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Abstract 

Background:  Recent researches have found a strong correlation between the triglyc-
eride-glucose (TyG) index or the atherogenic index of plasma (AIP) and cardiovascu-
lar disease (CVD) risk. However, there is a lack of research on non-invasive and rapid 
prediction of cardiovascular risk. We aimed to develop and validate a machine-learning 
model for predicting cardiovascular risk based on variables encompassing clinical 
questionnaires and oculomics.

Methods:  We collected data from the Korean National Health and Nutrition Exami-
nation Survey (KNHANES). The training dataset (80% from the year 2008 to 2011 
KNHANES) was used for machine learning model development, with internal validation 
using the remaining 20%. An external validation dataset from the year 2012 assessed 
the model’s predictive capacity for TyG-index or AIP in new cases. We included 32122 
participants in the final dataset. Machine learning models used 25 algorithms were 
trained on oculomics measurements and clinical questionnaires to predict the range 
of TyG-index and AIP. The area under the receiver operating characteristic curve (AUC), 
accuracy, precision, recall, and F1 score were used to evaluate the performance of our 
machine learning models.

Results:  Based on large-scale cohort studies, we determined TyG-index cut-off points 
at 8.0, 8.75 (upper one-third values), 8.93 (upper one-fourth values), and AIP cut-offs 
at 0.318, 0.34. Values surpassing these thresholds indicated elevated cardiovascular 
risk. The best-performing algorithm revealed TyG-index cut-offs at 8.0, 8.75, and 8.93 
with internal validation AUCs of 0.812, 0.873, and 0.911, respectively. External valida-
tion AUCs were 0.809, 0.863, and 0.901. For AIP at 0.34, internal and external valida-
tion achieved similar AUCs of 0.849 and 0.842. Slightly lower performance was seen 
for the 0.318 cut-off, with AUCs of 0.844 and 0.836. Significant gender-based variations 
were noted for TyG-index at 8 (male AUC=0.832, female AUC=0.790) and 8.75 (male 
AUC=0.874, female AUC=0.862) and AIP at 0.318 (male AUC=0.853, female AUC=0.825) 
and 0.34 (male AUC=0.858, female AUC=0.831). Gender similarity in AUC (male 
AUC=0.907 versus female AUC=0.906) was observed only when the TyG-index cut-off 
point equals 8.93.

Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdo-
main/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

Zhang et al. BioData Mining           (2024) 17:12  
https://doi.org/10.1186/s13040-024-00363-3

BioData Mining

†Yuqi Zhang and Sijin Li 
contributed equally to this work.

*Correspondence:   
tongchao@buaa.edu.
cn; luons3@163.com; 
zhangk65@mail.sysu.edu.cn

1 School of Computer Science & 
Engineering, Beihang University, 
Beijing, China
2 Department of Cardiology, 
the Eighth Affiliated Hospital, 
Sun Yat-sen University, Shenzhen, 
China
3 State Key Laboratory of Virtual 
Reality Technology and Systems, 
Beihang University, Beijing, China
4 Department of Interventional 
Radiology & Vascular Surgery, 
Peking University Third Hospital, 
Beijing, China
5 Department of Cardiology, Sun 
Yat‑sen Memorial Hospital, Sun 
Yat-sen University, Guangzhou, 
China
6 Department of Cardiology, The 
Seventh Affiliated Hospital of Sun 
Yat-sen University, Shenzhen, 
China

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13040-024-00363-3&domain=pdf


Page 2 of 19Zhang et al. BioData Mining           (2024) 17:12 

Conclusion:  We have established a simple and effective non-invasive machine learn-
ing model that has good clinical value for predicting cardiovascular risk in the general 
population.

Keywords:  Triglyceride-glucose index, Atherogenic index of plasma, Oculomics, 
Cardiovascular risk, Machine learning

Introduction
Cardiovascular disease and oculomics

Cardiovascular disease (CVD) is a profound global public health challenge and ranks 
among the primary contributors to the worldwide disease burden [1, 2]. CVD remains a 
leading cause of both mortality and morbidity on a global scale, taking an estimated 17.9 
million lives each year, even with advancements in preventive strategies and therapeu-
tic techniques. The assessment of cardiovascular risk assumes paramount importance in 
global public health.

