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Abstract

Background: Pharmacogenomics (PGx) as an emerging field, is poised to change
the way we practice medicine and deliver health care by customizing drug therapies
on the basis of each patient’s genetic makeup. A large volume of PGx data including
information among drugs, genes, and single nucleotide polymorphisms (SNPs) has
been accumulated. Normalized and integrated PGx information could facilitate
revelation of hidden relationships among drug treatments, genomic variations, and
phenotype traits to better support drug discovery and next generation of treatment.

Methods: In this study, we generated a normalized and scientific evidence
supported cancer based PGx network (CPN) by integrating cancer related PGx
information from multiple well-known PGx resources including the Pharmacogenomics
Knowledge Base (PharmGKB), the FDA PGx Biomarkers in Drug Labeling, and the
Catalog of Published Genome-Wide Association Studies (GWAS). We successfully
demonstrated the capability of the CPN for drug repurposing by conducting two
case studies.

Conclusions: The CPN established in this study offers comprehensive cancer based
PGx information to support cancer orientated research, especially for drug repurposing.
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Background
In 2003, the US Food and Drug Administration (FDA) recognized the importance of

PGx data for the evaluation of drug safety and efficacy by starting a voluntary data ex-

change program, which requests that pharmaceutical companies submit genomic data

along with their new drug packages. So far, the FDA has documented PGx information

for more than 100 drugs associated with more than 50 genes [1]. Of these drugs, 42

FDA cancer drugs include PGx information in their package inserts. Clearly, cancer

therapy is one of the most intensively studied topics in PGx [2-4], and relevant PGx

data are accumulating quickly. Thus, it is critical to determine how to use and inte-

grate cancer based PGx information effectively, thereby revealing hidden relationships

among drug treatments, genomic variations, and phenotype traits and better support-

ing drug discovery and next generation of treatment. To our knowledge, no integration

efforts have been directed specifically toward cancer based PGx. Suggested Ontology
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for Pharmacogenomics (SO-Pharm) [5] and Pharmacogenomics Ontology (PO) [6] are

two existing ontologies for general PGx integration. They provided a first step toward

integrating and representing PGx (and related) knowledge in the web ontology lan-

guage (OWL), a web standard [7]. SO-Pharm contains so many classes and relations to

represent generic PGx information that it is computationally expensive “and leads to

significantly higher complexity for knowledge composition” [5]. It therefore presents

challenges to users “in asserting knowledge or making routine queries” [5]. PO is a

case-driven PGx data integration platform that aims to question-answering. Our study

aims to integrate PGx information by focusing on oncology domain from diverse PGx

resources. In addition, we will not only integrate existing PGx information, but also

add inferred associations, which will support the novel indication detection for used

drugs.

Idiosyncratic information without semantic interoperability and standard-based anno-

tation, however, adds no value to the scientific commons. These idiosyncratic data must

be annotated using standard terms and elements that correspond to the way scientists

might search, integrate, inference, or expand upon the data. In the oncology commu-

nity, the FDA and National Cancer Institute (NCI) attempt to document approved can-

cer drug information in a meaningful way. For instance, cancer drugs can be browsed

by approved date with detailed description from the FDA [8]; they also can be queried/

browsed by specific cancer type from the NCI [9], in which cancer drugs have been

mapped to the NCI Thesaurus [2]. Nevertheless, to our knowledge, there is no data

normalization effort made for cancer based PGx information. Lack of such effort hin-

ders data sharing and further data integration. The CPN constructed in this study has

been highlighted with normalization tags by leveraging the controlled terminologies

and vocabularies.

