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Abstract

Background: Identifying high-order genetics associations with non-additive
(i.e. epistatic) effects in population-based studies of common human diseases is a
computational challenge. Multifactor dimensionality reduction (MDR) is a machine
learning method that was designed specifically for this problem. The goal of the
present study was to apply MDR to mining high-order epistatic interactions in a
population-based genetic study of tuberculosis (TB).

Results: The study used a previously published data set consisting of 19 candidate
single-nucleotide polymorphisms (SNPs) in 321 pulmonary TB cases and 347 healthy
controls from Guniea-Bissau in Africa. The ReliefF algorithm was applied first to
generate a smaller set of the five most informative SNPs. MDR with 10-fold cross-
validation was then applied to look at all possible combinations of two, three, four
and five SNPs. The MDR model with the best testing accuracy (TA) consisted of SNPs
rs2305619, rs187084, and rs11465421 (TA = 0.588) in PTX3, TLR9 and DC-Sign,
respectively. A general 1000-fold permutation test of the null hypothesis of no
association confirmed the statistical significance of the model (p = 0.008). An
additional 1000-fold permutation test designed specifically to test the linear null
hypothesis that the association effects are only additive confirmed the presence of
non-additive (i.e. nonlinear) or epistatic effects (p = 0.013). An independent
information-gain measure corroborated these results with a third-order epistatic
interaction that was stronger than any lower-order associations.

Conclusions: We have identified statistically significant evidence for a three-way
epistatic interaction that is associated with susceptibility to TB. This interaction is
stronger than any previously described one-way or two-way associations. This study
highlights the importance of using machine learning methods that are designed to
embrace, rather than ignore, the complexity of common diseases such as TB. We
recommend future studies of the genetics of TB take into account the possibility that
high-order epistatic interactions might play an important role in disease
susceptibility.

Keywords: Epistasis, Gene-gene interactions, Machine learning, Pulmonary tuberculosis
© 2013 Collins et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

mailto:Jason.H.Moore@Dartmouth.edu
http://creativecommons.org/licenses/by/2.0


Collins et al. BioData Mining 2013, 6:4 Page 2 of 5
http://www.biodatamining.org/content/6/1/4
Findings
Introduction

Understanding the genetic architecture of common human diseases such as tuberculosis

(TB) remains one of the greatest challenges in biomedical research. The goal of the

present study was to approach the genetic analysis of TB susceptibility with the assump-

tion that the underlying genetic architecture is complex.

Specifically, we used a machine learning method called multifactor dimensionality

reduction (MDR) that was designed specifically for detecting and characterizing non-

additive gene-gene interactions (i.e. epistasis) [1]. Only a handful of studies have explored

the role of epistasis in determining TB susceptibility. For example, de Wit et al. [2] found

statistically significant evidence for epistasis between several different pairs of single-

nucleotide polymorphisms (SNPs) in a study of South Africans. Another study of West

Africans found significant evidence of pairwise epistasis [3]. We have extended these

studies by specifically testing higher-order models of gene-gene interactions using

machine learning methods.

The MDR method was designed as a machine learning alternative to parametric statis-

tical methods such as logistic regression [1]. The goal of MDR is to recode SNP data using

constructive induction to make non-additive interactions easier to detect [4]. Simulation

studies have demonstrated that MDR has good power to detect non-additive epistatic

interactions in the absence of detectable main effects [5,6]. MDR has been applied to

numerous genetic studies of common diseases including TB [3].

As with any machine learning method, there is always the concern of overfitting that

can lead to false-positives. To avoid this problem here, we implemented MDR in a cross-

validation framework that assesses the predictive ability of the models [7]. We also

performed rigorous permutation testing methods to assess how often MDR models as

good as the ones we observed in the real data were found under the null hypothesis [8].

As an additional measure, we implemented a ReliefF filter to reduce the total number of

SNPs and thus SNP combinations evaluated by MDR [9]. This greatly reduces the total

number of tests performed.
Methods

The data set used in this study was originally analyzed by Olessen et al. [3]. These data

include 321 pulmonary TB cases and 347 healthy controls genotyped at The Bandim

Health Project in Guinea Bissau [3]. Each individual was genotyped for 19 single-

nucleotide polymorphisms (SNPs) from immunological candidate genes VDR, DC-SIGN,

PTX3, TLR2, TLR4, and TLR9. Missing data were imputed using a frequency-based

imputation. Additional details about the choice of genes and the overall study are

provided by Olessen et al. [3].