Patients with CVD are more easily found to have metabolic abnormalities, such as 
insulin resistance, hyperglycemia, and dyslipidemia [3, 4]. Recently, some new indica-
tors calculated through blood glucose and serum lipids, such as the triglyceride-glucose 
index (TyG-index) and the atherogenic index of plasma (AIP) demonstrated to be a 
higher correlation with CVD [5]. Furthermore, TyG-index and AIP are good indicators 
for cardiovascular risk [5, 6]. Different cut-off point values for TyG-index and AIP can 
reflect the cardiovascular risks of different groups of people.

Previous studies have confirmed that ophthalmology diseases are closely related to 
CVD. Eye is an organ that can directly reflect microvascular changes [7]. The patho-
genesis of many CVDs also leads to ocular changes [8]. Therefore, it is feasible to use 
the pathology of eyes to predict CVD. Oculomics is a newly proposed concept in recent 
years [9]. It refers to the blending of big data, artificial intelligence (AI), and ocular 
imaging to identify retinal biomarkers of systemic disease [10, 11]. AI has been exten-
sively employed in the medical field for several years, automatically uncovering intrin-
sic patterns and connections between data variables and related diseases [12–15]. In the 
present study, we leveraged data from the Korean National Health and Nutrition Exami-
nation Survey (KNHANES) to develop and validate a machine-learning model for pre-
dicting cardiovascular risk based on variables encompassing clinical questionnaires and 
oculomics, as shown in Fig. 1. This model effectively anticipates the range of TyG-index 
and AIP, which reflect the level of cardiovascular risks.

Materials and methods
Dataset

This study used a comprehensive health examination dataset based on the Korean 
National Health and Nutrition Examination Survey (KNHANES IV and V; available 
online at https://​knhan​es.​kdca.​go.​kr/​knhan​es/​eng) conducted from the year 2008 to 
2012. The KNHANES surveyed both comprehensive ophthalmologic examinations 
and DEXA only during this period. The study protocol was approved by the Institu-
tional Review Board of the Korean Center for Disease Control and Prevention (No. 
2008-04EXP-01-C, 2009-01CON-03-C, 2010-02CON-21-C, 2011-02CON-06-C, and 

https://knhanes.kdca.go.kr/knhanes/eng
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2012-01EXP-01-2C), and data collection was approved by the Institutional Review 
Board of the Korean National Institute for Bioethics Policy. All participants signed 
consent forms for the use of their health information for data collection of the 
KNHANES. The KNHANES is a nationwide, population-based, cross-sectional sur-
vey conducted by the Division of Chronic Disease Surveillance of the Korea Centers 
for Disease Control and Prevention [16]. This project randomly selected all partici-
pants from 200 (2008-2009) and 192 (2010-2011) enumeration districts using strati-
fied sampling in which the following factors were considered: population, sex, age, 
regional area, and type of residential area. The KNHANES comprises health records 
based on health interviews, health examinations, and nutrition surveys. Each par-
ticipant completed a questionnaire containing information such as age, household 
income, alcohol use, smoking status, hypertension, and diabetes [17].

We conducted data curation based on the KNHANES dataset. Initially, individuals 
lacking either clinical variables or oculomics variables (N=13136), as well as those 
with missing TyG-index or AIP values (N=553), were excluded. Following this filtra-
tion process, a cohort of 32122 participants was included in this study. Then we uti-
lized the KNHANES data from year 2008 to 2011 for model development and internal 
validation, exploring and verifying the associations between input variables and TyG-
index as well as AIP. The model construction employed a five-fold cross-validation 
method. The training set, comprising 80% of randomly selected data from the year 
2008 to 2011, was employed for machine learning model development, as the internal 
validation set encompassed the last 20% of randomly chosen data from this database. 
And the external validation set, sourced from the year 2012, was used to evaluate the 
model’s ability to predict AIP and TyG-index for previously unseen cases (Fig. 2). The 

Fig. 1  Central illusion. Machine-learning-based cardiovascular risk prediction using data extracted from 
oculomics and clinic variables in Korean National Health and Nutrition Examination Survey (KNHANES)
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code of this research is open source and can be accessed at “https://​github.​com/​Ricky​
Zhang​901/​ML-​Based-​AIP_​TYG”.

