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Abstract 

Competing endogenous RNAs play key roles in cellular molecular mechanisms 
through cross-talk in post-transcriptional interactions. Studies on ceRNA cross-talk, 
which is particularly dependent on the abundance of free transcripts, generally involve 
large- and small-scale studies involving the integration of transcriptomic data from tis-
sues and correlation analyses. This abundance-dependent nature of ceRNA interactions 
suggests that tissue- and condition-specific ceRNA dynamics may fluctuate. However, 
there are no comprehensive studies investigating the ceRNA interactions in normal 
tissue, ceRNAs that are lost and/or appear in cancerous tissues or their interactions. 
In this study, we comprehensively analyzed the tumor-specific ceRNA fluctuations 
observed in the three highest-incidence cancers, LUAD, PRAD, and BRCA, compared 
to healthy lung, prostate, and breast tissues, respectively. Our observations pertain-
ing to tumor-specific competing endogenous RNA (ceRNA) interactions revealed 
that, in the cases of lung adenocarcinoma (LUAD), prostate adenocarcinoma (PRAD), 
and breast invasive carcinoma (BRCA), 3,204, 1,233, and 406 ceRNAs, respectively, 
engage in post-transcriptional intercommunication within tumor tissues, in contrast 
to their absence in corresponding healthy samples. We also found that 90 ceRNAs are 
shared by the three cancer types and that these ceRNAs participate in ceRNA interac-
tions in tumor tissues compared to those in normal tissues. Among the 90 ceRNAs 
that directly interact with miRNAs, we uncovered a core network of 165 miRNAs and 63 
ceRNAs that should be considered in RNA-targeted and RNA-mediated approaches 
in future studies and could be used in these three aggressive cancer types. More 
specifically, in this core interaction network, ceRNAs such as GALNT7, KLF9, and DAB2 
and miRNAs like miR-106a/b-5p, miR-20a-5p, and miR-519d-3p may have potential 
as common targets in the three critical cancers. In contrast to conventional meth-
ods that construct ceRNA networks using differentially expressed genes compared 
to normal tissues, our proposed approach identifies ceRNA players by considering their 
context within the ceRNA:miRNA interactions. Our results have the potential to reveal 
distinct and common ceRNA interactions in cancer types and to pinpoint critical RNAs, 
thereby paving the way for RNA-based strategies in the battle against cancer.
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Introduction
The most common cancer types in the world are breast, prostate, and lung cancer, 
according to the latest cancer reports [16]. Therapeutic approaches for cancer types dif-
fer according to tissue-specific conditions, the microenvironment, and cellular molecular 
regulations. Conventional combination therapy approaches such as chemotherapy and 
radiotherapy can not always overcome the aggressive nature of cancer types. Therefore, 
authorities from distinct perspectives such as immunotherapy, smart chemotherapeu-
tics, biomolecules, etc., are exerting intense efforts to develop therapeutic approaches 
[4, 14, 24, 49]. Conversely, the advancement of highly effective cancer therapeutic strate-
gies is intricately linked to a profound comprehension of cancer molecular biology [36]. 
However, data from emerging molecular techniques have revealed the enrichment and 
complexity of cancer molecular mechanisms [43].

MicroRNAs (miRNAs) are among the most important regulators of cancer molecular 
mechanisms. As a crucial class of non-coding RNAs, miRNAs mediate the post-tran-
scriptional regulation of protein-coding mRNAs abundance and cross-talk with other 
non-coding RNAs, serving as hidden orchestrators for critical biological processes [1, 
3]. During this mediating role of miRNAs between both non- and protein-coding RNAs, 
depending on the abundance of targeted RNA transcripts, the phenomenon of com-
petition for miRNA binding with each other emerges and has been termed competing 
endogenous RNAs (ceRNAs) [39, 46, 58]. Furthermore, early evidence of ceRNA cross-
talk suggested that the competitive behavior of the pseudogene PTENP1 against the 
tumor suppressor PTEN may be involved in tumorigenesis and could even regulate can-
cer-associated signaling pathways through competition between protein-coding RNAs 
[38, 46].

The small-scale miRNA:ceRNA interactions (interactions between a few 
miRNA:ceRNAs) focused on understanding the dynamics of miRNA:ceRNA interactions 
have gradually given way to inquiries into the assembly of large-scale miRNA:ceRNA 
networks and understanding their functions [31]. As a result, miRNA:ceRNA interac-
tion networks have been established by integrated analysis of co-expressed RNAs that 
are negatively correlated with expression of shared miRNAs, usually based on differ-
ential expression analysis, thus elucidating disease- or tissue-specific ceRNA functions 
and critical players [9, 15, 62]. Several statistical methods have also been suggested for 
detecting ceRNA interactions based on various correlation methods (i.e., sparse partial 
correlation (SPC), sum correlation, correlation-based network, and dynamic correlation) 
[20, 23, 31, 52]. As a result, databases and distinct web interfaces providing ceRNA inter-
actions in cancer tissues have been suggested [19, 48, 50].