In this study, we integrated multiple well known PGx resources including the

PharmGKB [1], the FDA Pharmacogenomic Biomarkers in Drug Labeling [10] and the

Catalog of Published Genome-Wide Association Studies [11], and represented terms by

using relevant standards to construct a cancer based PGx network, named CPN

(Cancer based PGx Network). This work was intended to demonstrate the feasibility

of constructing the CPN to support possible drug repurposing candidate identifica-

tion. To illustrate the capability of the CPN for drug repurposing, two case studies

have been performed successfully.
Materials
NCI cancer list

National Cancer Institute (NCI) has maintained the alphabet links for information on a

particular type of cancer. In this study, we have manually collected 160 distinct cancer

types through de-duplication including bladder cancer, breast cancer, leukemia, and so

on from NCI by Nov 14, 2013 [12].
Pharmacogenomics knowledge base (PharmGKB)

PharmGKB contains genomic, phenotype and clinical information collected from PGx

studies. It provides information regarding variant annotations, drug-centered pathway,

pharmacogenomic summaries, clinical annotations, PGx-based drug-dosing guidelines,
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and drug labels with PGx information [1]. In this study, we used PGx information ex-

tracted from a relationship file received from the PharmGKB by May 8, 2013, which

provides associations between two PGx concepts, including drug, gene, disease, SNP

and haplotype. Some examples are shown in Table 1. All fields listed in Table 1 were

extracted and applied in this study.

The detailed information about individual disease, drug and gene terms were ex-

tracted from the corresponding Disease, Drug and Gene files downloaded from the

PharmGKB by November 15, 2013 [13].
FDA Pharmacogenomic biomarkers in drug labeling

The US Food and Drug Administration (FDA) provides a table of biomarkers for some

FDA-approved drugs. The table contains “Therapeutic areas” field indicating the treat-

ment intention of the drugs, such as “Oncology”, “Psychiatry”, etc., as well as the

“HUGO Symbol” field representing associated genes. In this study we extracted these

two fields that are “Oncology” related. The table was downloaded by Dec 3, 2013 [8].
Catalog of published genome-wide association studies

NIH provides a Catalog of Published Genome-Wide Association Studies (GWAS),

which has identified single nucleotide polymorphisms (SNPs) and reported genes for

major disease traits. We extracted cancers and related genes and SNPs from the

“Disease/Trait”, the “Reported Gene(s)” and “SNPs” fields respectively. The Catalog

was downloaded by Dec 3, 2013 [11].
National Center for Biomedical Ontology (NCBO)

The NCBO provides an ontology-based web service that can annotate public datasets

with biomedical ontology concepts [14]. The reasons to select the NCBO bioportal for

the normalization task in this study are 1) our previous work [15] has shown the

capability of NCBO to support PGx data normalization, 2) its convenience of online

access and its large scale of more than 400 ontologies [16] beyond other tools such

as Metamap. We used the NCBO Bioportal REST service [17] to access biomedical

ontologies. In this study, we utilized this service to normalize disease and drug terms

with Systematized Nomenclature of Medicine-Clinical Terms (SNOMED-CT) [18]

and RxNorm [19].
Table 1 Examples of PGx associations extracted from the PharmGKB

Entity1_id Entity1_ name Entity1_ type Entity2_id Entity2_ name Entity2_ type PMIDs

PA443512 Urinary bladder
neoplasms

Disease rs762551 rs762551 Variant
location

18798002

rs762551 rs762551 Variant
location

PA443434 Arthritis,
Rheumatoid

Disease 18496682

PA443434 Arthritis,
Rheumatoid

Disease PA27093 CYP1A2 Gene 18496682;
19581389

PA27093 CYP1A2 Gene PA450688 olanzapine Drug 19636338;
21519338
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SemMedDB

SemMedDB is a repository of semantic predications (subject-predicate-object triples) ex-

tracted from the entire set of PubMed citations with SemRep. The subject and object pair

corresponds to UMLS Metathesaurus concepts, and the predicate to a relation type in an

extended version of the semantic network. SemMedDB contains eight tables and is updated

at regular intervals. We downloaded the latest PREDICATION_AGGREGATE table with

ending date of MAR 31 2014 [20]. In this study, we identified scientific evidence, PubMed

IDs from SemMedDB for PGx associations present in the CPN.
Methods
In this study, we designed an approach including four steps to generate the CPN: 1) can-

cer based PGx association identification, 2) cancer based PGx concept normalization, 3)

scientific evidence identification, and 4) the CPN generation. In the first step, we identi-

fied cancer based PGx associations from the PharmGKB, the GWAS Catalog and the

FDA Biomarker table. Then we mapped cancer based PGx concepts to standard vocabu-

laries, for instance, drugs to RxNorm, diseases to SNOMED-CT, genes to HUGO gene

symbol and so on. Once the PGx associations were normalized and scientific evidences

were identified from SemMedDB, we built the CPN. Figure 1 presents the architecture

developed for the CPN construction. More details about each step and case studies will

be described in the following sections.
Cancer based PGx association identification

