxNorm [12] codes and the putative

ADEs are represented by MedDRA [13] codes. The data set also contains the unique ID

number (known as ISR) for each corresponding AERS report, which is a primary link field

between the AERS data file. We used the ISR field to identify the outcome codes of each

AERS report. Table 1 shows the outcome code definitions in AERS database.
Table 1 Outcome code definitions in AERS database

Outcome code Definition

DE Death

LT Life-Threatening

HO Hospitalization - Initial or Prolonged

DS Disability

CA Congenital Anomaly

RI Required Intervention to Prevent Permanent Impairment/Damage

OT Other

http://adepedia.org
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Common Terminology Criteria for Adverse Event (CTCAE)

CTCAE is a widely accepted, standard grading scale for adverse events throughout the

oncology research community [14]. The current released version is CTCAE 4.0. This

version contains 764 AE terms and 26 “Other, specify” options for reporting text terms

not listed in CTCAE. Each AE term is associated with a 5-point severity scale. The AE

terms are grouped by MedDRA Primary SOC classes. In the CTCAE, “Grade” refers to

the severity of the adverse event (AE). The CTCAE displays Grades 1 through 5 with

unique clinical descriptions of severity for each AE based on a general guideline. Table 2

shows the grade definitions in the CTCAE grading system.

ADE datasets

SIDER (SIDe Effect Resource) is a public, computer-readable side effect resource that

contains information on marketed medicines and their recorded adverse drug reactions

[15]. The information is extracted from public documents and package inserts, in par-

ticular, from the US FDA Structured Product Labels (SPLs). The current version was

released on October 17, 2012.

PharmGKB DDI-ADE Dataset is a database of DDI side effects based on FDA AERS

reporting data [16], in which the confounding factors for prediction of the side effects

are corrected through leveraging covariates in observational clinical data [17].

Semantic Web technologies

The World Wide Web consortium (W3C) is the main standards body for the World

Wide Web [18]. The goal of the W3C is to develop interoperable technologies and tools

as well as specifications and guidelines to lead the web to its full potential. The resource

description framework (RDF), web ontology language (OWL), and SPARQL (a recursive

acronym for SPARQL Protocol and RDF Query Language) specifications have all

achieved the level of W3C recommendations, and are becoming generally accepted and

widely used. RDF is a model of directed, labeled graphs that use a set of triples. Each triple

is modeled in the form of subject, predicate and object. SPARQL is a standard query lan-

guage for RDF graphs. OWL is a standard ontology language used for ontology modeling.

Methods
We utilized a normalized AERS dataset known as AERS-DM that was produced in a

previous study [11]. The dataset contains 4,639,613 unique putative Drug-ADE pairs in
Table 2 Grade definitions in the CTCAE grading system

Grade Definition

Grade 1 Mild; asymptomatic or mild symptoms; clinical or diagnostic observations only; intervention
not indicated.

Grade 2 Moderate; minimal, local or noninvasive intervention indicated; limiting age-appropriate
instrumental ADL*.

Grade 3 Severe or medically significant but not immediately life-threatening; hospitalization or
prolongation of hospitalization indicated; disabling; limiting self care ADL**.

Grade 4 Life-threatening consequences; urgent intervention indicated.

Grade 5 Death related to AE.

Note: Activities of Daily Living (ADL); *Instrumental ADL refer to preparing meals, shopping for groceries or clothes, using
the telephone, managing money, etc.; **Self care ADL refer to bathing, dressing and undressing, feeding self, using the
toilet, taking medications, and not bedridden.
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which the drugs are represented by RxNorm codes and the putative ADEs are repre-

sented by MedDRA codes. The AERS-DM dataset is organized in two database files in

the Tab Separated Values (TSV) format and accessible at: http://informatics.mayo.edu/

adepedia/index.php/Download.

Figure 1 shows the system architecture of our approach. We first extracted a subset

of putative DDI-ADE pairs (in which only two drugs are listed on a report) with their

associated outcome codes from original AERS-DM dataset.

Second, we developed a filtering pipeline that comprises three datasets. The first

dataset is a subset of original AERS-DM in which only one drug is listed on a report.

This dataset was used to build a knowledge base of severe ADEs in a previous study.