In this study, we focused on the fluctuations in miRNA:ceRNA interactions in 
tumor tissues compared to healthy tissues to provide a comprehensive and deeper 
perspective on the cancer types with the highest incidence. Using transcriptomic 
datasets obtained from the TCGA, we first compiled ceRNA interactions in healthy 
tissues from the breast, prostate, and lung and then in cancer samples of these tissues 
using sparse partial correlation. We then performed both a comparison of these can-
cers with healthy tissues and a comprehensive analysis of ceRNA interaction profiles 



Page 3 of 16Ari Yuka and Yilmaz ﻿BioData Mining           (2024) 17:11 	

between cancer tissues. In accordance with the complex and ambiguous nature of 
ceRNA interactions, apart from integrating differentially expressed miRNAs and ceR-
NAs, or miRNA:ceRNA interaction network measurements, the partial correlation-
based workflow was conducted in this study. The results of the study revealed that the 
miRNA:ceRNA interaction consisting of 63 genes and 165 miRNAs is common to all 
three cancer tissues and that the GALNT7, KLF9 and DAB2 genes may be involved in 
critical ceRNA interactions in all three cancer tissues.

Results
Tissue‑specific ceRNA interactions in healthy tissues

Analysis of miRNA and RNA sequencing data and the miRNA:target interaction 
matrix revealed that ceRNA interaction dynamics changed in each tissue. For miRNA 
and RNA transcriptomic data of healthy lung tissue, 46 and 59 tissue samples, respec-
tively, were obtained from TCGA. As a result of the sparse partial correlation per-
formed with these datasets, 393 significant ceRNAs (p-value < 0.05) were detected 
in the lung tissue. Using the ENCORI dataset, the main miRNA:ceRNA interaction 
network was compiled and contained 444 connections with 87 miRNAs of which 
these ceRNAs interacted as picked at Table 1. To examine this large-scale network as 
the subnetworks, betweenness centrality was used and the splitting as sub-networks 
were performed by considering this measurement. As a result of the clustering, the 
multiple miRNA:ceRNA criterion was considered in the networks. In other words, 
subnetworks with large numbers of miRNAs/ceRNAs clustered around a single 
miRNA/ceRNA or less than 3 nodes were excluded. When subnetworks with multiple 
miRNA:ceRNA interactions were examined after clustering, 5 miRNA:ceRNA sub-
networks emerged in the lung tissue (Fig. S2).

Interestingly, for prostate tissue with an equal number of miRNA and RNA sequenc-
ing data (i.e. 52 samples), a much larger miRNA:ceRNA interaction main network was 
identified. After clustering, 13 subnetworks were generated and a significant propor-
tion of the crucial miRNAs and ceRNAs in healthy tissue were found to participate 
in the main subnetwork. While 8 networks obtained from healthy prostate tissue 
included limited interactions between a few miRNAs and ceRNAs, 4 miRNA:ceRNA 
interactions were found to constitute moderate subnetworks (Fig. S3). In the healthy 
breast, where the largest amount of transcriptomic data was acquired (113 RNA and 
104 miRNA samples), sparse partial correlation analysis showed that, unlike other 

Table 1  Overall ceRNA interaction content of healthy and tumor tissues

Tissues Type ceRNAs miRNAs Connections

Lung healthy 393 87 444

tumor 3,270 641 44,605

Prostate healthy 1,406 637 21,141

tumor 1,769 639 28,775

Breast healthy 505 614 6,693

tumor 454 618 8,878
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tissues, 505 ceRNAs were interacted by a higher number miRNAs (614) than ceRNAs 
and involved 6,693 interactions. Clustering resulted in one large-scale containing 67 
miRNAs and 85 ceRNAs, and 5 other subnetworks in breast tissue (Fig. S4).

ceRNA interactions in tumor tissues

Sparse partial correlation on transcriptomic data and interaction matrices revealed 
completely dissimilar ceRNA interactions in lung (LUAD), prostate (PRAD) and breast 
(BRCA) cancers compared to those in normal tissues. In lung cancer, which has a sig-
nificantly greater transcriptomic data content (i.e., 519 miRNA and 539 RNA expres-
sion samples) than in normal tissue samples, the analysis showed that 3,270 ceRNAs 
participated in 44,605 interactions across 641 miRNAs, and 24 subnetworks were 
obtained from this large-scale interaction by betweenness centrality-dependent cluster-
ing (Table 1). Furthermore, in the context of lung adenocarcinoma, it’s worth noting that 
miRNA:ceRNA interactions predominantly occur as local interactions by subnetworks 
involving relatively fewer miRNA and ceRNA components than in normal tissue.