To extract cancer based PGx associations, we first manually collected 160 distinct NCI

cancer terms called as seeds from the NCI Cancer List. Then we performed an iterative

search to identify PGx associations related to these seeds from PharmGKB. This search

was not terminated until fourth-degree concepts that are four nodes away from the
Figure 1 The architecture of the approach being used for the CPN construction.
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seeds have been extracted. More specifically, starting from those seeds, we searched for

first-degree concepts that are directly connected to the seeds, then we retrieved

second-degree concepts that are neighbors of the first degree concepts, followed by

locating third-degree concepts that are neighbors of the second-degree concepts,

then the fourth–degree concepts. We iteratively extracted associations related to

these seeds from fields listed in Table 1. For instance, beginning with the seed “Urinary

Bladder Neoplasms”, we can iteratively find associations, including “rs762551” - “Urinary

Bladder Neoplasms”, “Arthritis, Rheumatoid” - “rs762551”, “CYP1A2” - “Arthritis,

Rheumatoid”, and “Olanzapine” - “CYP1A2”, which are shown in Table 1. These pairs are

as building blocks being used for constructing the CPN. Besides drug, disease and gene,

we also extracted haplotype and SNP information that exist in the PharmGKB relation-

ship file. To reflect an assumption that concepts with shorter distance to the seeds might

have stronger associations with these seeds, we assigned different weight scores to PGx

concepts based on their degrees. The first-degree concept was conferred with a higher

weight score of “4”, then the second degree with “3”, the third degree with “2” and the

fourth degree with “1”.

Additional PGx information available from the GWAS Catalog and the FDA bio-

marker table has also been extracted. We manually identified the seeds in the GWAS

Catalog based on the NCI cancer terms. We then extracted the PGx associations re-

lated to the seeds from fields of “Disease/Trait”, “Reported Gene(s)” and “SNPs” in

the GWAS Catalog. It is worthy to note that we did not perform an iterative search to

find indirect associations from GWAS Catalog, as we were only interested in the associa-

tions extracted from this Catalog co-occurring in the PharmGKB. In parallel, we extracted

PGx pairs between “Oncology” drugs and associated genes from the FDA biomarker

table.
Cancer based PGx association normalization

We normalized disease terms by SNOMED-CT [18], drugs by RxNorm [19], genes by

the Human Genome Organization (HUGO) [21] gene symbols, SNP by the National

Center for Biotechnology Information [22] reference SNP ID number (rsID). Genes,

SNPs, haplotypes derived from the three resources have already been represented in

standard forms. Therefore, no additional normalization process has been performed ac-

cordingly. In this study, we primarily focused on the normalization for drug and disease

terms.

A. Disease term normalization

PharmGKB provides manual annotations for disease terms with normalized vocabular-

ies, including SNOMED-CT [18], Medical Subject Headings (MeSH) [23], Unified

Medical Language System (UMLS) [24], etc., which are available in the downloadable

Disease file. However, the mapping to SNOMED-CT is incomplete. There is no

SNOMED-CT code available for cancer terms in GWAS catalog. Thus, we normalized

disease terms that are without SNOMED-CT codes by employing the NCBO Bioportal

REST service [17] programmatically. A Java program has been written to automatically

invoke this REST service and parse the XML file as output to retrieve SNOMED-CT

codes. Note that we specified “isexactmatch = 1” as one of the input parameters when

executing the NCBO REST service. That is to say, the mapped SNOMED-CT terms are
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exactly matched to the input disease names, thus, no additional evaluation is needed to

validate the mapping performance afterwards. We manually checked and mapped the

unmapped disease terms to SNOMED-CT with their synonyms.

B. Drug term normalization

The same mapping strategy has been applied to drug terms, 1) we reused the normal-

ized terms from the PharmGKB; 2) the NCBO Bioportal REST service was invoked to

retrieve RxNorm Concept Unique Identifiers (RxCUIs) for those PharmGKB drugs and

the drugs from the FDA biomarker table (no drug information in the GWAS catalog)

that are without RxCUIs; 3) manual annotation was performed for unmapped drugs.

