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Abstract

Background: Gene expression profiles have been broadly used in cancer research as a
diagnostic or prognostic signature for the clinical outcome prediction such as stage,
grade, metastatic status, recurrence, and patient survival, as well as to potentially
improve patient management. However, emerging evidence shows that gene
expression-based prediction varies between independent data sets. One possible
explanation of this effect is that previous studies were focused on identifying genes
with large main effects associated with clinical outcomes. Thus, non-linear interactions
without large individual main effects would be missed. The other possible explanation
is that gene expression as a single level of genomic data is insufficient to explain the
clinical outcomes of interest since cancer can be dysregulated by multiple alterations
through genome, epigenome, transcriptome, and proteome levels. In order to
overcome the variability of diagnostic or prognostic predictors from gene expression
alone and to increase its predictive power, we need to integrate multi-levels of genomic
data and identify interactions between them associated with clinical outcomes.

Results: Here, we proposed an integrative framework for identifying interactions within/
between multi-levels of genomic data associated with cancer clinical outcomes using the
Grammatical Evolution Neural Networks (GENN). In order to demonstrate the validity of
the proposed framework, ovarian cancer data from TCGA was used as a pilot task. We
found not only interactions within a single genomic level but also interactions between
multi-levels of genomic data associated with survival in ovarian cancer. Notably, the
integration model from different levels of genomic data achieved 72.89% balanced
accuracy and outperformed the top models with any single level of genomic data.

Conclusions: Understanding the underlying tumorigenesis and progression in
ovarian cancer through the global view of interactions within/between different
levels of genomic data is expected to provide guidance for improved prognostic
biomarkers and individualized therapies.
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Background
Cancer, a complex disease of somatic mutations and regulation abnormalities, causes sub-

stantial gene expression changes in its tumor cell [1]. Expression of oncogenes or tumor

suppressor genes promotes the malignant phenotype of cancer cells or inhibits cell div-

ision, development, or survival of cancer cell [1]. Gene expression profiles have been

broadly used in cancer research as a diagnostic or prognostic signature for the clinical out-

come prediction such as stage, grade, metastatic status, recurrence, and patient survival,

in addition to potentially improving patient management [2-6]. In terms of translational

bioinformatics, accurate outcome prediction based on the molecular signature can be

used clinically to choose the best of several available therapies for a cancer patient. For ex-

ample, a high risk patient may be advised to select a more radical therapy.

However, emerging evidence shows that gene expression-based prediction varies be-

tween independent data sets and little is known about the accuracy of gene expression-

based prediction model with distinguished pathologic and clinical predictors [7,8]. One

possible explanation of this effect is that previous studies were focused on identifying

genes with large main effects associated with clinical outcomes. Thus, non-linear inter-

actions, which can be a candidate of synthetic lethal interactions, without large main ef-

fects would be missed [9]. The other possible explanation is that gene expression as a

single level of genomic data is insufficient to elucidate the clinical outcome since cancer

can be dysregulated by multiple alterations through genome, epigenome, transcriptome,

and proteome levels [10].

Recently, the emerging data generation of genomic data has provided unprecedented

opportunities to investigate the global view of complex mechanisms between multi-

layers of genomic data. The Cancer Genome Atlas (TCGA) is a large-scale collaborative

initiative to improve the understanding of cancer using meta-dimensional genomic

data. The TCGA research network recently published many notable papers on several

cancers concerning an interim analysis of DNA sequencing, copy number, DNA methy-

lation, miRNA, and gene expression data [11-15]. The International Cancer Genome

Consortium (ICGC) is another multidisciplinary collaborative initiative to characterize

a comprehensive description of genomic, transcriptomic and epigenomic abnormalities

in 50 different cancer types [16]. While the TCGA and ICGC open many opportunities

to deepen the knowledge of the molecular basis of cancer [16-19], it is particularly im-

portant to integrate different levels of genomic data at hand for providing an enhanced

global view on interplays between them.