On the other hand, there were 498 and 501 miRNA and RNA transcriptomic sam-
ples, respectively, for PRAD tissue, and analysis of these data revealed that the large-
scale network of PRAD tissue involved 28,775 interactions comprising 639 miRNAs 
and 1,769 ceRNAs (Table 1). As in healthy tissue, among the subnetworks derived from 
PRAD samples (number of subnetworks, 17), the large-scale subnetwork of 1,851 con-
nections between 127 miRNAs and 237 ceRNAs prevailed and was followed by 5 small-
scale subnetworks. The most fascinating findings were obtained from BRCA tissue. RNA 
and miRNA expression data from 1,111 and 1,096 samples, respectively, were obtained 
in BRCA tissue, and 8,878 miRNA:ceRNA interactions between 618 miRNAs and 454 
ceRNA nodes were revealed, as shown in Table  1. Centrality-dependent clustering 
revealed that a significant proportion of cross-talking miRNAs and ceRNAs participate 
in a major large-scale subnetwork, and only two networks (which contain only a few 
interactions) may participate in miRNA:ceRNA interactions (total subnetwork = 11).

Lung adenocarcinoma vs healthy lung tissues

Unlike the ceRNA interactions found in normal tissues, 3,204 LUAD-specific ceRNAs 
were identified. In addition to the common 66 ceRNAs involved in ceRNA interactions 
in normal tissues, 327 genes were not involved in ceRNA activity in tumor tissues. DEG 
analysis of these ceRNAs revealed 113 downregulated genes and 248 upregulated genes. 
Among the fluctuating ceRNAs, those that were analyzed by DEA (padj < 0.05) were 
found to be significantly associated with many cancer-related hallmarks and KEGG 
pathways. Particularly noteworthy was the enrichment in the KEGG cell cycle (p-value: 
0.0037) and purine metabolism (p-value: 0.0006). Consistent with this, the enrichment 
in G2M checkpoint, E2F transcription factors, and MYC targets suggest that clustered 
ceRNA interactions are involved in the function of cancer cell proliferation (Supplemen-
tary Fig. S6).

The miRNA:ceRNA networks consisting of miRNAs interacting with these ceRNA 
nodes were analyzed. A total of 3,204 ceRNAs were observed to participate in an inter-
action network comprising 42,829 connections with 641 miRNAs. To analyze this multi-
layered cross-talk as submodules, clustering was implemented according to betweenness 
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centrality measurement. As a result, most miRNAs and genes involved in LUAD-specific 
miRNA:ceRNA interactions were shown to participate in a large-scale subnetwork with 
167 miRNAs and 363 ceRNAs, and 7 miRNA:ceRNA interaction subnetworks were also 
distinguished. The most outstanding of the networks are shown in Fig.  1A-D and the 
other three are depicted in Fig. S5 in the Supplementary file.

Among these 7 subnetworks, a subnetwork of 6 miRNAs (miR-1197, miR-1224-5p, 
miR-3064-5p, miR-139-5p, miR-6504-5p, and miR-193b-5p) and 7 ceRNAs (CBX3, 
EHMT2, AK2, IDE, CKAP5, EHMT2, NISCH, and FAM168A). The functions of 

Fig. 1  LUAD-specific miRNA:ceRNA networks, miRNAs and ceRNAs are shown with blue diamonds and 
ceRNA brown squares, respectively. The log2 transformed expression values (y-axis) of ceRNAs (x-axis) in 
tumors (red) and healthy (green) tissues are shown in box plots
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Chromobox protein homolog 3 (CBX3), which is known to be especially critical in epi-
genetic mechanisms, have been explored in various cancer tissues and recent studies 
have emphasized that CBX3 has prognostic significance in non-small cell lung cancer 
and is significantly associated with poor overall survival in patient with lung cancer [30, 
56]. Among the limited number of studies, Yan et al. constructed weighted gene correla-
tion networks with mRNAs and lncRNAs negatively co-expressed with shared miRNAs 
in the TCGA LUAD dataset [60]. As a result, CBX3 was shown to display a promi-
nent interaction module with the protein-coding gene P4HA1 and lncRNAs, namely 
AC032632.6, AC026356.1, and LINC02535, mediated by miR-30b-5p and miR-30d-5p.