Key variables definition

The TyG-index was calculated as ln [TG (triglycerides) (mg/dL) × FBG (fasting blood 
glucose) (mg/dL)/2], derived from previous studies [18, 19]. The AIP is a logarithmi-
cally transformed ratio of TG to HDL-C (High density lipoprotein cholesterol) in molar 
concentration (mmol/L), and it is mathematically derived from log (TG/HDL-C) [20]. 
Regarding the outcomes, we selected different cut-off points for TyG-index and AIP. 
Their different tangent values can reflect the cardiovascular risk of different groups of 
people. For the TyG-index endpoint, we chose 8.0 [21], the upper one-third value of TyG 
values (8.75) [22], and the upper one-fourth value of TyG values (8.93) [23]. As for the 
AIP endpoint, 0.318 [20] and 0.34 [24] were chosen as the cut-off points. Endpoint val-
ues beyond these numerical cut-off points were deemed to indicate high cardiovascular 
risk, while values below were considered low risk.

Ophthalmic examination

In this study, we analyzed oculomics measurements graded by ophthalmologists. A 
comprehensive eye examination was conducted by the Korean Ophthalmological Soci-
ety (KOS) using a vehicle equipped with ophthalmic devices. Trained ophthalmologists 
measured the eyelid positions of all participants. Marginal reflex distance 1 (MRD1) was 
defined as the distance from the upper eyelid margin to the corneal light reflex in the 
primary position (Supplementary Table S1). MRD1 values were obtained, and blepha-
roptosis was defined as an MRD1 of less than 2mm for either eye [25]. Ophthalmolo-
gists made a differential diagnosis of blepharoptosis with particular attention to avoiding 
misdiagnosis of pseudoptosis and dermatochalasis. The levator muscle function test 
was also performed by measuring the upper eyelid excursion from downgaze to upgaze 
(Supplementary Table S1), excluding any influence of frontalis muscle function, and 

Fig. 2  Schematic depiction of the data screening flow of the KNHANES from 2008 to 2012. Arrows indicate 
the data screening process. And the experimental process is described in the “Results” section. The details 
about the specific process of our experiment are shown in Supplementary Fig. S3

https://github.com/RickyZhang901/ML-Based-AIP_TYG
https://github.com/RickyZhang901/ML-Based-AIP_TYG
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sorted into normal ( ≥12mm) and decreased levator function ( ≤11mm). Standardized 
slit-lamp examinations were performed to diagnose pterygium and cataracts. Fundus 
photographs were obtained using a digital fundus camera (TRC-NW6S; Topcon, Tokyo, 
Japan). For each eye of each participant, a 45◦ digital retinal fundus image centered on 
the macula and fovea was obtained. All fundus photographs were subjected to prelimi-
nary and detailed grading. Preliminary grades for retinal diseases and optic discs were 
assigned to the retinal images by trained ophthalmologists, and multiple retinal special-
ists performed detailed grading. After grading the fundus photographs, glaucoma was 
defined according to a previous study [26]. When the conditions of the two eyes from 
one participant differed, the worse eye was chosen for the analysis. The KOS National 
Epidemiologic Survey Committee periodically trained ophthalmologists to control the 
quality of the survey.

Statistical analysis

Population baseline table

Statistical analyses were performed with SPSS version 24.0 (IBM Corp, Armonk, NY, 
USA), Python 3, and R version 4.2.2 (www.R-​proje​ct.​org). Continuous variables were 
described as mean ± standard deviation (SD) and compared by independent T-test or 
ANOVA. Categorical variables were described as numbers (percentages) and compared 
using chi-square tests.