Two authors (LW, QZ) had reviewed and evaluated the mappings, and finalized the

mapping lists for further CPN construction.
Scientific evidence identification

To insert scientific evidence, namely, published studies to support PGx associations

presented in the CPN, we searched for SemMedDB accordingly. Besides PubMed refer-

ences existing in the PharmGKB, we searched for PGx associations from the GWAS

catalog and the FDA biomarker table against SemMedDB.
Cancer based PGx network construction

Once the cancer based PGx associations were identified, we linked concepts occurring

across three resources to construct the CPN. In the CPN, the nodes correspond to indi-

vidual cancer based PGx concepts including drug, gene, disease, SNP and haplotype.

The edges correspond to PGx associations. Table 2 shows the types of PGx associations

contained in the CPN.
Results
Cancer based PGx association identification

A. PharmGKB

Total 38 distinct seeds have been identified from the PharmGKB. Accordingly, we have

extracted 2,964 concepts that are associated with these seeds, corresponding to 13,221

PGx pairs. Among these pairs, there are 402 drugs, 205 diseases, 825 genes, 1333 SNPs

and 199 haplotypes.

Table 3 shows results of PGx associations extracted from the PharmGKB. For ex-

ample, there are 38 seeds (cancer terms) associated with 393 Disease-Gene pairs, 37

Disease-Haplotype pairs and 530 Disease-SNP pairs. The numbers shown in Table 3

are unique.
Table 2 Types of association available in the CPN

Pairs
Resources

Drug-
gene

Drug-
haplotype

Drug-
disease

Drug-
SNP

Drug-
drug

Disease-
SNP

Disease-
hyplotype

Gene-
disease

Gene-
gene

Gene-
SNP

PharmGKB √ √ √ √ √ √ √ √

GWAS
catalog

√ √ √

FDA
biomarkers

√ √



Table 3 Results of PGx association extraction from the PharmGKB

Degree of
concepts

Number of
concepts

No. of pairs

Disease-
gene

Disease-
haplotype

Disease-
SNP

Drug-
gene

Drug-
haplotype

Drug-
SNPs

Drug-
drug

Gene-
gene

Seeds 38 393 37 530 0 0 0 0 0

1 605 1018 50 1155 1827 77 1607 0 195

2 735 1700 278 2483 2972 974 3716 1 944

3 2646 1705 277 2492 2965 974 3710 1 982

4 1196 0 0 0 0 0 0 0 0

Total 2964 1723 277 2500 3012 974 3718 1 1016
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B. FDA biomarkers and GWAS catalog

We manually identified 42 cancer drugs from the FDA biomarker table. As some of

drugs are associated with multiple genes, total 55 drug and gene pairs corresponding to

44 genes were extracted.

We extracted 31 cancer terms from the GWAS catalog, of which there are 2455 PGx

pairs corresponding to 720 genes and 598 SNPs.
Cancer based PGx association normalization

Among 402 drugs extracted from the PharmGKB in this study, RxCUIs are available

for 323 drugs. For the rest of 79 drugs without RxCUIs, 53 were mapped to RxNorm

by invoking the NCBO REST service programmatically. For 205 PharmGKB disease

terms being used in this study, SNOMED-CT codes are available for 186 disease terms.

Another 10 diseases were mapped to SNOMED-CT by invoking the NCBO REST ser-

vice programmatically. Of 42 drugs from the FDA biomarker table, 41 were mapped to

RxNorm by using NCBO REST service. Of 31 cancer terms identified from the GWAS

Catalog, 29 were mapped to SNOMED-CT by the NCBO REST service. Furthermore,

we manually mapped 5 drugs and 8 diseases to the standards accordingly.