Additionally, EMHT2 interacted with CBX3 through the CBX3/miR-1224-5p/IDE/
miR-3064-5p/EHMT2 axis. Similarly, compared with that in normal tissue, the expres-
sion of miR-1224 in this axis is generally downregulated in lung tumor tissue [33], 
although the tumorigenic, angiogenic, and carcinoma progression functions of miR-
3064 in different cancer types have been explained, its functions in lung cancer have not 
been clarified [55, 63]. Other ceRNAs involved in this interaction, such as Cytoskele-
ton-associated protein 5 (CKAP5) and Adenylate kinase 2 (AK2), have been reported 
to regulate characteristic cancer biological processes, particularly in pathways such as 
microtubule stabilization or TGF-β/Smad signaling [5, 7]. While there are a limited 
number of reports in the literature addressing the ceRNA regulatory function regulation 
of these genes in cancer tissue and their interactions with several non-coding genes, our 
analyses strikingly revealed that miRNAs may regulate possible tumor-associated cross-
talk between these genes, which may act as ceRNAs reported in diverse studies.

Postate adenocarcinoma vs healthy prostate tissues

In prostate cancer, the number of genes observed in PRAD-specific ceRNA interactions 
that were not found in normal tissues was 1,233. However, the sparse partial correlation 
analysis of prostate tissue samples revealed a high number of common ceRNAs in tumor 
and healthy tissues (n=536), while 870 ceRNAs did not exhibit competitive behavior in 
tumor tissue. DEG analysis with these PRAD-specific ceRNAs strikingly revealed differ-
ences in the expression of only 81 genes, 41 upregulated and 40 downregulated genes. 
Functional annotation revealed that these genes were significantly enriched in the 
tumor-associated KEGG arginine and proline metabolism (p-value: 0.015) and hallmark 
epithelial to mesenchymal transition (p-value: 0.036) (data not shown).

The network of 1,233 ceRNAs with miRNA interactions contained 17,299 connections. 
Clustering from this large-scale network according to betweenness centrality yielded 11 
small-scale miRNA:ceRNA interactions in addition to a large-scale subnetwork between 
335 ceRNAs and 217 miRNAs. In contrast to LUAD tissue, subnetworks in PRAD tissue 
exhibited small-diameter miRNA:ceRNA interactions, except for one dedicated interac-
tion involving 5 miRNAs and 7 ceRNAs. Therefore, these small-diameter miRNA:ceRNA 
interactions were not subjected to subsequent analyses.

Among the PRAD-specific miRNA:ceRNA subnetworks, a subnetwork involving 
interactions between 5 miRNAs (miR-455-5p, miR-516b-5p, miR-185-5p, and miR-
365a/b-3p) and 7 ceRNAs (SLC25A39, XPOT, IQGAP1, NDST1, RQCD1, ESRRA, 
and ATXN7L3B) was found (Fig. 2A and B). Although this interaction shows ceRNA 
potential in sparse partial correlation analysis, it is distinct from the network observed 
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in LUAD in terms of its expression change dynamics. In this critical miRNA:ceRNA 
interaction, the changes in the expression of ceRNAs exhibit a discordant profile. 
There are various reports that genes involved in this interaction such as SLC25A39, 
NDST1, and RQCD1 regulate energy metabolism, chemoresistance, and the Akt 
signaling pathway, respectively, in cancer tissues [17, 18, 64]. However, there is a sig-
nificant gap in studies investigating the comprehensive function of ceRNAs. In this 
respect, our findings suggest that this cross-talk should be evaluated in the regulation 
of these genes or miRNAs in PRAD.

Fig. 2  PRAD- (A, B) and BRCA- (C, D) specific ceRNA subnetworks. miRNAs and ceRNAs are shown with blue 
diamonds and ceRNA brown squares, respectively. The log2-transformed expression values (y-axis) of ceRNAs 
(x-axis) in tumors (red) and healthy (green) tissues are shown in box plots
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Breast cancer vs healthy breast tissues

The fluctuating ceRNA interactions in breast cancer have completely distinct character-
istics from those in other tissues. A total of 457 ceRNAs, a significant portion of the 
ceRNA interactions obtained as a result of ceRNA sparse partial correlation in healthy 
tissue, were not observed in the BRCA ceRNA interactions. Forty-eight common and 
406 BRCA-specific ceRNAs were found between tumor and healthy tissues. When 406 
BRCA-specific ceRNAs were subjected to DEA, only 44 genes exhibited significant dif-
ferential expression. Among the DEGs, 13 were down- and 31 up-regulated (|log(FC)| > 
1 and padj < 0.05). The significant enrichment in the hallmark G2M checkpoint (p-value: 
0.007) and mitotic spindle (p-value: 0.004), and in the KEGG neuroactive ligand-recep-
tor interaction (p-value: 0.03) were noteworthy (Fig. S7).