Processing missing value

In this study, we employed polynomial interpolation to handle missing values in the 
dataset. Polynomial interpolation, a commonly utilized technique, fills in the missing 
values by constructing curves between known data points, preserving the overall trend 
of the data more effectively without introducing excessive noise. Thus, this method 
maintains the relative smoothness and continuity of the data. We deleted those variables 
with more than 30% missing and processed the remaining variables with missing value 
filling only in the internal dataset, which from the year 2008 to 2011 KNHANES.

Spearman correlation analysis

Within this research, we utilized Spearman correlation analysis to identify variables 
strongly correlated with the target variable. Spearman correlation analysis, a nonpara-
metric statistical method, measures the monotonic relationship between two variables, 
which is particularly suitable for data that does not adhere to the assumption of a lin-
ear relationship. And the p<0.001  is considered as a statistically significant difference. 
Through Spearman correlation analysis, we effectively reduced the dimensions of the 
dataset, thereby enhancing modeling efficiency.

Features construction

In addition to the selected features, we employed AutoFeat [27] for feature construc-
tion. This automated feature engineering tool facilitates extracting more insightful fea-
tures from the raw data through a sequence of feature engineering steps, encompassing 
both directly derived features and interaction features. This augmentation would furnish 
our model with a more extensive wellspring of information, contributing to enhancing 

http://www.R-project.org
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the model’s generalizability and predictive accuracy. From the processing missing value 
step to the feature construction step, we only used the data set from 2008 to 2011 of 
KNHANES to avoid going against established data science best practices. Supplemen-
tary Fig. S3 details the process of building our model and the different uses of data sets 
from different years.

Metrics for evaluation

To evaluate the performance of the machine learning models, we computed the Area 
Under the Curve (AUC), accuracy, precision, recall, and F1 score for predicting the TyG-
index and AIP separately. The AUC, which reflects the comprehensive performance of 
the model across a spectrum of classification thresholds, serves as a pivotal metric in 
evaluating the model’s efficacy. A substantial AUC denotes an exceptional discernment 
capacity of the model in distinguishing between positive and negative samples. Accu-
racy, as the cornerstone metric for assessing classification prowess, represents the ratio 
of correctly predicted samples to the total samples. An increase in accuracy can some-
what indicate enhanced model performance, but accuracy is not a comprehensive metric 
when the sample distribution is not balanced. Precision, on the other hand, delineates 
the ratio of true positive samples to the model’s predicted positives within the entirety 
of predicted positive samples. Amplified precision signals a heightened precision in the 
identification of positive samples. Recall embodies the ratio of model-predicted posi-
tive samples to true positive samples, thus showcasing the model’s resilience in detecting 
all positive samples. The F1 score, embodying the harmonious fusion of precision and 
recall, acts as a comprehensive metric for gauging the holistic performance of the model. 
A higher F1 score corresponds to a superior overall model performance. The formulas 
for computing these metrics can be found in the supplementary materials (Supplemen-
tary Fig. S1).

Machine learning algorithms

Regarding the machine learning algorithms, we adopted various models to conduct 
predictive analysis, aiming to explore the effectiveness of different models in address-
ing cardiovascular prediction problems. These models encompass Random Forest [28], 
Extra Trees [29], Bagging [30], Decision Tree [31], Extra Tree [29], XGBoost [32], LGBM 
[33], Gradient Boosting [34], Support Vector Machine (SVM) [35], AdaBoost [36], Label 
Propagation [37], Label Spreading [37], Linear SVM [35], Logistic Regression [38], Ridge 
Regression [39], Ridge CV [39], Multi-Layer Perceptron (MLP) [40], K Neighbors [41], 
Stochastic Gradient Descent Classifier (SGD) [42], Bernoulli NB [43], Perceptron [40], 
Passive Aggressive [44], Quadratic Discriminant Analysis [45], Gaussian NB [43], and 
Dummy. Through the utilization of these diverse machine learning models, we aim to 
evaluate their performance on the dataset comprehensively. This endeavor will aid in 
understanding which models exhibit optimal performance in handling our specific prob-
lem and what their strengths and weaknesses are. We conducted experiments using a 
five-fold cross-validation approach and employed multiple evaluation metrics to com-
pare these models, including accuracy, precision, recall, and F1 score. These evalu-
ation metrics will assist us in selecting the most suitable machine learning model for 
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addressing our specific problem and provide guidance for future improvements and 
optimizations.

