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Abstract 

Objectives:  The elderly are disproportionately affected by age-related hearing loss 
(ARHL). Despite being a well-known tool for ARHL evaluation, the Hearing Handicap 
Inventory for the Elderly Screening version (HHIE-S) has only traditionally been used 
for direct screening using self-reported outcomes. This work uses a novel integration 
of machine learning approaches to improve the predicted accuracy of the HHIE-S tool 
for ARHL in older adults.

Methods:  We employed a dataset that was gathered between 2016 and 2018 
and included 1,526 senior citizens from several Taipei City Hospital branches. 80% 
of the data were used for training (n = 1220) and 20% were used for testing (n = 356). 
XGBoost, Gradient Boosting, and LightGBM were among the machine learning models 
that were only used and assessed on the training set. In order to prevent data leak‑
age and overfitting, the Light Gradient Boosting Machine (LGBM) model—which had 
the greatest AUC of 0.83 (95% CI 0.81–0.85)—was then only used on the holdout test‑
ing data.

Results:  On the testing set, the LGBM model showed a strong AUC of 0.82 (95% CI 
0.79–0.86), far outperforming conventional techniques. Notably, several HHIE-S items 
and age were found to be significant characteristics. In contrast to traditional HHIE 
research, which concentrates on the psychological effects of hearing loss, this study 
combines cutting-edge machine learning techniques—specifically, the LGBM classi‑
fier—with the HHIE-S tool. The incorporation of SHAP values enhances the interpret‑
ability of the model’s predictions and provides a more comprehensive comprehension 
of the significance of various aspects.

Conclusions:  Our methodology highlights the great potential that arises from com‑
bining machine learning with validated hearing evaluation instruments such 
as the HHIE-S. Healthcare practitioners can anticipate ARHL more accurately thanks 
to this integration, which makes it easier to intervene quickly and precisely.
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Introduction
Age-related hearing loss (ARHL) is a common condition that occurs naturally as indi-
viduals age and is characterized by progressive bilateral high-frequency sensorineu-
ral hearing loss. As life expectancy increases globally, ARHL has become a significant 
health concern, particularly for individuals aged 60 and above in both the United States 
and Taiwan [1, 2]. This age-related condition can lead to various adverse consequences, 
including difficulties with balance and movement [3–5], social isolation [6], cognitive 
impairment [6–9], and even an increased risk of mortality [10]. It is crucial to identify 
and treat ARHL in a timely manner to promote healthy aging and mitigate these nega-
tive impacts.

While pure tone audiometry remains the gold standard for detecting hearing loss, its 
feasibility in large-scale population-based settings may be limited. As a result, there is 
growing interest in alternative screening techniques that are more accessible and effi-
cient. Recent research has explored various options, such as whisper voice testing [11], 
telephone-based assessments [12], computer-based evaluations [13, 14], and internet or 
smartphone applications [15–17], to evaluate hearing sensitivity in older adults. How-
ever, questionnaires such as the Traditional Chinese version of the Hearing Handicap 
Inventory for the Elderly-Screening (TC-HHIE-S) [18] offer a cost-effective and conveni-
ent approach to assessing hearing loss, particularly in clinical settings without proper 
soundproofing. Our previous research has demonstrated that this 10-question question-
naire is a reliable tool for detecting hearing loss and can serve as a suitable alternative to 
audiometry in large-scale hearing screening initiatives [18].

Declining attention span in older individuals can impact their ability to complete 
lengthy questionnaires, making it essential to develop a shorter and more efficient 
screening tool for hearing loss [19]. Additionally, understanding how individual demo-
graphics, such as age and gender, influence the accuracy of hearing loss estimation is 
crucial. Machine learning techniques offer promising solutions to address these chal-
lenges. By leveraging data-driven learning without relying on rule-based programming, 
machine learning algorithms can optimize prediction models using demographic vari-
ables and HHIE-S data to achieve accurate hearing loss estimation [20, 21].

The primary objective of this study is to develop a concise version of the HHIE-S ques-
tionnaire and evaluate its effectiveness in a Taipei community using a machine learning 
algorithm [18]. Integrating machine learning into hearing screening protocols can lead 
to more personalized and effective assessments, improving the overall health outcomes 
for older individuals with ARHL. It may also help identify high-risk individuals who 
could benefit from early interventions and support, ultimately contributing to improved 
quality of life in the aging population.