However, a network of 406 BRCA-specific ceRNAs with many miRNAs (n=617) 
prevailed. Clustering by betweenness centrality revealed several small diameter 
miRNA:ceRNA interactions in addition to a large-scale subnetwork in breast cancer as 
in the LUAD and PRAD tissues. This large-scale miRNA:ceRNA subnetwork contained 
167 miRNAs and 129 ceRNAs. In addition, two subnetworks emerged in BRCA, con-
taining 6 miRNAs:6 ceRNAs and 3 miRNAs:2 ceRNAs (Fig. 2C and D).

One of the first interactions that emerged in breast cancer tissue compared to nor-
mal tissue was the interaction between RMND5A, EIF5B, SUN2, KLHL18, KDSR, 
RPSK6KA3 ceRNAs and the miR-338-5p, miR-223-3p, miR-129-5p, miR-642a-5p, 
miR-3619-5p, and miR-382-5p miRNAs. Interestingly, nodes in this small-scale 
miRNA:ceRNA interaction have tissue-specific expression and/or function. For exam-
ple, miR-21-mediated regulation of RMND5A expression might be associated with sur-
vival in patients with breast cancer [6]. Conversely, miR-590-mediated decreases in the 
expression of this gene may result in the inhibition of metastatic pathways in pancre-
atic adenocarcinoma [10]. Similarly, the SUN2 gene, which has distinct tumor-specific 
functions, has also been implicated in these interactions. It has been emphasized that 
decreased expression of the SUN2 gene in breast cancer tissues may be critical for can-
cer prognosis [8]. In this interaction, KLHL18 has a tumor suppressor function, while 
KDSR is active through sphingolipid metabolism and its inhibition causes endoplasmic 
reticulum dysfunction specific to breast cancer cells [13, 21]. In general, the number of 
ceRNAs involved in this interaction tends to increase, while the expression of EIF5B, 
which is associated with poor prognosis, is slightly increased in tumor tissue [45].

Comparison of tumor‑specific ceRNA interactions

We evaluated miRNA:ceRNA interactions in tumors compared to healthy tissues. For 
each tissue type (i.e., lung, prostate, and breast), only the ceRNAs involved in sig-
nificant ceRNA interactions in tumor tissues were the subject of the analysis. By over-
laying the tumor-specific ceRNAs in all three cancer types, 90 ceRNAs were found 
to participate in interactions in all cancer types. Functional annotation of these 90 
ceRNAs via DAVID revealed that they are significantly involved in diverse biological 
processes and molecular functions [41] (Fig. S8). In addition, when the expression 
profiles of these genes in tumor and healthy tissue samples were examined, it was 
found that while a significant expression pattern was observed in healthy tissues in 
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general, there was an insignificant and fluctuating expression pattern in tumor tis-
sues. However, it cannot be argued that there was a concordance in the changes in the 
expression of 90 genes involved in ceRNA interactions across three tissues (Fig. 3B-
D). This may indicate that it is possible to pinpoint critical genes that cannot be 
detected by DEG analysis.

Interestingly, in all three tumor types, a high number of miRNAs (n=492) were 
observed to participate in miRNA interactions with the common 90 ceRNAs that 
occur in cancer tissue unlike in normal tissues (Fig.  3A). When this subnetwork 
was overlaid with the DEG analysis results of 90 genes, a co-regulation fashion was 
observed especially in particular genes. The most significant change was observed in 
KIF11 with log2FCs of 2.58, 0.90, and 2.39 in LUAD, PRAD, and BRCA, respectively 

Fig. 3  Intersected tumor-specific ceRNAs across LUAD, PRAD, and BRCA. Venn diagram (A) of tumor-specific 
ceRNAs in three cancer types. Comparison of the expression profiles of common (n=90) ceRNAs in LUAD (B), 
PRAD (C), and BRCA (D) tissues from healthy individuals and tumor tissues. Blue and pink indicate healthy and 
tumor samples, respectively. Chord diagram (E) of core common miRNA:ceRNA interactions in LUAD, PRAD, 
and BRCA​

Table 2  Differential gene expression profile of common ceRNAs in the subnetwork. The values in 
LUAD, PRAD, and BRCA variables refer to the log2(fold change) of the given ceRNAs

ceRNA LUAD PRAD BRCA​

KIF11 2.58 0.90 2.39

FANCA 1.90 0.64 1.79

GALNT7 1.60 0.95 1.15

ALG3 1.08 0.52 1.12

LEPR -1.95 -0,80 -2.97

KLF9 -1.76 -0.39 -1.76

DAB2 -1.16 0.30 -1.03
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as shown in Table 2. On the other hand, no significant downregulated ceRNA pattern 
was observed in any of the tissues in this subnetwork. The main reason for this dif-
ference is that the downregulation was slight, especially in PRAD tissue (Table 2). All 
details of these common 90 ceRNAs are given in the Supplementary data.