In order to overcome the variability of diagnostic or prognostic predictors from gene

expression data and to increase its predictive power, we need to integrate multi-levels

of genomic data and identify interactions between them associated with clinical out-

comes. Interactions within a single genomic level such as gene-gene interaction,

miRNA-miRNA interaction, or protein-protein interaction have been known to be as-

sociated with cancer susceptibility, progression, and treatment [9,20-23]. In addition,

interactions between multi-levels of genomic data such as miRNA-target gene inter-

action, copy number-gene interaction, or methylation-gene interaction are also associ-

ated with cell development, stress response, apoptosis, proliferation, and tumorigenesis

[24-26]. However, to the best of our knowledge, there is no systematic approach to

identify interactions within/between different levels of genomic data for cancer clinical

outcome prediction.
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In this study, we proposed an integrative framework for identifying not only interactions

within a single genomic level but also interactions between multi-levels of genomic data

associated with cancer clinical outcomes using the grammatical evolution neural net-

works. In order to highlight the validity of the proposed framework, ovarian cancer data

from TCGA was used as a pilot task. Serous cystadenocarcinoma is the most prevalent

form of ovarian cancer, and is the 5th leading cause of cancer mortality in women in the

United States [27]. Understanding the underlying biology and molecular pathogenesis in

ovarian cancer survival through the global view of interactions between different levels of

genomic data is expected to provide guidance for improved prognostic biomarkers and in-

dividualized therapies.

Methods
Data

Normalized datasets in ovarian cancer were retrieved from the Cancer Genome Atlas

(TCGA) data portal (http://tcga-data.nci.nih.gov/) (Table 1). DNA methylation, gene expres-

sion, and miRNA expression data contain 27,578 CpG loci, 12,042 genes, and 799 miRNAs,

respectively. Copy number alteration (CNA) data was obtained from cBio Cancer Genomics

Portal in order to use the results of altered regions of amplification or deletion across sets of

patients from GISTIC algorithm [28]. CNA data contains 54 significant cytoband regions. A

binary classification of short-term and long-term survival was set as a pilot task. In the clas-

sification of short-term or long-term survival, ‘short-term’ represents the patients who sur-

vived less than 3 years, whereas ‘long-term’ indicates patients who survived longer than 3

years [29]. A total of 258 patients’ records were available across the CNA, methylation,

miRNA, and gene expression data sets (N = 258) with survival information, in which 110

were short-term survival and 148 were long-term survival.

Analysis Tool for Heritable and Environmental Network Associations (ATHENA)

We have developed ATHENA, a multi-functional software package, designed to per-

form the three main functions essential to determine the meta-dimensional models of

complex disease: (1) performing feature/variable selections from categorical or con-

tinuous independent variables; (2) modelling main and interaction effects that explain

or predict categorical or continuous clinical outcomes; (3) interpreting the significant

models for use in further translational bioinformatics [30-32]. ATHENA contains fil-

tering components, modelling components, and an evolutionary computing approach

based on a machine technique to generate complex models. The current version of

ATHENA has two different computational evolution modelling methods, Grammatical

Evolution Symbolic Regression (GESR) and Grammatical Evolution Neural Networks

(GENN).
Table 1 Data description

Data type Platform # Features

CNA Agilent SurePrint G3 human CGH microarray kit 1x1M 54 cytobands

Methylation Infinium human methylation27 BeadChip 27,578 CpG loci

miRNA Agilent human miRNA microarray Rel2.0 799 miRNAs

Gene expression Affymetrix HT human genome U133 array plate set 12,042 genes

http://tcga-data.nci.nih.gov/
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We have extended ATHENA to address the issue of integrating data from multiple

“-omics” dimensions to identify models that explain the multi-layered architecture of com-

plex traits. Figure 1 shows a schematic of the ATHENA methodology for the current task.

In particular, multi-omics data such as CNA, methylation, miRNA, and gene expression data

can be inputs for ATHENA in order to determine the meta-dimensional models of complex

disease. For this analysis, we used GENN as the filtering and modelling component.
Grammatical Evolution Neural Networks (GENN)

In order to identify non-linear interactions between genomic features with small/large

main effects, various computational methods have been introduced such as the multi-

factor dimensionality reduction (MDR) [33,34]. However, MDR performs an exhaustive

analysis of every possible combination of interacting loci to generate multi-locus predictor

models. The search spaces of all n-wise interacting features will increase exponentially

when integrating with different levels of genomic data. Thus, stochastic methods employ-

ing evolutionary computing approaches have been developed and demonstrated to utilize

the full dimensionality of the data without exhaustively searching all possible combina-

tions of variables that influence complex traits [31,35,36].

Artificial Neural Network (ANN) is a flexible and robust machine learning technique

inspired by the basic function and structure of neurons to solve complex problems.