We first applied the ReliefF algorithm to filter the 19 SNPs to a total of five. Here, we

used 100 nearest neighbors. The goal for the ReliefF analysis was to retain only those

SNPs that provide the greatest signal. This reduces the total number of models that

need to be explored.

We then applied MDR to five filtered SNPs. We combinatorially evaluated all two-

way to five-way models. Balanced accuracy in the context of 10-fold cross-validation

was used to assess model quality. An overall best model was selected that had the



Figure 1 Distribution of cases (left bars) and controls (right bars) for each genotype combination
from the three single nucleotide polymorphisms identified in the overall best model by multifactor
dimensionality reduction (MDR) analysis. High-risk genotypes are shaded dark grey and low-risk
genotypes are shaded light grey. The new variable constructed by MDR is shown on the right.
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maximum accuracy in the testing data (i.e. testing accuracy or TA). We also recorded

the cross-validation consistency or CVC. This provides a summary of the number of

cross-validation intervals in which a particular model was found. Higher numbers indicate

more robust results. Statistical significance was assessed using 1000-fold permutation

testing. Here, the data are randomized 1000 times to create 1000 datasets consistent with

the null hypothesis. The complete MDR analysis is repeated in each permutated dataset
Figure 2 Summary of information gain by main effects (solid borders), pairwise effects (dashed
borders), and the three-way effect (shaded) of single nucleotide polymorphisms (SNPs) found in the
overall best model of multifactor dimensionality reduction. Relative synergy or redundancy of each
model is indicated below the principal effect in italics. The gene associated with each SNP is indicated
below each main effect.
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and a best model selected just as in the real data. This procedure generates an empirical

estimate of the null distribution of testing accuracies and corrects for multiple testing

because the same number of models are evaluated in all permutated and real data. We

performed two tests. First, we tested the general null hypothesis of no association by

randomizing case–control labels. Second, we tested the linear null hypothesis that the

only genetic effects are additive according the genotype randomization methods of

Greene et al. [8]. Rejection of both null hypotheses is evidence for non-additive epistasis.

We considered all result significant at the alpha = 0.05 level.

In addition to the MDR analysis, we performed an independent assessment of non-

additivity using entropy-based measures of information gain [4]. Specifically, we used a

new measure of three-way epistasis that adjusts for lower-order effects [10]. This

approach was used to confirm high-order non-additive interactions.
Results

ReliefF filtering returned the following five SNPs (corresponding genes shown in paren-

theses): rs187084 (TLR9), rs4986790 (TLR4), rs11465421 (DC-SIGN), rs2305619

(PTX3), rs1840680 (PTX3), and rs2287886 (DC-SIGN). A summary of the MDR results

for these five SNPs is shown in Table 1. None of the SNPs were found to have

statistically significant main effects after correction for multiple testing. Additionally,

no statistically significant pairwise models were reported. The overall best model

consisted of SNPs rs2305619, rs187084, and rs1145421. These three SNPs had a

training accuracy of 0.6115 and a testing accuracy of 0.5878. The cross-validation

consistency of this model was 10/10. The distribution of cases and controls for each of

the three-locus genotype combinations in the best MDR model can be seen in Figure 1.

Permutation testing confirmed the statistical significance of the model suggesting it is

unlikely to see a mode this good in null data (p = 0.008). Additional permutation testing

revealed that the non-additive effects in the model were also statistically significant (p =

0.013). Taken together, these results suggest a role for high-order non-additive epistatic

effects.

Figure 2 summarizes the results of the entropy-based information gain analysis. We

found that the three-way epistatic interaction was stronger than any lower-order

effects. This confirms the results we observed with MDR.
Discussion

Few studies consider the role of epistasis in disease susceptibility. Even fewer consider the

possibility that multiple genetic variants might have synergistic effects beyond main

effects or pairwise effects. We have demonstrated how the ReliefF and MDR machine

learning algorithms can be employed in conjunction with cross-validation and permuta-

tion testing to move beyond the detection of low-order genetic effects. We have applied

these approaches to the genetic analysis of TB susceptibility and have demonstrated a

statistically significant three-way epistatic interaction exhibiting non-additivity that is not

predicted by the one-way and two-way effects. These results were confirmed using an

independent analysis approach based on information theory. An important question is

whether this three-locus epistatic effect has biological and clinical implications. The

biological connection is not difficult given these genes were pre-selected as good
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immunological candidates for TB [3]. Whether the genetic effects specified in the model

are functional will need to be determined by experimental methods. Application of these

methods and other machine learning approaches will be important for unraveling the

genetic complexity of TB.

Availability
All methods are freely available as open-source software from the authors. More informa-

tion can be found at http://epistasis.org.
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