Results
Correlation analysis of data exploration

Initial processing of the raw dataset was conducted, as illustrated in Fig.  2  and Sup-
plementary Fig. S3. After excluding variables with no significant statistical differences 
(P>0.001), we removed variables without clinical value and those directly calculable to 
yield outcome indicators. The remaining variables were used as input for our model. To 
illustrate the associations between the variables incorporated in the model, we generated 
a heatmap of Spearman coefficients (Fig. 3). Detailed descriptions of the input variables 
for the machine learning models are shown in Supplementary Table S1.

The findings are displayed in the form of a heatmap, where the color gradient from 
dark to light indicates the correlation from high to low. Due to space constraints, the 
variables in Fig. 3 are represented in the form of codes. Each code or character has a spe-
cific meaning, which can be found in the dictionaries of KNHANES for the years 2007-
2009 and 2010-2012.

Demographic analysis

In this study, a total of 32,122 participants (14,254 males and 17,868 females) from 
KNHANES were included in the final dataset. We gathered 36 input features compris-
ing 11 demographic variables, 4 anthropometric parameters, and 21 ophthalmological 
measurements. These data were utilized to identify potential factors that may affect 
TyG-index or AIP, and the authentic calculated values of TyG-index or AIP were used as 
the outcome for constructing the machine learning model. Demographic characteristics 
of the participants are shown in Table 1. Baseline oculomics measurement specifics are 
detailed in Supplementary Tables S3 and S4 (Fig. 3).

Our findings revealed that there were significant differences in the outcome values of 
TyG-index or AIP across all age and gender subgroups (p<0.001). Additionally, over 50% 
of the participants in the survey were either non-smokers (n=20223, 62.96%) or within 
the normal weight range (n=20110, 62.61%).

Model performance and verification

We employed 25 machine learning algorithms for model establishment. After screening 
the correlation coefficient, the input variables consist of 36 variables, including 15 clini-
cal indicators and 21 ophthalmic indicators.

In terms of performance evaluation, based on the clinical questionnaire and ocu-
lomics measurement variables, we tested the overall model performance for five end-
points, yielding promising results (Tables 2 and 3). Moreover, due to the independent 
nature of the KNHANES database across different years, utilizing data from differ-
ent years as internal and external validation sets is a common practice [46, 47]. In the 
predictive model employing all input factors, when the TyG-index cut-off values were 
8.0, 8.75, and 8.93, the model’s AUC in the internal validation set was 0.812, 0.873, and 
0.911, respectively, while in the external validation set, the AUC was 0.809, 0.863, and 
0.901. We plot the model performance in the internal and external validation datasets 
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with different TyG-index cut-off points as predicted outcomes in Fig. 4. As for the AIP 
endpoint, when set at 0.34, the internal and external validation sets are 0.849 and 0.842, 
respectively. Slightly poorer performance was observed for the 0.318 cut-off value, with 
AUCs of 0.844 and 0.836, but it remained reliable and compelling. The results of AIP 
endpoints are presented in Fig. 5.

In addition, as gender is an independent risk factor for CVD [48], to eliminate the 
overfitting caused by gender bias in the overall predictive model, we conducted sub-
group analyses for males and females separately. Results between gender subgroups 
are shown in Fig. 6. The AUC of models in male and female subgroups are most close 
only when the cut-off point of TyG-index is 8.93 (AUC=0.907 versus 0.906). The dif-
ferences were observed when the cut-off point of TyG-index was set at 8, 8.9, and the 

Table 1  Baseline Characteristics of Participants Stratified by Gender to develop a machine learning 
model to identify the TyG-index or AIP scales by clinical questionnaires and oculomics