ANN is a good candidate for identifying interactions that influence variance in an out-

come of interest since it is able to model complex and non-linear relationships between

variables. However, the conventional approach for applying ANN to a classification
Figure 1 Schematic overview of ATHENA. ATHENA contains filtering and modelling components and
different levels of genomic data can be the input for the meta-dimensional models associated with clinical
outcomes of interest.
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problem is only to fit the network weights using a gradient descent optimization method

such as backpropagation when given input variables and network architecture, which are

not known a priori. In order to optimize the input variables, weights, and network struc-

tures simultaneously, evolutionary computing approaches have been proposed [31,36]. Gen-

etic programming, a specialization of genetic algorithms, is an evolutionary algorithm-based

methodology that uses concepts of survival of the fittest for evolving a fit solution from an

original population of random solutions [37]. In particular, grammatical evolution is a more

flexible alternative version of genetic programming since the binary string as a heritable ma-

terial can be translated into a functional solution, or computer program, via grammar rules

(Figure 1) [36]. The details of the grammar rules were described in a previous study [36].

The GENN algorithm is briefly described as follows:

(1) The original dataset is divided into 5 equal groups for 5-fold cross-validation (4/5

for training and 1/5 for testing dataset).

(2) Training begins by generating a random population of binary strings initialized to

be functional ANNs. The total population is divided into demes as sub-populations

across a user-defined number of CPUs for parallelization.

(3) The ANNs in the population are evaluated using the training data and the fitness

(balanced classification accuracy) for each model is recorded. A new population is

generated as the solutions with the highest fitness are selected for crossover

and reproduction.

(4) Step 3 is repeated for a pre-defined number of generations. Migration of best solu-

tions occurs between demes every n-number of generations, as specified by user.

(5) The overall best solution across generations is tested using the remaining 1/5 test

dataset and fitness is recorded.

(6)Steps 2-5 are repeated four more times, each time using a different 4/5 of the data

for training and 1/5 for testing. The best model is defined as the model identified

the most over all five cross-validations.

Table 2 shows the GENN parameters for the analysis.
Experiment setup

Figure 2 shows the overview of the pipeline, which consists of a filtering step and a model-

ling step. We applied the filtering step to reduce the noise in the dataset since GENN has

been shown to outperform other methods when the noise is reduced [38]. For the filtering
Table 2 GENN parameter settings

Parameter Value

Number of demes (CPUs) 50

Population size/deme 5,000

Number of generations 300

Number of migrations 15

Probability of crossover 0.9

Probability of mutation 0.01

Fitness function Balanced accuracy



Figure 2 Schematic overview of the pipeline for the analysis. (1) Filtering the noise variables from
each genomic data (2) GENN modeling (3) GENN modeling of variables from the best models of each
genomic dataset.
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step, GENN was run with 20 generations and 5,000 population size to generate many

intermediate models for each genomic data (Figure 1). Then, the frequencies of each vari-

able were calculated from all the intermediate models from each cross validation, and the

features were ranked based on the frequency. We set three different thresholds, top 10%,

top 30%, and top 50% of total variables based on their frequencies, in order to filter out

the noise in the dataset. After the filtering step, we analysed the filtered dataset to generate

the best predictive model using GENN. Finally, we integrated the best model from differ-

ent levels of genomic data to determine the meta-dimensional model associated with sur-

vival. The balanced accuracy, which avoids inflated performance estimates on imbalanced

datasets, was used in GENN as a fitness function.
Results and discussion
Filtering features

In order to have a comparable threshold for each genomic dataset, we set different cut-

offs of total variables from the intermediate models, top 10%, top 30%, and top 50%, re-

spectively. GENN with 1,000 population size per deme and 10 demes was employed for

each genomic dataset with different threshold in order to determine the best filtered data-

set prior to modelling. Figure 3 shows the results of filtering steps with different cut-offs.

Methylation, miRNA, and gene expression data showed the great improvement with top

10% threshold compared to the model with raw dataset, whereas CNA data with top 50%

threshold showed the best performance among different cut-offs. Since the original num-

ber of variables in CNA data is relatively small than other dataset, top 10% or top 30%

threshold were likely to filter out not only noise but true signals. Top 10% cut-off for

methylation, miRNA, and gene expression dataset and top 50% cut-off for CNA dataset

were set for the further study.



Figure 3 The results of filtering step with different threshold for each genomic dataset. Y axis refers
to the balanced accuracy in the test dataset and x axis represents the different threshold for filtering variables.
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GENN modelling for single level of genomic data

The filtered individual levels of genomic data, copy number alteration loci, CpG loci, miR-

NAs, and gene expression, were analysed separately by GENN with parameters described

in Table 2. GENN is an evolutionary computing approach to evolve neural networks for

predicting the clinical outcomes of interest by optimizing the input variables, weights, and

network structure simultaneously. Thus, the final solution of GENN is the neural network

with optimized input variables, weights, and network structure. Figure 4 shows the results

of best ANN models from each genomic dataset: miRNA, methylation, gene expression,

and CNA data, respectively. The best models from each genomic dataset showed different

network structures, indicating complex interactions between genomic features within a

single genomic level. The balanced accuracy values from the testing cross-validation set

for each of the models with miRNA, methylation, gene expression, and CNA were

64.55%, 66.96%, 60.61%, and 64.66% of balanced accuracy, respectively.
Integration with different levels of genomic data