Methods
Data sources and study population

A government-funded annual geriatric health check-up program was available to Taipei 
residents 65 years of age and older from January 2016 to December 2018. Notified by the 
city government, eligible participants usually had examinations at neighborhood com-
munity hospitals. Participants from Taipei City Hospital’s Heping branch, which serves 



Page 3 of 17Yang et al. BioData Mining           (2023) 16:35 	

the Zhongzheng and Wanhua districts of Taipei, were the study’s primary focus. A total 
of 1,526 adults (706 men and 820 women, p > 0.05) were included in the study.

Feature selection

At Taipei City Hospital, information was gathered for the training cohort. The par-
ticipants were given the Hearing Handicap Inventory for the Elderly—Screening (TC-
HHIE-S) questionnaire in Traditional Chinese face-to-face, and an audiologist or an 
undergraduate student studying audiology under supervision recorded the results in 
their medical records. There were twelve features in the dataset that were analyzed, 
including demographic variables like gender and age. The TC-HHIE-S questionnaire, 
comprising ten questions, was also included, offering a thorough understanding of the 
participants’ hearing health.

Pure‑tone audiometry

As the gold standard for detecting hearing loss, pure-tone audiometry was carefully car-
ried out in a sound-treated booth in our study, with ambient noise levels strictly kept 
below 30 dBA. To perform the audiometry tests, we used the MA30 Audiometer (Maico, 
Germany) in conjunction with the TDH-39 supra-aural earphones. Four key frequen-
cies—0.5 kHz, 1 kHz, 2 kHz, and 4 kHz—were carefully measured to determine the air 
conduction pure-tone thresholds. These measurements were primarily taken in the bet-
ter-hearing ear, with the right ear being used as a default when there was no discern-
ible hearing difference between the two ears. These thresholds were then averaged in 
the better-hearing ear to determine the pure-tone average (PTA). Narrow band masking 
was used as needed to guarantee the precision of our measurements, and participants 
usually indicated their hearing responses with a standard patient response button. An 
essential component of our approach involved our equipment’s yearly calibration, which 
was conducted with strict adherence to ISO 389–1 and 389–3 guidelines. This step was 
essential to maintaining the integrity and robustness of our study’s findings by ensuring 
the accuracy and consistency of our audiometric data.

Class definition

To account for varying degrees of hearing loss, we used a straightforward and methodi-
cal method to divide the Pure-Tone Average (PTA) results of study participants into two 
groups. The established hearing threshold cutoff points served as the basis for this clas-
sification. More specifically, individuals with a PTA of less than 40 dB HL—a sign of mild 
to moderate hearing loss—were given a classification value of 1. In contrast, individuals 
whose PTA matched or exceeded 40 dB HL were assigned a classification value of 0. The 
latter category represents hearing loss ranging from severe to profound. We were able to 
classify the study participants’ hearing impairment severity with this binary classifica-
tion system, which gave us a solid foundation for our machine learning analysis later on.

Machine learning model development

For model development, we utilized the graphical tool Auto AI in Watson Studio to ana-
lyze the 80% training data (n = 1220) and identify the best data transformations, algo-
rithms, and parameter settings for our predictive modeling task [22–24]. The Auto AI 
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tool presented the results as candidate model pipelines, which were ranked on a lead-
erboard, enabling the selection of the optimal model [25–27]. We assessed the perfor-
mance of six diverse machine learning models on the training data, including extreme 
gradient boosting (XGBoost) [28–30], gradient boosting classifier (GBC) [31–33], snap 
decision tree classifier (SDTC) [23, 34, 35], light gradient boosting machine (LGBM) 
[36–38], snap random forest classifier (SRFC) [26, 27, 39], and logistic regression (LR) 
[40–42] on the training set, and was thus selected for final evaluation on the 20% held-
out testing data (n = 306). To improve model efficiency, we implemented forward fea-
ture selection on the training data to identify the most informative subset of features. By 
developing and evaluating models solely on the training set, we prevented leakage and 
overfitting to the test data.