Data were presented as mean±standard deviation, and proportions. AIP, Atherogenic index of plasma. BMI, Body mass 
index. DBP, Diastolic blood pressure. HDL-C, High density lipoprotein cholesterol. MI, Myocardial infarction. SBP, Systolic 
blood pressure. TyG-index, Triglyceride-glucose index.
†P value was derived from ANOVA or chi-square test. All statistical tests were performed in a two-sided manner with a 
significance level of P value <0.050.

 aMore than 5 boxes is defined from smoking entire life

 bLess than 5 boxes is defined from smoking not the entire life

Characteristics Overall Male Female P value†

N 32,122 14,254 17,868

Age, years 45.02±19.30 44.22±19.70 45.65±18.95 <.001

Smoking status, n (%) <.001

Current 8,397 (26.14%) 6,943 (48.71%) 1,454 (8.14%)

Previous 3,502 (10.90%) 2,963 (20.79%) 539 (3.02%)

Never 20,223 (62.96%) 4,348 (30.50%) 15,875 (88.85%)

Smoking quantities, n (%) <.001

Less than 5 boxesa 754 (2.35%) 404 (2.83%) 350 (1.96%)

More than 5 boxesb 10,993 (34.22%) 9,408 (66.00%) 1,585 (8.87%)

Never 20,375 (63.43%) 4,442 (31.16%) 15,933 (89.17%)

Blood pressure

SBP, mmHg 117.60±17.33 119.84±16.13 115.82±18.03 <.001

DBP, mmHg 75.06±11.07 77.29±10.52 73.28±10.35 <.001

BMI, kg/m2 23.24±3.56 23.49±3.45 23.04±3.64 <.001

BMI category, n (%) <.001

<18.5 (Underweight) 1,985 (6.18%) 404 (2.83%) 1,235 (6.91%)

18.5-24.9 (Normal) 20,110 (62.61%) 9,408 (66.00%) 11,454 (64.10%)

≥ 25 (Overweight or obesity) 10,027 (31.22%) 4,848 (34.01%) 5,179 (28.98%)

Waist circumference, cm 79.61±10.75 82.35±10.39 77.42±10.52 <.001

Low HDL-C, n (%) 7,224 (22.49%) 4,226 (29.65%) 2,998 (16.78%) <.001

Hypertriglyceridemia, n (%) 4,848 (15.09%) 2,643 (18.54%) 2,205 (12.34%) <.001

Morbidities

Hypertension, n (%) 21,912(68.21%) 8,956 (62.83%) 12,956 (72.51%) <.001

Diabetes, n (%) 27,543 (85.74%) 11,900 (83.49%) 15,643 (87.55%) <.001

MI, n (%) 3,986 (12.41%) 2,132 (14.96%) 1,854 (10.38%) <.001

Stroke, n (%) 4,295 (13.37%) 2,270 (15.93%) 2,025 (11.33%) <.001

Outcome

TyG-index 8.51±0.67 8.64±0.70 8.41±0.63 <.001

AIP 0.34±0.32 0.41±0.33 0.28±0.30 <.001
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cut-off point of AIP was set at 0.318, 0.34. The AUC values in males and females are cor-
responding with 0.832 and 0.790, 0.874 and 0.862, 0.853 and 0.825, 0.858 and 0.831.

Regarding specific models, the Gradient Boosting method demonstrated the best per-
formance across most experiments (Tables  2 and  3). The AUC of the LGBM method 
was only stronger than Gradient Boosting method with a slight advantage of 0.001 in 
the external validation set of 0.318 and 0.34. In the other three cut-off points, the LGBM 
method was slightly inferior to Gradient Boosting, although the results were similar. It is 
worth noting that out of the 25 methods employed, the top 7 methods were selected for 
illustration purposes (Tables 2 and 3, Supplementary Tables S5, S6, S7, and S8).

Discussion
In this study, we realized the use of oculomics and clinic variables to predict the range of 
TyG-index and AIP by machine learning algorithms. The model demonstrated outstand-
ing prediction efficiency with both internal and external datasets.