Additionally, a core subnetwork consisting of 165 miRNAs and 63 ceRNAs was 
revealed, when isolated nodes in this network were excluded (Fig. 3E). In this core net-
work, miRNAs with the highest centrality degrees among 165 miRNAs participating in 
cross-talk of 63 ceRNAs were miR-106a-5p, miR-20a-5p, miR-106b-5p, miR-519d-3p, 
and miR-17-5p (Supplementary data). Some of the ceRNAs given in Table  2 (LEPR, 
ALG3, KIF11, and FANCA) were found to be isolated in miRNA interactions formed by 
90 common ceRNAs. On the other hand, our analysis showed that the GALNT7, KLF9, 
and DAB2 genes may be particularly critical as ceRNAs in three cancer tissues. Nota-
bly, there were no notable changes in the expression of ceRNAs with a high degree of 
centrality (Supplementary data). It would not be argued that these findings are entirely 
contrary to the nature of the ceRNA hypothesis. This is because the ceRNA hypothesis 
is principally explained by the fact that a change in the expression of one ceRNA in the 
network through shared miRNAs causes the expression of other nodes to be regulated 
in the same fashion [39, 46]. In this case, as the number of interactions (connections) 
between miRNAs and ceRNAs increases, the amount of transcript change required for 
a significant effect greatly increases due to the growing number of shared ceRNAs and 
miRNAs. Therefore, in ceRNA interactions that involve a tremendous amount of cross-
talk, a significant level of perturbation (e.g. when the expression of a gene increases too 
much) can only yield minor changes at the transcriptomic level. However, the impor-
tance of these small changes in biological processes is extremely uncertain.

Methods
The study relies on the collection of transcriptomic data and miRNA:target interactions, 
the sparse partial correlation using these files. This comparative and comprehensive 
analysis of miRNA:ceRNA interactions in tissues (lung, prostate, and breast) and condi-
tions (tumor vs healthy) revealed the fluctuating miRNA:ceRNA interactions. The gen-
eral workflow of the study is depicted in Fig. S1.

Data acquisition

The miRNA isoform and RNA sequencing data (as counts) for normal and tumor sam-
ples of breast, prostate, and lung tissues were obtained from the TCGA database using 
the TCGAbiolinks and SummarizedExperiment R packages [12, 34, 35]. All the data 
cleaning and manipulation stages were performed using standard R Tidyverse functions 
[54].

The miRNA:target pairs were obtained from the ENCORI (The Encyclopedia of RNA 
Interactomes) database [26]. In the ENCORI database, miRNA targets were grouped 
into mRNA, lncRNA (lincRNA, processed_transcript, sense_intronic, 3prime_overlap-
ping_ncRNA, antisense, sense_overlapping, bidirectional_promoter_lncRNA), circRNA, 
sncRNA, and pseudogene. Separate datasets were processed and combined.
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Sparse partial correlation for healthy and tumor samples for three distinct tissues

To identify the tissue-specific miRNA:ceRNA network in healthy and tumor tissues, the 
SPONGE package based on the sparse partial correlation method was implemented [31]. 
The log2-transformed miRNA and RNA sequencing count data from six subjects and 
the miRNA:target matrix were used as input files. As the workflow demands a consider-
able amount of memory, the SPONGE analysis was performed in a high-performance 
computing (HPC) environment. The significance threshold was picked as p-value < 0.05, 
and as a result, ceRNA:ceRNA pairs were found for all subjects.

Construction of tissue‑ and condition‑specific networks

We collected all miRNA:target interactions for potential ceRNA:ceRNA pairs with par-
tial correlations from the ENCORI database. These miRNA:ceRNA datasets were trans-
formed into graph objects using the tidygraph package [37]. Then, we applied network 
clustering based on edge betweenness, a widely used centrality measure in biological 
networks [47]. This allowed us to detect the evolving ceRNA regulators within inte-
grated tissue miRNA:ceRNA interaction networks, both as a whole and in subnetworks.

Differential gene expression analysis

To analyze the relevance of the fluctuation in ceRNA interactions to the change in the 
expression of ceRNA genes, differential gene expression analysis was performed on the 
transcriptomic data of normal and tumor samples obtained from the TCGA for three 
tissues. The DESeq2 package was used for the analyses and the comparisons were based 
on common or discrete genes according to tissue type or condition (i.e., healthy vs 
tumor) [32].