Hyperparameter optimization

To optimize the performance of the machine learning models in predicting ARHL, we 
employed a grid search combined with fivefold cross-validation for XGBoost, GBC, 
SDTC, LGBM, SRFC, and LR [43–46]. During the training process, we fine-tuned the 
hyperparameters for each ensemble model using a grid search to identify the optimal 
values that yielded the highest F1 score [46, 47]. Table 1 presents the detailed hyperpa-
rameter optimization settings for each model. By iteratively exploring a predefined set 
of hyperparameter values through the grid search, we were able to enhance the accu-
racy and predictive capability of the models in assessing the risk of ARHL. This itera-
tive approach allowed us to find the best combination of hyperparameter values for each 
model, ultimately leading to improved performance and more reliable predictions.

Model evaluation

We compared the models’ Area Under the Receiver Operating Characteristic Curve 
(AUC) values to assess the machine learning models’ discriminative performance. 
Because it indicates how well a model can distinguish between classes, the AUC metric 
is important. We used a suite of performance metrics to conduct a thorough assessment 
of the models’ efficacy on the testing dataset, in addition to AUC. These included the 
F1 score, which strikes a balance between recall and precision; accuracy, which gauges 
the model’s overall correctness; precision, which shows the percentage of true positive 
identifications that were correctly identified; recall, which gauges the percentage of true 

Table 1  Hyperparameters of machine learning models

Model Hyperparameters Optimal values

Extreme Gradient Boosting (XGBoost) learning_rate 0.0384

max_depth 7

n_estiators 494

Gradient Boosting Classifier (GBC) min_samples_leaf 5

n_estimators 33

Stochastic Dual Coordinate Ascent (SDTC) max_depth 5

random_state 33

Light Gradient Boosting Machine (LGBM) learning_rate 0.415

n_estiators 566
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positives that were correctly identified; average precision, which provides a summary of 
a precision-recall curve; and log loss, which assesses the prediction error of the mod-
els. By utilizing this diverse range of metrics, we were able to perform a comprehensive 
evaluation of the models’ efficacy, guaranteeing a detailed and refined comprehension of 
their potential to forecast age-related hearing loss (ARHL).

Feature importance analysis

We used SHapley Additive exPlanations (SHAP) analysis to clarify the underlying mech-
anisms guiding the predictions of our model and to provide guidance for bettering hear-
ing screening procedures. A state-of-the-art approach in explainable AI called SHAP 
offers a detailed perspective of how each feature influences the model’s predictions. Our 
main objective was to analyze the importance of different elements in the HHIE-S sur-
vey. We were able to identify the most important questionnaire items and comprehend 
their individual effects on the risk prediction of age-related hearing loss (ARHL) by uti-
lizing SHAP values. Through the identification of important ARHL risk factors in our 
dataset, this analysis was able to offer valuable insights for the development of both our 
predictive model and the field of hearing health assessment as a whole. It enabled us to 
see the direction and strength of each feature’s influence on the model’s output in addi-
tion to quantifying each feature’s importance.

Impact on hearing care management

The conclusions drawn from our SHAP analysis have a major impact on how focused 
interventions for those at risk of hearing loss are developed. Our machine learning 
model identifies the major factors that influence the risk of age-related hearing loss 
(ARHL), and this approach opens the door to more customized and efficient hearing 
care management plans. Comprehending these crucial elements enables medical practi-
tioners to devise interventions that are tailored to each individual’s specific requirements 
and risk profile, while also being responsive to the broad patterns noted in ARHL. This 
tailored approach is anticipated to substantially improve the effectiveness of interven-
tions, leading to enhanced outcomes in terms of both health and quality of life for older 
adults afflicted with ARHL. The application of such data-driven, personalized health-
care strategies marks a significant advancement in the field of audiology and geriatric 
care, promising a more nuanced and impactful approach to managing and mitigating the 
effects of hearing loss.