The second dataset is the SIDER 2 dataset. Table 3 shows a list of drug-ADE pair ex-

amples from the dataset, in which drug names are coded in STICH ID (http://stitch.

embl.de) and ADE names are coded in MedDRA. We excluded the putative DDI-ADE

pairs based on the Drug-ADE pairs of the two datasets. The filtering would ensure that

the reported ADEs could not be explained by a single drug effect. The third dataset is a

PharmGKB dataset that is used as “silver” standard. Table 4 shows a list of DDI-ADE

examples from the dataset, in which drug names are coded in STICH ID and ADE

names are coded in UMLS Concept Unique Identifiers (CUIs).

Third, we converted all the datasets used in this study into the Semantic Web RDF

format and loaded them into an open source RDF store known as 4store [19]. We

established a SPARQL endpoint that provides standard query services against the RDF

store. And then we developed the extraction and filtering algorithms using Java-based

Jena ARQ APIs [20].

Third, to enrich the signals of the DDI-induced ADEs, we used the NLP-processed

EMR data of a cohort of 138 k patients with health home care provided by Mayo Clinic
Figure 1 System architecture.

http://informatics.mayo.edu/adepedia/index.php/Download
http://informatics.mayo.edu/adepedia/index.php/Download
http://stitch.embl.de
http://stitch.embl.de


Table 3 A list of Drug-ADE examples from SIDER dataset, in which drug names are coded in STICH ID and ADE names are coded in MedDRA

stitch_id1 stitch_id2 UMLS_con cept_id Drug_name side_effect_name MedDRA_conscept_type UMLS_concept_id MEDDRA_side_effect_name

−100003914 −39468 C0038454 Levobunolol cerebrovascular accident LLT C0038454 Cerebrovascular accident

−100003914 −39468 C0038454 Levobunolol cerebrovascular accident PT C0038454 Cerebrovascular accident

−100003914 −39468 C0015230 Levobunolol rash LLT C0038454 Rash

−100003914 −39468 C0015230 Levobunolol rash PT C0015230 Rash

−100003914 −39468 C0015230 Levobunolol rash PT C0015230 Dermatitis

−100003914 −39468 C0033377 Levobunolol ptosis LLT C0011603 Ptosis

−100003914 −39468 C0033377 Levobunolol ptosis PT C0033377 Eyelid ptosis

−100003914 −39468 C0033377 Levobunolol ptosis PT C0005745 Uterovaginal prolapse

−100003914 −39468 C0030554 Levobunolol paresthesia LLT C0156353 Paraesthesia

−100003914 −39468 C0030554 Levobunolol paresthesia PT C0030554 Paraesthesia

−100003914 −39468 C0006266 Levobunolol bronchospas LLT C0006266 Bronhospasm

−100003914 −39468 C0006266 Levobunolol bronchospas PT C0006266 Bronhospasm

−100003914 −39468 C1145670 Levobunolol respiratory failure LLT C1145670 Respiratory failure

−100003914 −39468 C1145670 Levobunolol respiratory failure PT C1145670 Respiratory failure

−100003914 −39468 C0027424 Levobunolol nasal congestion LLT C0027424 Nasal congestion

−100003914 −39468 C0027424 Levobunolol nasal congestion PT C0027424 Nasal congestion

−100003914 −39468 C0023380 Levobunolol lethargy LLT C0023380 Lethargy

−100003914 −39468 C0023380 Levobunolol lethargy PT C0023380 Lethargy

−100003914 −39468 C0947912 Levobunolol myasthenia LLT C0947912 Mysathenia

−100003914 −39468 C0947912 Levobunolol myasthenia PT C0151786 Muscular weakness

Jiang
et

al.BioD
ata

M
ining

 (2015) 8:12 
Page

5
of

12



Table 4 A list of DDI-ADE examples from PharmGKB dataset, in which drug names are
coded in STICH ID and ADE names are coded in UMLS CUI