CVD is one of the most critical and dangerous chronic diseases in the world [49]. 
Early prevention and risk assessment of CVD are vital to patients or healthy adults. 
In order to achieve early prevention and risk assessment of CVD, many studies have 
been conducted on the risk factors of CVD. TyG-index and AIP combine traditional 

Fig. 3  Heatmap of Spearman correlation ship in oculomics and clinic variables with TyG-index and AIP. 
Detailed descriptions of the input variables are shown in Supplementary Table S1. The standard names in the 
dictionary corresponding to different codes in the heatmap are shown in Supplementary Table S2. TyG-index, 
Triglyceride-glucose index. AIP, Atherogenic index of plasma
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risk factors such as blood lipids and/or blood glucose that can reflect cardiovascular 
risk in different aspects. It has also been pointed out that TyG-index and AIP are bet-
ter indicators of CVD than single biomarkers like TG and HDL-C [50, 51]. Recently, 
a systematic review documented that a greater TyG index might be individualisti-
cally linked to a greater incidence of atherosclerotic CVD among asymptomatic indi-
viduals. Several studies have confirmed the cross-sectional correlation between AIP 
and cardiovascular risk [52, 53]. Therefore, in primary screening of the population, 
especially in clinical practice, the TyG index and AIP can be considered to identify 
patients with high risk of CVD.

As previously reported, the eye provides a unique and transparent medium through 
which we can observe and measure various biological markers without any invasive 
procedures. Since oculomics was proposed in 2020, it has been widely discussed as a 
concept that combines AI, big data, and eye images [9]. Oculomics can be used for the 
prediction of many diseases, including sarcopenia and schizophrenia [46, 54, 55]. As 
for CVD, a review discussed the possibility of cardiovascular risk assessment based 
on oculomics [56, 57]. There are also studies combining oculomics and genomics to 
reveal aneurysm-related biomarkers [58]. In our study, we used oculomics and clini-
cal features to predict cardiovascular risk. As for the cardiovascular risk, we selected 

Fig. 5  ROC and AUC of models use both oculomics and clinics as input variables. a-b The performance of 
our model using AIP=0.318 or 0.34 as the cut-off point in the internal validation dataset is demonstrated. 
c-d The performance of our model using AIP=0.318 or 0.34 as the cut-off point in the external validation 
dataset is demonstrated. AIP, Atherogenic index of plasma. AUC, Area under curve. ROC, Receiver operating 
characteristic
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different thresholds for TyG-index and AIP. The TyG-index cut-off point equals 8, 
and it is from a study involving 150,000 Koreans [21]. A graded positive association 
was observed between the TyG-index and CVD hospitalization. Per 1-unit increase 
in the TyG-index, a 16% increase in CVD hospitalization was demonstrated. When 
the cut-off point is the upper one-third of TyG values, we calculated 8.75 in our study 
population [22]. Compared with the lowest tertile of the TyG index, the highest tertile 
(tertile 3) was associated with a greater incidence of the composite outcome, myo-
cardial infarction, stroke, and incident type 2 diabetes. When the cut-off point is the 

Fig. 6  ROC and AUC in the internal validation models used both oculomics and clinic as input variables. 
a-c, g-h Five cut-off points of AIP and TyG-index in the male subgroup. d-f, i-j Five cut-off points of AIP and 
TyG-index in the female subgroup. AIP, Atherogenic index of plasma. AUC, Area under curve. ROC, Receiver 
operating characteristic. TyG-index, Triglyceride-glucose index
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upper one-fourth of TyG values, we calculated 8.93 in our study population [23]. Dur-
ing 8.2 years of mean follow-up, the highest TyG index quartile demonstrated that 
these patients were at higher risk for stroke (HR=1.259; 95% CI 1.233-1.286), for MI 
(HR=1.313; 95% CI 1.28-1.346), and for both (HR=1.282; 95% CI 1.261-1.303) com-
pared with participants in the lowest TyG index quartile.