Software and model development

The open-source Scikit-learn library was heavily utilized in conjunction with Python, 
more especially Python Software Foundation version 3.9, as the main platform for all 
machine learning analyses in our study. A wide variety of tools and algorithms that were 
essential for our analysis were provided by this library. To effectively test our models on 
unseen data, we divided the dataset into training and testing sets at random using the 
sklearn.model_selection.train_test_split module. We used the XGBoost Python package, 
which is well-known for its effectiveness and high performance in gradient boosting, 
to build the XGBoost model. The ensemble of sklearn. Our Gradient Boosting Deci-
sion Tree (GBDT) model was developed with the help of the GradientBoostingClassifier 
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module, which constructed an ensemble of weak learners to enable precise prediction-
making. The sklearn.ensemble was also used by us. The Extra Trees model, an ensemble 
approach based on decision trees that provides robustness and feature importance esti-
mation, was built using the ExtraTreesClassifier. The lightgbm. LGBMClassifier Python 
package, which is preferred for its effectiveness in large-scale applications, was used to 
develop the Light Gradient Boosting Machine (LGBM) model. A decision tree classi-
fier and sklearn.linear_model were supplied by the SnapDecisionTreeClassifier algo-
rithm from the IBM Snap ML library. The logistic regression model, which is frequently 
applied to binary classification issues, was utilized. Use sklearn.model_selection to avoid 
overfitting and guarantee robustness. For stratified k-fold cross-validation, Stratified K 
Fold was utilized. To ensure compliance with accepted scientific practices, we main-
tained a p-value of 0.05 to denote statistical significance throughout our analysis.

Role of the funding source

The study received funding from a specific organization, with the crucial stipulation that 
the funders remained entirely uninvolved in any aspects of the research process. This 
encompassed study design, data collection, analysis, interpretation, writing, and paper 
submission. The clear separation between funding and research activities ensured that 
the research was conducted independently, without the potential for bias or influence 
from the funding source. All authors involved in the study had full access to the data, 
fostering transparency and unbiased research. The corresponding authors assumed final 
responsibility for paper submission, ensuring that the research adhered to scientific 
standards and ethical guidelines. They were accountable for upholding the accuracy and 
integrity of the work presented in the paper.

Results
Patient population overview

In this work, we conducted a thorough analysis of a cohort of 1,526 older adults, which 
is representative of the larger population affected by age-related hearing loss (ARHL). To 
ensure a thorough evaluation of our machine learning models, this cohort was carefully 
split into two subsets: a primary training set of 1,221 participants, which was used to 
develop and refine the models, and a validation testing set of 305 participants, which was 
used to independently assess the models’ performance and predictive accuracy.

Demographic distribution

The study focused on an elderly population, which is most affected by ARHL, as evi-
denced by the average age of 74.6 years (± 2.2 years) across the entire cohort in terms 
of demographic characteristics. Upon closer inspection, we found that the testing set 
(72.7  years ± 0.6) and the training set (75.2  years ± 2.4) had slightly different average 
ages. These differences were considered throughout the analysis to guarantee the valid-
ity of our results. The cohort’s gender distribution was reasonably uniform, with women 
making up roughly 53.7% of all participants. Table  2 shows that this percentage dif-
fered slightly between the training set (53%) and testing set (56.7%). These demographic 
details are essential because they guarantee that our models are tested on a representa-
tive sample of the target population and give context for the findings of our study.
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HHIE‑S score insights

A nuanced comparison of HHIE-S scores across the full cohort, training, and testing sets 
showed subtle differences. For instance, the score for the HHIE-1 item was marginally 
higher in the full cohort (0.6 ± 1.2) than in the testing set (0.2 ± 0.7), while the training 
set maintained a score of 0.6 ± 1.2. Similar patterns were observed for the other HHIE-
S items, underscoring the consistent representation of hearing impairment symptoms 
across subsets.