stitch_id1 stitch_id2 drug1 drug2 event_umls_id event_name

CID000000085 CID000000206 carnitine galatose C0004623 Bacterial infection

CID000000085 CID000000206 carnitine galatose C0015967 body temperature increased

CID000000085 CID000000206 carnitine galatose C0018932 haematochezia

CID000000085 CID000000206 carnitine galatose C0020433 Bilirubinaemia

CID000000085 CID000000206 carnitine galatose C0022346 icterus

CID000000085 CID000000206 carnitine galatose C0026946 fungal disease

CID000000085 CID000000206 carnitine galatose C0030305 panreatitis

CID000000085 CID000000206 carnitine galatose C0040034 thrombpcytopenia

CID000000085 CID000000206 carnitine galatose C0085605 Hepatic failure

CID000000085 CID000000206 carnitine galatose C0151766 Abnormal LFTs

CID000000085 CID000000206 carnitine galatose C0243026 sepsis

CID000000085 CID000000271 carnitine galatose C0002792 anaphylactic reaction

CID000000085 CID000000271 carnitine galatose C0002871 anaemia

CID000000085 CID000000271 carnitine galatose C0002962 angina

CID000000085 CID000000271 carnitine galatose C0004238 AFIB

CID000000085 CID000000271 carnitine galatose C0010054 arteriosclerotic disease

CID000000085 CID000000271 carnitine galatose C0010200 Cough

CID000000085 CID000000271 carnitine galatose C0012833 dizziness

CID000000085 CID000000271 carnitine galatose C0013404 Difficulty breathing

CID000000085 CID000000271 carnitine galatose C0015802 femur fracture
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Rochester where medications and problems have been extracted and normalized

to RxNorm codes and the UMLS concepts from the current medication and

problem list sections of clinical notes using MedXN and MedTagger (http://

www.ohnlp.org/). For each DDI-induced ADE triples (D1, D2, P), we obtained

the number of patients who are administrated with any of the two drugs or

both (i.e., N(D1), N(D2), and N(D1,D2)) and the number of patients with puta-

tive ADEs (i.e., N(D1,P), N(D2,P), and N(D1,D2,P) after taking the drugs. An

occurrence of problem P is considered as putative ADE if it happens within

36 days of drug administration [17] and there is no occurrence of P in the

EMR before the drug administration. We then developed the following metric to

measure the signal enrichment of DDI-induced ADE:

Score D1;D2; Pð Þ ¼ log2
N D1;D2; Pð Þ
N D1;D2ð Þ

� �
max

N D1; Pð Þ
N D1ð Þ ;

N D2; Pð Þ
N D2ð Þ

� �
:

Finally, we developed the mappings between AERS outcome codes and CTCAE
grades and classified the filtered DDI-ADEs into the CTCAE. We asserted that DE in

AERS corresponds to Grade 5 in CTCAE; LT corresponds to Grade 4; the rest of out-

come codes (HO, DS, CA, RI and OT) correspond to Grade 3. In this study, we utilized

the CTCAE version 4.0 [14] rendered in OWL format. Figure 2 shows a screenshot of a

Protégé4 environment displaying the categories and severity grades in CTCAE

classification.

http://www.ohnlp.org/
http://www.ohnlp.org/


Figure 2 The categories and severity grades of CTCAE classification in a Protégé 4 environment.
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Results
We were able to extract a set of putative DDI-ADE pairs and their associated out-

come codes for the three target drugs: Warfarin, Clopidogrel and Simvastatin from

normalized AERS-DM dataset. We then filtered the putative DDI-ADE pairs using

the filtering pipeline based on three datasets. Table 5 shows the number of filtered

DDI-ADE pairs for each target drug. In total, 601 pairs were filtered. Of them, 61

pairs are classified in Grade 5, 56 pairs in Grade 4 and 484 pairs in Grade 3.

Table 6 shows a list of filtered DDI-ADE pair examples for the drug “Simvastatin”,

in which, drugs are coded in RxNorm RxCUIs and ADEs are coded in MedDRA

codes.

For the signal enrichment using the EMR data, we found that, there are 89 drug pairs

prescribed concomitantly in 9.5 k patients, accounting for 6.9% of all patients in the

EMR dataset we used. Out of 601 putative DDI-ADE pairs, the signals of 59 (D1, D2,

P) pairs were identified. Table 7 shows the detailed statistics of those pairs occurred in

no less than five patients.