We integrated miRNA, methylation, gene expression, and CNA data in order to identify in-

teractions between different levels of genomic data associated with survival in ovarian can-

cer. The final multi-dimensional model was conducted from GENN with variables from the

best models of each individual genomic dataset. The predictive power of integration showed

the improvement compared to the model with single level of genomic data (Figure 5). The

best multi-dimensional model of all variables from omics dimension was obtained with a

balanced accuracy of 72.89% (Figure 6). The selected features in the final model are hsa-

miR-32, hsa-miR-7-1*, cg26940261, and cg27034836 with variable consistency among 5

cross-validations, 2/5, 4/5, 4/5, and 3/5, respectively. Even though two of models among 5

cross-validations contain miRNA, methylation, gene, and CNA features, the predictive

power was not as good as to the best model with 2 miRNAs and 2 CpG loci. In order to as-

sess the significance in performance between the models of single level of genomic data and



Figure 4 Best GENN models from each genomic dataset. PADD, PSUB, and PDIV are an addition,
subtraction, and division activation node, respectively. Constants in the white boxes are weights. Genomic
features such as miRNA, CpG loci, gene, and CNA cytoband, are shown in the gray boxes. (a) miRNA (b)
Methylation (c) Gene expression (d) CNA dataset.
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model of integration, the Wilcoxon singed-rank test was used (Table 3) [39]. All balanced

accuracy values from 5-fold cross validation were used for the comparison between models.
Biological implication

Five miRNAs, hsa-miR-7-1*, hsa-miR-300, hsa-miR-148a*, hsa-miR-32, and hsa-miR-

190, were found in the GENN models associated with survival in ovarian cancer. In



Figure 5 Performance comparison between integration model and the model with single level of
genomic data. Integration model was conducted by combining variables from miRNA, methylation, gene
expression, and CNA data.
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general, the aberrant miRNA expression provides substantial consequences for the pro-

gression of tumorigenesis [40]. The miRNAs, hsa-miR-7-1*, hsa-miR-148a*, and hsa-miR-

32, from the model were found to be a prognostic indicator in several cancers [19,41,42].

Synergistic regulations between miRNAs through either targeting same genes or co-

operating of targeted genes are thought to be important to understand the mechanisms of

complex post-transcriptional regulations since complex diseases such as cancer are
Figure 6 Best GENN model of variables from different levels of genomic data.



Table 3 Significance test of the performances between the integration model and the
model with single level of genomic data

Comparison between models p-value

Integration vs. miRNA 0.0873

Integration vs. methylation 0.0476

Integration vs. gene expression 0.0159

Integration vs. CNA 0.1349
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affected by several miRNAs rather than a single miRNA [22]. In addition, we found pos-

sible interactions between genomic loci, 13q14.2, 18q23, 19q12, and 6p22.3, which are as-

sociated with survival in ovarian cancer. Identifying interactions between altered genomic

loci is a prerequisite to detect any common pathways that may be deregulated through

the alterations in gene copy number, suggesting co-operative or complementation effect

related to the tumorigenesis [43,44].

Even though models from miRNA and CNA data showed additive effects, the models

from methylation and gene expression data showed complex and non-linear interactions

between genomic features associated with survival. In terms of epigenetic regulation,

DNA methylation can serve to regulate expression of oncogene or tumor suppressor gene

in cancer. Recently, ‘epigenetic epistatic interactions’ have been regarded to place import-

ant constrains on the evolution of gene expression that affects disease phenotype [45].

The non-linear interactions of methylation of genes, PRMT3, CHN1, HDHD3, SDC2,

C12orf75, RXFP2, and GLB1, might contribute on the survival in ovarian cancer rather

than the single methylation of a specific gene. Several genes including SDC2 as a methyla-

tion cluster are involved in activation of TGF-beta pathway in ovarian cancer [46]. A role

for the insulin-relaxin family of peptides including INSL3 and its receptor RXFP2 in sev-

eral cancers has been reported [47,48]. Similarly, complex interactions of genes, TEX264,

SFXN3, CD2AP, GPR64, and ABR, might act on crucial role in molecular pathogenesis,

progression, and prognosis of ovarian cancer through the expression.