Model prediction ability

Different performance characteristics were observed in our assessment of the predic-
tive capabilities of different machine learning models, such as XGBoost, Gradient Boost-
ing Classifier (GBC), Snap Decision Tree Classifier (SDTC), Light Gradient Boosting 
Machine (LGBM), and Snap Random Forest Classifier (SRFC). Remarkably, as shown 
in Fig.  1A, XGBoost and LGBM had the highest accuracy at 0.75, closely followed by 
GBC at 0.76. In the context of hearing loss predictions, LGBM proved to be a superior 
model in terms of specificity, achieving an astounding rate of 0.88 in correctly identi-
fying true negative cases. With a score of 0.87, XGBoost showed remarkable sensitiv-
ity, demonstrating its ability to accurately identify true positive cases. Precision, recall, 
and F1 scores were fairly consistent among the models; LGBM and GBC achieved par-
ticularly noteworthy scores in these metrics. Furthermore, with the highest positive 
predictive value (PPV) of 0.92, LGBM stood out. LGBM exhibited the highest Area 
Under the Curve (AUC) value of 0.83, as illustrated in Fig.  1B, indicating its superior 

Table 2  Demographics and clinical features of Age-Related Hearing Loss (ARHL) patients

Abbreviations: HHIE-1 "Do hearing problems embarrass you when you meet new people?", HHIE-2 "Does a hearing problem 
make you feel frustrated when you talk to members of your family?", HHIE-3 "Do you find it difficult hearing when someone 
speaks in a whisper?", HHIE-4 "Do you feel that you have a disability because of a hearing problem?", HHIE-5 "Does a hearing 
problem cause you difficulty when visiting friends and relatives or neighbors?", HHIE-6 "Does a hearing problem reduce 
your attendance at religious ceremonies more than you would like?", HHIE-7 "Does a hearing problem cause disputes 
between you and a family member?", HHIE-8: "Does a hearing problem cause difficulty when you are listening to the radio or 
television?" HHIE-9 "Do you feel that any difficulty in hearing limits or hinders your personal or social life?”, HHIE-10 "Does a 
hearing problem cause you difficulty when you are in a restaurant with relatives or friends?"

Variables Full Cohort
(n = 1,526)

Training set
(n = 1221)

Testing set
(n = 305)

Demographic

  Age, years 74.1 ± 7.2 74.5 ± 7.4 72.7 ± 6

  Female, n (%) 820 (53.7%) 647 (53%) 173 (56.7%)

HHIE-S Item Score

  HHIE-1 0.6 ± 1.2 0.6 ± 1.2 0.2 ± 0.7

  HHIE-2 0.5 ± 1.1 0.6 ± 1.2 0.3 ± 0.8

  HHIE-3 1.2 ± 1.5 1.3 ± 1.6 0.8 ± 1.3

  HHIE-4 0.6 ± 1.3 0.7 ± 1.3 0.3 ± 0.9

  HHIE-5 0.4 ± 1 0.5 ± 1.1 0.2 ± 0.6

  HHIE-6 0.3 ± 0.9 0.3 ± 1 0.1 ± 0.5

  HHIE-7 0.3 ± 0.8 0.3 ± 0.8 0.2 ± 0.6

  HHIE-8 0.8 ± 1.4 0.9 ± 1.4 0.5 ± 1

  HHIE-9 0.3 ± 0.9 0.4 ± 1 0.1 ± 0.5

  HHIE-10 0.6 ± 1.2 0.6 ± 1.2 0.3 ± 0.9
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overall discriminating ability. This thorough evaluation provides important insights for 
the models’ use in this field by highlighting the various strengths of each model in pre-
dicting age-related hearing loss.

Feature importance and SHAP analysis in the LGBM model

In this work, we employed SHapley Additive exPlanations (SHAP) values to determine 
the significance of each feature in the Light Gradient Boosting Machine (LGBM) model. 
As seen in Fig. 2A, this required creating feature importance plots that ordered the most 
significant features in descending order. AGE, HHIE-4, HHIE-1, HHIE-3, HHIE-8, and 
HHIE-10 were the most important features influencing the model’s predictions, accord-
ing to our analysis. Higher SHAP values indicated a stronger influence. The SHAP sum-
mary plot provided a visual representation of these features’ effects on the prediction 
probabilities of the LGBM model. Significantly, developing Age-Related Hearing Loss 
(ARHL) was positively correlated with positive SHAP values (red dots), indicating a 
higher likelihood, and negatively correlated with negative SHAP values (blue dots). As 
shown in Fig. 2B, our results showed that while HHIE-10 had a negative effect, charac-
teristics like AGE, HHIE-3, HHIE-1, HHIE-8, and HHIE-4 had a positive influence on 
the prediction of ARHL. This analysis was essential in emphasizing how each of these 