Functional annotation

The statistics from the DEG analysis of specific ceRNA genes in tumor tissues were 
used as input in the fgsea package and gene set enrichment analysis was performed [25]. 
Functional annotation analysis of common ceRNAs (n=90) obtained from the inter-
section of ceRNAs detected in tumor tissues apart from normal tissues was performed 
using DAVID [41].

Discussion
Following the growing consensus that competitive endogenous RNAs are critical and 
complex cross-talks involved in the regulation of cellular functions beyond hypoth-
esis, a large number of studies have been conducted to computationally identify the 
ceRNA:miRNA axes involved in abnormal functions through these mechanisms or to 
modulate these axes with specific mimics. The potential of the ceRNA interactome for 
therapeutic purposes has been revealed, particularly in many disease types such as met-
abolic, cardiovascular disorders, and cancer [44, 66]. In particular, large- and small-scale 
ceRNA:miRNA interactions revealed from transcriptomics and miRNA:target interac-
tion data have enabled significant progress in cancer treatment. Many of these studies 
address large- or small-scale interactions in cancer. However, since the ceRNA interac-
tions are characterized by competitive behavior depending on RNA abundance, fluctua-
tions in ceRNA interactions between healthy and tumor tissues are naturally anticipated. 
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In this case, the analysis and discovery of ceRNA interactions in healthy tissues but 
not in cancerous tissues may reveal novel insights for developing RNA-based cancer 
therapeutics.

In this study, we analyzed ceRNA-miRNA interactions in healthy and tumor tissues 
of the cancer types with the highest incidence in the world and revealed common or 
tumor-specific biased ceRNA interaction dynamics in these cancer types compared with 
healthy tissues. For this purpose, we compiled the main miRNA:ceRNA interactions in 
healthy and cancer tissue datasets of lung, prostate, and breast from the TCGA database 
using sparse partial correlation. Subsequently, ceRNA interactions that are common or 
specific to tumor tissues were comprehensively deciphered (Fig. S1).

Our analyses revealed that ceRNA candidates from healthy and tumor samples of each 
tissue type were different, regardless of the number of samples. For the lung, prostate, 
and breast, the numbers of common ceRNAs between healthy and tumor tissues were 
66, 536, and 48, respectively. However, for LUAD, PRAD, and BRCA, the numbers of 
ceRNAs that distinguished from normal tissues were 3,204, 1,233, and 406, respectively. 
The most notable fluctuation among cancer types was the ceRNAs that arose in LUAD 
tissue. We found that almost 7 times more significant ceRNAs participated in LUAD tis-
sue, which contained only 66 common ceRNAs with healthy tissue, according to sparse 
partial analysis, as shown in Table 1. On the other hand, although a slight increase in the 
number of ceRNAs was also observed in PRAD tissue, these cells shared a significant 
number of common ceRNAs (536) with healthy tissue. Interestingly, an approximately 
12% lower number of significant ceRNAs was observed in BRCA tissue than in breast 
tissue. However, the interactions of decreased ceRNAs through miRNAs increased by 
almost 30% (Table 1).

When the miRNA interactions of these ceRNAs in cancer tissues were compiled and 
networks were constructed, the unique large-scale miRNA:ceRNA interaction of each 
tissue resulted in varying numbers of miRNA:ceRNA clusters. DEG analysis for tumor-
specific ceRNAs showed that a significant proportion of these tumor-specific ceRNAs 
had no significant change in expression. In this regard, our analysis is distinct from con-
ventional methods involving the integration of ceRNAs and miRNAs and allows for the 
flexible perspective to capture missing interactions that may arise from spontaneous 
RNA-seq data. Notably, gene set enrichment analyses based on statistics of tumor-spe-
cific ceRNAs have been limited by the small number of DEGs in tumor-specific ceRNAs. 
As a consequence, gene set enrichment analyses of LUAD- and BRCA-specific ceRNAs 
have yielded significant results in several signaling pathways.