For integrating the filtered DDI-ADE pairs with the CTCAE, we produced an OWL

rendering for each pair, asserting the filtered DDI-ADEs under AE terms in CTCAE

(see Figure 3 for an example).
Table 5 The number of filtered DDI-ADE pairs for three drugs

Drug Number of DDI-ADE Pairs

Grade 5 Grade 4 Grade 3

Warfarin 32 11 157

Clopidogrel 17 29 166

Simvastatin 12 16 161

Total 61 56 484



Table 6 A list of filtered DDI-ADE pairs for the drug “Simvastatin” classified by CTCAE grades

CTCAE grade AERS outome code Drug code by RxCUI Drug name Drug code by RxCUI Drug name ADE code by MedDRA ADE name

Grede 5 DE 36567 Simvastatin 1191 Aspirin 10002906 Aortic stenosis

Grede 5 DE 253198 Risiglitazone maleate 36567 Simvastatin 10006580 Bundle branch block left

Grede 5 DE 36567 Simvastatin 203160 Losartan Potassium 10007515 Cardiac arrest

Grede 5 DE 36567 Simvastatin 1191 Aspirin 10010071 Coma

Grede 5 DE 253198 Risiglitazone maleate 36567 Simvastatin 10012689 Diabetic retinoathy

Grede 4 LT 36567 Simvastatin 203029 Tegretol 10002948 Aphasia

Grede 4 LT 36567 Simvastatin 203029 Tegretol 10003119 Arrhythmia

Grede 4 LT 253198 Amiodarone hydrochloride 316675 Simvastatin 80 MG 10006002 Bone pain

Grede 4 LT 36567 Simvastatin 225807 exelon 10007515 Cardiac arrest

Grede 4 LT 36567 Simvastatin 203029 Tegretol 10012455 Dematitis exfoliative

Grede 3 DS 36567 Simvastatin 1191 Aspirin 10012455 Dematitis exfoliative

Grede 3 DS 36567 Simvastatin 190465 Viagra 10018429 Glucose tolerance impaired

Grede 3 DS 36567 Simvastatin 83367 Atorvastatin 10020765 Hypersomia

Grede 3 DS 36567 Simvastatin 35296 Ramipril 10050295 Intervertebral disc protrusion

Grede 3 DS 253198 Gemfibrozil 600 MG 316675 Simvastatin 80 MG 10000486 Acidosis

Jiang
et

al.BioD
ata

M
ining

 (2015) 8:12 
Page

8
of

12



Table 7 A list of putative DDI-ADE pairs signaled in the EMR data

D1 (RxCUI) D2(RxCUI) P (MedDRA) ADE Name N(D1) N(D2) N(D1,D2) N(D1,P) N(D2,P N(D1,D2,P) Score(DI,D2,P)

Aspirin (1191) Simvastatin (36567) 10002906 Aortic stenosis 38149 7494 2926 104 34 15 4.991

Zocor (196503) Simvastatin (36567) 10038428 Renal disorder 10894 7494 1472 40 56 7 4.550

Simvastatin (36567) atorvastatin (83367) 10028417 Myasthenia gravis 7494 2841 828 42 10 5 4.409

Warfarin (11289) Digoxin (3407) 10013887 Dysathria 6330 1927 641 43 7 6 4.36

Aspirin (1191) Simvastatin (36567) 10015090 Epistaxis 38149 7494 2926 126 28 9 4.257

gabapentin (25480) Simvastatin (36567) 10019245 Hearing impsored 4683 7494 280 35 70 5 3.935

Plavix (174742) Simvastatin (36567) 10017955 Gastrointestinal heamorrhage 4769 7494 642 54 42 9 3.88

Aspirin (1191) clopidogrel (32968) 10037423 Pulmunary oedema 38149 1436 1291 142 8 8 3.338

Aspirin (1191) clopidogrel (32968) 10005191 Blister Dyspnoea exertion 38149 1436 1291 135 9 7 3.048

Amlodipine (17767) Simvastatin (36567) 10013971 Dyspnoea exertional 2786 7494 561 62 89 11 2995

Aspirin (1191) Simvastatin (36567) 10047924 Wheezing 38149 7494 2926 354 73 27 2.969

Lantus (261551) Simvastatin (36567) 10012680 Diabetic neuropathy 1883 7494 329 39 20 5 2.63

Aspirin (1191) clopidogrel (32968) 10038428 Renal disorder 38149 1436 1291 175 9 6 2.452

Lantus (261551) clopidogrel (32968) 10040882 Skin lesion 38149 1436 1291 269 21 16 2.024

Aspirin (1191) clopidogrel (32968) 10046555 Urinary retention 38149 1436 1291 292 16 11 1.757

Aspirin (1191) clopidogrel (32968) 10061623 Adverse drug reaction 38149 1436 1291 368 20 15 1.549