In the final multi-dimensional model, 2 miRNAs, hsa-miR-32 and hsa-miR-7-1*, and 2

methylation probes, cg26940261 and cg27034836, were selected. Notably, cg27034836 is

at the promoter CpG island of GLB1 gene and hsa-miR-32 targets GLB1 gene, which was

obtained from MicroCosm database [49]. It suggests that there might be possible synergis-

tic mechanism between methylation and miRNA regulation for the expression of GLB1

gene, encoding beta-galactosidase-1 that cleaves the terminal beta-galactose from ganglio-

side substrates and other glycoconjugates. Senescence-associated β-galactosidase activity

in cancer cells induced to enter senescence requires expression of the GLB1 gene [50]. In

order to provide the whole genome view, all the features from the best GENN model were

plotted using Phenogram visualization software (Figure 7).
Conclusions
In this study, we addressed the issue of integrating meta-dimensional genomic data and

identifying complex interactions in order to overcome the variability of diagnostic or prog-

nostic predictors from any single level of genomic data and to increase its predictive

power. Here, we proposed an integrative framework for identifying interactions within/be-

tween multi-levels of genomic data associated with cancer clinical outcomes based on the



Figure 7 Whole genomic view of selected features in the GENN models.
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grammatical evolution neural networks. GENN, an efficient evolutionary computing ap-

proach, has been shown to be powerful in genetic association studies and meta-dimensional

analysis of phenotypes of interest and has been proven superior compared to other methods

in term of prediction accuracy [31,32,36,38].

In order to demonstrate the utility of the proposed framework, ovarian cancer data

from TCGA was used as a pilot task. We found not only interactions within a single

genomic level but also interactions between multi-levels of genomic data associated

with survival in ovarian cancer. Notably, the meta-dimensional model outperformed

the model with single level of genomic data only. Taken together these results suggest

that meta-dimensional model will lead us to an enhanced global view on interplays

since different levels of genomic data might affect the cancer phenotype through either

partly independent or partly complementary fashion. Understanding the underlying

tumorigenesis and progression in ovarian cancer through the global view on interac-

tions within/between different levels of genomic data is expected to provide guidance

for improved prognostic biomarkers and individualized therapies. For instance, these

models could be a candidate of synthetic lethal interaction, which is a new way in the

context of anticancer therapy [9].

One of the limitations in the current study is that the final meta-dimensional model was

obtained using variables from the best model of each genomic dataset. Thus, there will be a

possibility to miss the interactions between different levels of genomic data, which were not

selected in the best model because of small effect within a single genomic level. Another

limitation of our analysis is the modeling techniques do not specifically identify conditional

relationships, which are likely to be ubiquitous in meta-dimensional data. For example, if

miRNA affect expression level of its target gene, which, in turn, affected the phenotype,

methods such as GENN are more likely to identify either miRNA or gene expression, but
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not both. Bayesian networks could model these types of relationships in a more informative

manner. Future improvement to ATHENA will include incorporating Bayesian networks to

allow for the generation of more interpretable meta-dimensional models. Moreover, even

though the current study was set for the classification problem between short-term and

long-term survival, GENN is also able to predict continuous clinical outcomes. However,

continuous survival data could not be directly used in GENN due to the context of cen-

sored data. In addition, in the current implementation of GENN and in evolutionary algo-

rithm in general, the norm is to select the best model in the final solution because it has

higher accuracy than all of the other models. However, there might be multiple different

good models and selection based on accuracy alone has its limitations. To overcome this

limitation, Pareto optimization can be incorporated in the next iteration of GENN. Pareto

optimization is a multi-objective optimization method that aims to maximize or minimize

multiple objectives. In our case, through minimizing the model size and the error, it will

produce an array of equally good models that are not dominated by other models. Pareto

optimization will allow us to find multiple interactions in cancer. We leave these investiga-

tions about the alternative way of integration, capturing the conditional relationship, pre-

dicting continuous survival data, and Pareto optimization as our future works. Another

interesting direction for further works would be the integration with biological knowledge

as a knowledge-driven approach.

Even though the current study is limited to the prediction of short-term/long-term sur-

vival in ovarian cancer as a base task, the proposed framework can be applied to other

clinical outcomes such as stage, recurrence, metastasis, grade, etc. Furthermore, it can be

applied to other cancer types in order to identify the cancer-specific or common interac-

tions among cancer types. With abundance in multi-omics data and clinical data from

TCGA or ICGC, our proposed framework will be valuable for explaining novel tumori-

genesis, eventually leading to more effective screening strategies and therapeutic targets in

many types of cancer. ATHENA can be downloaded from http://ritchielab.psu.edu/ritchie-

lab/software/.
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