As for the threshold of AIP, we chose 0.318 and 0.34. In type 2 diabetic subjects under-
going percutaneous coronary intervention, AIP plays an important role in predicting the 
prognosis. A recent study approved that when the value of AIP is higher than 0.318, the 
prognosis of the high AIP group was significantly worse than that of the low AIP group 
[20]. Another threshold for AIP was determined to be 0.34 in the study population [24]. 
High AIP ( ≥0.34)presented the highest risk of cardiovascular deaths in patients with 
type 2 diabetes mellitus. Remarkably, in our study, the predictive efficacy was most con-
spicuous when TyG-index equated to 8.93, or AIP reached 0.318, suggesting that indi-
viduals demonstrating these particular indicators should be classified as the cohort at 
heightened risk for subsequent cardiovascular disease.

Gender differences in CVD have been discussed in recent studies [59]. A recent study 
showed that the absolute incidence of CVD in men was significantly higher than in 
women across all age groups [60]. Some researchers have observed that diabetes is more 
likely to be associated with ischemic heart disease in women than in men. And women 
are more likely to present with ischemia with no obstructive coronary arteries (INOCA) 
[61, 62]. On the treatment side, new treatments that are useful in men have not led to 
significant reductions in CVD mortality in women [63, 64]. So it is necessary to assess 
the gender-specific cardiovascular risks. In the subgroup analysis of this study, we found 
that the predictive efficacy of women was only stronger than that of men in both exter-
nal validation sets when TyG=8.75 (AUC=0.849 and 0.867) and TyG=8.93 (0.881 and 
0.908). Among all the remaining cut-off values of TyG and AIP, the AUC of the male sub-
group was higher than that of the female subgroup. Our model has good predictive value 
for both men and women. Furthermore, this result suggests that the role of the TyG-
index in predicting cardiovascular risk in women may be worthy of further exploration.

In this study, we used oculomics and non-invasive clinical data to predict the TyG 
index and AIP which are good indicators for CVD. Our research proposed that machine 
learning-based models successfully enhance the predictive performance for detecting 
abnormal ranges of AIP and TyG-index by using clinical questionnaires and oculomics. 
This conclusion holds promise for early identification of heightened cardiovascular risk 
by forecasting atypical TyG-index and AIP values in patients.

Therefore, our study has several strengths. First, we achieved good prediction of TYG 
and AIP by using variables from oculomics and clinical questionnaires. Both oculomics 
and clinical variables in the questionnaire were obtained non-invasively. These data are 
well recorded in the KNHANES database. We achieved the acquisition of these data and 
the construction of models at low cost. Low cost and non-invasiveness are important 
advantages for widespread application in clinical real-life scenarios [65]. Furthermore, 
although in its early stages, artificial intelligence (AI)-based oculomics methods may be 
a valuable non-invasive tool in primary care settings, enabling accurate diagnosis more 
cost-effectively and providing immediate results [66, 67]. Thus, our study has the advan-
tage of enabling early detection and early intervention to prevent the progression of 
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CVD in individuals at a low cost. In addition, due to the easy availability of ocular bio-
markers, our study may also help eliminate barriers to uneven medical resources among 
regions with different economic levels.

Limitation
Nevertheless, this study still bears several limitations. Firstly, whether the results of this 
study can be applied to populations of other races that differ significantly from Asians 
remains to be further validated. The KNHANES dataset is primarily composed of the 
East Asian population. Previous studies have indicated differences in upper eyelid anat-
omy between Asians and Caucasians [68]. Secondly, we only included a limited number 
of oculomics measurement variables due to data limitations. The original fundus pho-
tographs in the KNHANES database were inaccessible, preventing us from establishing 
an image-based predictive model. Incorporating imaging data such as oculomics photo-
graphs and retinal images could yield more high-throughput information and potentially 
improve the prediction of cardiovascular risk [10].

Conclusion
In this study, we integrated two classifications of prognostic determinants, encompass-
ing both clinical and oculomics textual parameters, in the formulation of the subject 
selection and model establishment. Throughout the experiment, we independently pre-
dicted the TyG-index and the AIP, yielding encouraging findings. These two variables 
collectively portray the metabolic status and may have an influence on the risk predic-
tion of cardiovascular risks.
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