Simvastatin (36567) Norvasc (58927) 10017076 fracture 7494 3416 318 139 59 6 1.219

D1 - drug1, D2 - drug 2, P - problem, N – number, and Score – enrichment score.
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Figure 3 The OWL representation of an example DDI-ADE.
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Discussion
In a previous study, we used a similar Semantic Web-based approach to build a know-

ledge base of severe ADEs using the FDA AERS reporting data [8]. In this study, we fo-

cused on mining the DDI-induced ADEs and their severity information, and configured

the filtering pipeline differently using a collection of ADE datasets. The standardization

of ADE datasets is essential for enabling interoperability and comparability among het-

erogeneous data sources. We used a normalized AERS dataset, in which the drug

names are normalized using standard drug ontologies RxNorm and NDF-RT and the

ADEs are normalized using MedDRA, whereas the datasets from SIDER and

PharmGKB used STITCH compound IDs to code drug names and used UMLS CUIs to

code ADEs. Apparently, the solid mappings between RxNorm codes and STITCH IDs

would be required in future, which will be part of our research efforts in constructing a

standardized drug and pharmacological class network [21].

We also tested the signals of putative DDI-ADE pairs filtered by the pipeline using a

large EMR data. We were able to detect some strong signals indicated by the enrich-

ment score as illustrated in Table 7. This would potentially provide a very useful tool

for the knowledge-driven detection of the DDI-induced ADEs from the EMR, though a

rigorous patient chart review with a panel of clinicians would be needed in future to

verify the signals to establish the causality of the drug-drug interaction.

For measuring the severity of ADEs, we used the CTCAE severity grading system.

We found that the AERS outcome codes used to record serious patient outcomes in

the AERS reporting data correspond well to the CTCAE Grades 3 to 5. Semantic Web

OWL rendering of the DDI-ADE dataset provides seamless integration with the

CTCAE itself, enabling a standard infrastructure for automatic classification of ADEs

based on the severity conditions specified in the CTCAE.

There are several limitations in this study. First, we used the logic that a putative

DDI-ADE combination is extracted if there exists an AERS report involving two drugs

and the ADE. We understand that the AERS reports themselves do not make it easy to

report concomitant drugs and these are known to be under-reported. This means the

putative DDI-ADE pairs extracted in this study only reflect a portion of all DDI interac-

tions and should not be considered as a comprehensive list. Second, the PharmGKB
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“silver standard” itself contains signals that have not been validated for causality. This

is part of the reasons why we introduce the EMR-based signal enrichment metric in

this study. Third, some signals identified from EMR data may not be valid and further

rigorous validation approach will be needed in future to filter them out.

Conclusions
In summary, we developed a Semantic Web-based approach to mine severe DDI-

induced ADEs. The dataset produced in this study will be publicly available from our

ADEpedia website (http://adepedia.org). The approach developed could be generalized

to detect the signals from EMR for putative severe ADEs induced by DDIs in other

drug domains and would be useful for supporting translational and pharmacovigilance

study of severe ADEs.

Consent
Informed consent of the use of EMRs for general research was provided by each subject

with charts being included in the study. The study was approved by the Institutional

Review Committee of the Mayo Clinic as Exempt (Mayo IRB Number: 12-009059).

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All co-authors are justifiably credited with authorship, according to the authorship criteria. Final approval is given by each
co-author. In details: GJ – conception, design, development, analysis of data, interpretation of results, and drafting of the
manuscript; HL – analysis of EMR data, interpretation of results and critical revision of the manuscript; HRS – conception
and critical revision of the manuscript; CGC – institutional support and critical revision of the manuscript. All authors read
and approved the final manuscript.

Acknowledgements
The study is supported in part by the SHARP Area 4: Secondary Use of EHR Data (90TR000201).

Received: 1 August 2014 Accepted: 26 February 2015

References

1. Becker ML, Kallewaard M, Caspers PW, Visser LE, Leufkens HG, Stricker BH. Hospitalisations and emergency

department visits due to drug-drug interactions: a literature review. Pharmacoepidemiol Drug Saf. 2007;16(6):641–
51.