In summary, 394 out of 416 (94.7%) unique drug concepts have been mapped to

RxNorm, and 215 out of 218 (98.6%) unique disease concepts been mapped to

SNOMED-CT. Reasons for the failed mapping will be discussed in the discussion section.
Scientific evidence identification

Besides PubMed references existing in the PharmGKB, 19 PGx pairs corresponding to

16 drugs and 13 genes in the FDA biomarker table were retrieved to be with PubMed

IDs and 6 predicates including “COEXISTS_WITH”, “compared_with”, “higher_than”,

“INHIBITS”, “INTERACTS_WITH” and “USES” from the SemMedDB. Meanwhile, total

253 PGx pairs (24 diseases and 89 genes) from the GWAS Catalog were retrieved to be

with PubMed IDs and 8 predicates including “AFFECTS”, “ASSOCIATED_WITH”,

“AUGMENTS”, “CAUSES”, “NEG_ASSOCIATED_WITH”, “NEG_PART_OF”, “PART_OF”

and “PREDISPOSES” from the SemMedDB.
Cancer based PGx network (CPN)

The CPN contains 4,342 distinct nodes and 15,600 pairs in total. We explored Cytos-

cape [25] to visualize the CPN. A sub-network extracted from the CPN specifically for

“urinary bladder cancer” is shown at the left lower corner of Figure 1.
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Case studies

The CPN provides comprehensive PGx information to support advanced cancer rele-

vant research. Specifically, we can identify possible drug repurposing candidates from

the CPN by utilizing network analysis approaches. The below two case studies illustrate

the capability of the CPN for drug repurposing. It is worthy to note that we manually

identified relevant literatures to further evaluate the findings produced in these two

case studies and the feasibility of this present study for drug repurposing. However, the

ultimate goal of this study is to identify novel drug repurposing candidates that are

without supportive scientific evidences, and they will attract interests of chemists and/

or biologists for further experimental evaluation.

A. Case study 1

Paclitaxel is used to treat Kaposi’s sarcoma, as well as the lung, ovarian, and breast can-

cer, as documented in the “Indications & Usage” section of the structured product label

[26]. In this case study, we were interested in revealing the new indications of Paclitaxel

from the CPN. We searched the CPN for Paclitaxel with RxCUI = “56946” and identi-

fied relevant disease concepts that are at most 3 nodes away from the Paclitaxel. More

specifically, we searched for direct and indirect disease associations that are relevant to

Paclitaxel and those disease nodes are at most 3 nodes away from Paclitaxel. In total,

there are 70 concepts directly associated with Paclitaxel, 399 concepts including 110

disease concepts that are two nodes away from Paclitaxel, and 1689 concepts including

110 disease concepts that are three nodes away from Paclitaxel. To further evaluate

and determine the possible novel indications and the appropriateness of our approach,

we manually sought scientific evidences from PubMed literatures to support new indi-

cations inferred from the CPN. As a result, 20% newly identified indications including

Alzheimer Disease, Asthenia, Leukemia, etc. for Paclitaxel are supported by published

studies. To detail our approach, Alzheimer Disease as one novel indication identified

for Paclitaxel from the CPN is shown as below.

“MTHFR” and “rs1801133” are the two direct nodes connected to Paclitaxel, sub-

sequently “Alzheimer Disease” with SNOMED-CT code, “26929004” has been iden-

tified via the above two nodes, as shown in Figure 2. rs1801133 is encoding a

variant in the MTHFR gene, which encodes an enzyme involved in folate metabol-

ism [27]. Then associations of Paclitaxel-MTHFR-“Alzheimer Disease”, can be fur-

ther validated by literatures as follows, 1) Paclitaxel enhanced the inhibition of

MTHFR by antisense or small molecules, which decreases tumor growth [28]; 2)

The severity and biochemical risk factors of Alzheimer’s disease may be influenced

by the MTHFR 677 T allele in an Egyptian population [29] and the association be-

tween MTHFR A1298C polymorphisms as a possible risk factor and Alzheimer’s

disease was verified [30].

By analyzing the CPN, Paclitaxel is related to “Alzheimer Disease” via gene MTHFR

and SNP “rs1801133”. In addition, evidences are mounting in the literature that Alzheimer

disease may be a new indication of the cancer drug Paclitaxel, for example Paclitaxel

may rescue neurons from undergoing hallmark tau-induced Alzheimer disease cell

pathologies [31] and Paclitaxel has the potential to treat Alzheimer disease [32]. That

is to say,Paclitaxel may be a potential drug repurposing candidate for the treatment of

Alzheimer Disease.