The most critical finding of our study was the 90 ceRNAs shared by all tumor types 
from the unique ceRNAs. When the expression of these ceRNAs was compared between 
tumor and healthy tissues, no apparent pattern was observed in tumor tissues, while the 
expression of ceRNAs was concordant with that in normal tissues. These critical find-
ings suggest that the 90 ceRNAs in the three tumor tissues are somehow disrupted and 
may be related to cancer (Fig. 3B-D). The functional annotation of ceRNAs common to 
all three tumor tissues showed that ceRNA regulatory roles may be predominant, espe-
cially in metabolism (adipocytokine signaling) or AMPK signaling pathways (Fig. S8). 
Therefore, these 90 ceRNAs and their interacting miRNAs were analyzed, and a many-
to-many miRNA:ceRNA network (165 miRNAs and 63 ceRNAs), which is critical for 
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all three cancers, was revealed (Fig.  3E). In this core network, the most crucial miR-
NAs according to centrality degree measurement were miR-106a-5p, miR-20a-5p, miR-
106b-5p, miR-519d-3p, and miR-17-5p. Previous work was consistent with our findings 
and reports significant roles of these miRNA in cancer [11, 42]. On the other hand, func-
tional annotation of ceRNAs common to all three tumor tissues showed that ceRNA reg-
ulatory roles may be predominant, especially in metabolism (adipocytokine signaling) or 
AMPK signaling pathways (Fig. S8). Considering the findings in the literature in par-
allel to our large-scale ceRNA analysis, comprehensive analysis of ceRNA fluctuations 
revealed remarkable results for the integration of the small pieces of the main puzzle in 
the literature. In future studies, new therapeutic prospects may be offered by artificial 
ceRNAs (such as circRNA or lncRNA mimics) that can collectively target and regulate 
this extensive ceRNA cluster.

On the other hand, among the tumor-specific 63 ceRNAs, GALNT7, KLF9, and DAB2, 
which are common to all three tumor tissues and were significantly expressed in at least 
two tissues (Table 2), were found in this core miRNA:ceRNA cluster. For example, up-
regulation of the GALNT7 gene has been associated with tumor progression in pros-
tate, cervical, and laryngeal cancers [27, 40], but has been the subject of only a limited 
number of studies in terms of ceRNA interactions [28]. KLF9, the increased expression 
of which has been reported to have an inhibitory effect on cancer, has been used for 
therapeutic purposes in various cancer types. Axes with few nodes have been shown to 
exist, and these axes can be used therapeutically against cell proliferation, invasion, and 
migration [22, 61, 65]. In addition, KLF9 has been reported to participate in coregulatory 
ceRNA interactions in bladder urothelial carcinomas [29]. Finally, although the antican-
cer effect of DAB2, which is common in all three cancer tissues, was first reported in 
ovarian cancer, DAB2 is regulated by non-coding RNAs in distinct cancer types [51, 59].

Considering the findings in the literature in parallel to our large-scale ceRNA analy-
sis, comprehensive analysis of ceRNA fluctuations revealed remarkable results for the 
integration of the small pieces of the main puzzle in the literature. Here we report a 
core network resulting from the condition-specific differences in ceRNA interactions, 
by using a method that identifies ceRNA interactions that are sensitive to the expres-
sion of miRNA targets, shared miRNAs, and the expression of these miRNAs, but sam-
ple-specific aspects should be considered. ceRNA interactions can be observed in the 
conditions of specific stoichiometric thresholds arising from the abundance of miRNAs 
and their targets, and biological function can only be achieved under those conditions 
[2]. Therefore, the core network can also be more functional biologically by narrowing 
it according to the ratios of ceRNA and shared miRNA expressions of relevant sample. 
Furthermore, various molecular and epigenetic mechanisms, spanning from genomic 
structural alterations to gene regulatory networks, are implicated in the regulation of 
protein-coding genes by non-coding RNAs. For example, TF-mRNA-miRNA driven 
feed-forward loops or copy-number alterations (CNAs) in specific chromosome regions 
of ceRNAs have been reported to be associated with critical biological processes such 
as immunity and metastasis hallmarks, respectively [53, 57]. In our study, we reported 
a shared core miRNA:ceRNA network for 3 critical cancer types compiled according to 
the sparse partial correlation by using the expression of miRNAs and their targets in 
distinct tissues and conditions. However, deeper tissue-specific investigation of these 
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interactions by considering TFs or structural alterations may lead to a more targeted 
focus on miRNA:ceRNA interactions, so new therapeutic prospects may be offered by 
artificial ceRNAs (such as circRNA or lncRNA mimics) that can collectively target and 
regulate this ceRNA clusters.

Conclusion
Our results demonstrate a comprehensive analysis of ceRNA interactions that differ 
between cancer and healthy tissues, in addition to the miRNA:ceRNA interactions that 
have been found at large- or small- scales. Conventional ceRNA interactions are typ-
ically focused on diseased tissue and are often based on changes in the expression of 
ceRNAs. However, the perspective of this study provides a deep understanding of the 
shift of cancer relative to default (i.e. healthy) ceRNA interactions. This integrated study 
of the most critical cancers has also uncovered the common and distinct modules of 
ceRNA dynamics that are changed in cancer types. Our results could lead to the devel-
opment of novel RNA therapeutics that may exhibit common or tissue-specific efficacy 
in these three cancer types.
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