2. Daly AK. Pharmacogenomics of adverse drug reactions. Genome med. 2013;5(1):5.
3. Wang L, McLeod HL, Weinshilboum RM. Genomics and drug response. N Engl J Med. 2011;364(12):1144–53.
4. Phillips KA, Veenstra DL, Oren E, Lee JK, Sadee W. Potential role of pharmacogenomics in reducing adverse drug

reactions: a systematic review. JAMA. 2001;286(18):2270–9.
5. Percha B, Altman RB. Informatics confronts drug-drug interactions. Trends Pharmacol Sci. 2013;34(3):178–84.
6. Samwald M, Freimuth R, Luciano JS, Lin S, Powers RL, Marshall MS, et al. An RDF/OWL Knowledge Base for Query

Answering and Decision Support in Clinical Pharmacogenetics. Stud Health Technol Inform. 2013;192:539–42.
7. Jiang G, Solbrig HR, Chute CG, ADEpedia. A scalable and standardized knowledge base of adverse drug events

using Semantic Web technology. AMIA Annu Symp Proc. 2011;2011:607–16.
8. Jiang G, Wang L, Liu H, Solbrig HR, Chute CG. Building a knowledge base of severe adverse drug events based on

AERS reporting data using Semantic Web technologies. Stud Health Technol Inform. 2013;192:496–500.
9. Jiang G, Liu HF, Solbrig HR, Chute CG. ADEpedia 2.0: Integration of Normalized Adverse Drug Events (ADEs)

Knowledge from the UMLS. AMIA Jt Summits Transl Sci Proc. 2013 Mar 18;2013:100-4.
10. The FDA AERS. [cited June 4, 2013]; Available from: http://www.fda.gov/Drugs/

GuidanceComplianceRegulatoryInformation/Surveillance/AdverseDrugEffects/default.htm.
11. Wang L, Jiang G, Li D, Liu H. Standardizing adverse drug event reporting data. J Biomed Semantics. 2014 Aug

12;5:36. doi: 10.1186/2041-1480-5-36.
12. Nelson SJ, Zeng K, Kilbourne J, Powell T, Moore R, Normalized names for clinical drugs. RxNorm at 6 years. JAMIA.

2011;18(4):441–8.
13. The MedDRA. [cited November 16, 2012]; Available from: http://www.meddramsso.com/.
14. The CTCAE v4.0. [cited June 1, 2013]; Available from: http://evs.nci.nih.gov/ftp1/CTCAE/About.html.
15. Kuhn M, Campillos M, Letunic I, Jensen LJ, Bork P. A side effect resource to capture phenotypic effects of drugs.

Mol Syst Biol. 2010;6:343.
16. PharmGKB Dataset. [cited April 8, 2013]; Available from: http://www.pharmgkb.org/downloads.jsp.

http://adepedia.org
http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Surveillance/AdverseDrugEffects/default.htm
http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Surveillance/AdverseDrugEffects/default.htm
http://www.meddramsso.com/
http://evs.nci.nih.gov/ftp1/CTCAE/About.html
http://www.pharmgkb.org/downloads.jsp


Jiang et al. BioData Mining  (2015) 8:12 Page 12 of 12
17. Tatonetti NP, Fernald GH, Altman RB. A novel signal detection algorithm for identifying hidden drug-drug interactions
in adverse event reports. JAMIA. 2012;19(1):79–85.

18. The World Wide Web Consortium (W3C). [cited May 25, 2013]; Available from: http://www.w3.org/.
19. Duke JD, Li X, Grannis SJ. Data visualization speeds review of potential adverse drug events in patients on

multiple medications. J Biomed Inform. 2010;43(2):326–31.
20. Ross CJ, Visscher H, Sistonen J, Brunham LR, Pussegoda K, Loo TT, et al. The Canadian Pharmacogenomics

Network for Drug Safety: a model for safety pharmacology. Thyroid. 2010;20(7):681–7.
21. Zhu Q, Jiang G, Wang L, Chute CG. Standardized Drug and Pharmacological Class Network Construction. ICBO

2013 - Vaccine and Drug Ontology Studies (VDOS-2013) Workshop. Montreal, Qc. Canada; 2013.
Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

http://www.w3.org/

	Abstract
	Background
	Methods
	Results
	Conclusions

	Introduction
	Background
	FDA Adverse Event Reporting System (AERS)
	Common Terminology Criteria for Adverse Event (CTCAE)
	ADE datasets
	Semantic Web technologies

	Methods
	Results
	Discussion
	Conclusions
	Consent
	Competing interests
	Authors’ contributions
	Acknowledgements
	References