Figure 2 A sub-network of Paclitaxel taken from the CPN. Blue solid lines indicate the direct association
existed in the CPN, while the red dotted line indicates the indirect inference applied in this case study.
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B. Case study 2

Capecitabine is originally indicated for the treatment of breast cancer and colorectal

cancer as stated in the drug label [33]. In this case study, we aimed to seek alternative

indications for Capecitabine. We searched for Capecitabine with RxCUI “194000” from

the CPN to identify novel indications. In total, there are 120 disease nodes that are at

most 3 nodes away from Capecitabine. Of these 120 diseases, 12 possible novel indica-

tions including Hyperbilirubinemia, Mesothelioma, Bladder Neoplasm, etc. associated

with Capecitabine are supported by published studies. The following example illustrates

the identification process of the new indication, bladder neoplasm for Capecitabine.

From the CPN 50 directly relevant nodes have been retrieved for Capecitabine in-

cluding the gene CYP1A1, from which “Urinary Bladder Neoplasms” have been identi-

fied subsequently. A sub-network of Capecitabine visualized by Cytoscape in the CPN

is shown at the right lower corner in Figure 1, where the edges in red indicate all asso-

ciations with Capecitabine, and the green edges indicate DPYD and C18orf56 are link-

ing to Capecitabine respectively. The zoomed out network is shown in Figure 3. The

association between “Urinary Bladder Neoplasms” and “Capecitabine” could be inferred

through multiple paths as shown in Figure 3. Among all paths between these two, the

shortest path is Capecitabine-CYP1A1-Urinary Bladder Neoplasms, of which the asso-

ciation could be proved by literatures: (1) “CYP1A1 rs1048943 A > G (Ile462Val) poly-

morphism is a potential prognostic marker for survival outcome after docetaxel plus

capecitabine chemotherapy” [34]; (2) active CYP1A1 and CYP1B1 overexpression is re-

vealed in bladder cancer [35]; (3) the combination of Capecitabine and radiation ther-

apy offers a promising treatment option for bladder cancer patients who are not

candidates for surgery or cisplatin-based chemotherapy [36]; (4) a patient with meta-

static bladder cancer responded well to second-line capecitabine with a clinically mean-

ingful progression-free survival [37]. Through this validation chain, the inference that

the breast and colorectal cancer drug, “Capecitabine” might be used for urinary bladder



Figure 3 A sub-network of Capecitabine taken from the CPN. Blue solid lines indicate the direct association
existed in the CPN, while the red dotted line indicates the indirect inference applied in this case study.
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cancer could be made. Evidently urinary bladder cancer may be a novel indication of

Capecitabine via the network-based analysis of the CPN.

Discussion
Benefits gained from the CPN

A. Supporting further data integration

Data integration is essential in the big data era. It is important to aggregate different

pieces of data from different areas to solve fundamental scientific questions. Particu-

larly, in this study we have integrated data from various PGx data resources and built a

cancer based PGx data repository. The concepts (nodes) included in the CPN were nor-

malized with multiple standard biomedical terminologies and domain standards. Once

the normalization task is accomplished, more relevant data can be deposited and inte-

grated into the CPN, such as Electronic Medical Records (EHRs), DrugBank [38] and

KEGG [39]. Besides a majority portion (99.4%) of the concepts has been normalized,

about 0.6% of concepts was failed to be normalized. The reason of failure is in two folds.

First, chemical IUPAC names were used as drug names in the PharmGKB, which were

not included in RxNorm, e.g., “1-methyloxy-4-sulfone-benzene”. Second, drug class

names were being used, such as “Analgesics and Anesthetics” and “Antiinflammatory and

Antirheumatic Products”. In terms of diseases, the names were either presented too

broadly, such as, “Substance-Related Disorders” or too narrowly, such as “Therapy Related

Acute Myeloid Leukemia”, so that they cannot be mapped to SNOMED-CT.

B. Supporting oncology based drug discovery

PGx data including the detailed information for drugs, diseases, genes, SNPs, etc., has

been regarded as a basis for individualized medicine. While generic PGx data could be

obtained publicly, drug, disease, gene, SNP and haplotype resources have not, as yet,

been well-integrated to support the oncology based drug discovery. With various asso-

ciation types including Disease-Gene, Drug-Gene, etc. as shown in Table 2, the CPN

can serve as a highly relevant cancer knowledge base and a valuable platform for oncol-

ogy based research on drug repurposing. Thus, it would result in the shortening of the
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entire process for drug development, as our case studies have successfully proved such

capability of the CPN. Additionally two advantages inherent in the CPN will strengthen

its application in drug repurposing, including: 1) the CPN contains both direct and in-

direct cancer based PGx associations, thus, more drug candidates can be identified via

automated inference; 2) a majority of concepts contained in the CPN are normalized

with standard vocabularies, which enables further integration with other relevant re-

sources to support more novel indication identifications.

Limitation and future study

A. Path ranking

The current version of the CPN includes cancer based PGx information extracted from

three major PGx resources. Although only 38 cancer terms have been found in the

PharmGKB, 42 cancer drugs identified from the FDA biomarker table, and 31 cancer

terms found from the GWAS catalog, the total number of nodes and edges of the CPN

is 19,942, as we included all associations up to four nodes away from the cancer seeds.

In this study, we focused on the CPN construction and the demonstration of the cap-

ability of the CPN. Path ranking to output a ranked list of paths that are associated

with specific concepts from the CPN was out of scope of this study. However, when we

conducted case studies, in order to filter out the most significant paths based on the

queries, some initial ranking rules have been applied. For example, weight scores ac-

cording to the degrees of concepts, path length, and VIP pairs from the PharmGKB

have been applied for path ranking. In the future study, we will incorporate these rules

with other ranking methods, such as PageRank [40], and genetic association p-values

derived from GWAS [11], to output the most correlated paths for a particular query.

B. Disambiguating drug-disease association

Detailed information on specifying drug and disease association is critical for drug re-

purposing, as we have to determine whether this drug is used to treat this disease or

this drug may cause such a disease as an adverse drug event. Consequently, the novel

indication may be identified for this drug for further evaluation. In this study, all drug

and disease associations were directly extracted from the original resources, no add-

itional step has been applied to disambiguate such associations. In our previous study,

we have employed NDF-RT and SPLs to annotate drug and disease relationships in the

PharmGKB [41]. We will apply the annotation results [41] along with the existing an-

notations from NDF-RT, ADEpedia [42], LinkedSPLs [43] into the future study, insert-

ing a particular tag for differentiating indications and adverse drug events.

C. Scientific evidence identification

The established CPN is supported by published studies, PubMed references extracted

from SemMedDB. However, not all CPN associations have been assigned with pubmed

IDs. 36 PGx pairs from the FDA biomarker table and 2202 PGx pairs from the GWAS

Catalog were not mapped. SemRep, a rule-based semantic interpreter extracting predi-

cates in Pubmed references being applied by SemMedDB, has shown its precision for

gene-disease relations as 76% [44]; the precision and recall for pharmacogenomics as

73% and 55% [45] respectively. Thus we doubt that all association presented in this

study have been extracted and included in SemMedDB. On the other hand, we performed
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direct mapping with FDA biomarker table and the GWAS Catalog that may cause missing

mappings. In the future, we would use machine learning and natural language processing

(NLP) to identify more associations on the basis of existing PubMed references.

D. Data integration

In this preliminary study, we extracted and integrated three well-known PGx resources

to build the CPN. To make the CPN more informative, we will extract further cancer

based PGx information from other public PGx resources, such as DrugBank, KEGG,

etc., them and integrate into the CPN. Meanwhile, we will identify PGx associations

from pathways, and apply NLP [46] tools and algorithms to automatically extract such

associations from literatures periodically. The ultimate goal will be leveraging semantic

web technologies (SWT) [47] to present such comprehensive cancer based PGx infor-

mation in RDF [48] or OWL [49], which can support automated inference for drug

repurposing.

Conclusions
In this study we have integrated three existing PGx resources into the CPN, which is

supported by published studies, PubMed references extracted from SemMedDB. The

established CPN offers comprehensive cancer based PGx information to support cancer

orientated research, especially for drug repurposing, the potential of which has been

successfully demonstrated by case studies.
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