Fig. 1  Evaluation of Machine Learning Models for Age-Related Hearing Loss Prediction on the Testing 
Dataset. A Receiver operating characteristic (ROC) curves and B LGBM demonstrate the highest area under 
the ROC curve for age-related hearing loss (ARHL) prediction on the testing dataset, outperforming XGBoost 
and SDTC. Abbreviations: ROC, receiver operating characteristic; AUC, area under the ROC curve; precision, 
average precision; extreme gradient boosting (XGBoost), gradient boosting classifier (GBC), snap decision tree 
classifier (SDTC), light gradient boosting machine (LGBM), snap random forest classifier (SRFC)
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features individually contributed to the predictive accuracy of the model and in giving 
users a clear grasp of the critical elements involved in determining an individual’s risk of 
ARHL.

Individual‑level explanation of the ML model

For patients at risk of Age-Related Hearing Loss (ARHL), we used SHapley Additive 
exPlanations (SHAP) and Local Interpretable Model-agnostic Explanations (LIME) 
to provide comprehensive individual-level explanations of our machine learning (ML) 
model’s predictions. The aforementioned interpretive tools, as illustrated in Fig.  3, 
efficiently depict the ARHL probability for a pair of representative patients, clarifying 
the impact of every variable on the probability of hearing impairment. In Case 1, for 
instance, the LIME plot shows a very low ARHL probability of 0.07, with important 
contributing factors represented by the red (positive correlation) and blue (negative 
correlation) variables. These factors include age between 77 and 83, an HHIE-10 score 
between 0 and 2, and an HHIE-3 score of 1 or less. In contrast, Case 2 shows a 75% 
chance of ARHL. This higher risk prediction is heavily influenced by similar age param-
eters combined with scores from HHIE-3, HHIE-8, HHIE-1, and HHIE-10 in particu-
lar ranges. These individual-level analyses are essential because they provide a clear and 
understandable representation of the predictive factors in the model, allowing medical 

Fig. 2  A Feature importance plot and B SHAP summary plot revealing the top clinical features for predicting 
age-related hearing loss (ARHL) in the LGBM model. Abbreviations: HHIE-4: "Do you feel that you have a 
disability because of a hearing problem? ", Age, HHIE-1: "Do hearing problems embarrass you when you meet 
new people? ", HHIE-3: "Do you find it difficult to hear someone who speaks in a whisper? ", HHIE-8: "Does a 
hearing problem cause difficulty when you are listening to the radio or television? ", HHIE-10: "Does a hearing 
problem cause you difficulty when you are in a restaurant with relatives or friends?"
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practitioners to obtain in-depth understanding of the model’s evaluation of patients’ 
ARHL risk.

Discussion
In this study, we utilized machine learning techniques to validate the efficacy of the 
HHIE-S tool in assessing the risk of ARHL [18, 48, 49]. Our results highlight the poten-
tial of machine learning models, especially LGBM, to enhance the predictive capabili-
ties of the HHIE-S tool by incorporating demographic and clinical features [50–52]. 
Our research is in line with the increasing interest in leveraging machine learning in 
audiology and hearing healthcare, as evident from recent publications [53–55]. Numer-
ous studies have been dedicated to the development and validation of machine learning 
models for predicting hearing loss, evaluating interventions, and improving diagnostic 
accuracy [56–58].

Fig. 3  LIME and SHAP Force Plots Visualizing the Impact of Important Features on the Prediction Model for 
Individual Patients with Age-Related Hearing Loss (ARHL). The plots use color coding, with red indicating 
a positive correlation and green indicating a negative correlation between the features and the predicted 
probability of age-related hearing loss (ARHL) risk assessment. Abbreviations: HHIE-4: "Do you feel that you 
have a disability because of a hearing problem? ", Age, HHIE-1: "Do hearing problems embarrass you when 
you meet new people? ", HHIE-3: "Do you find it difficult to hear someone who speaks in a whisper? ", HHIE-8: 
"Does a hearing problem cause difficulty when you are listening to the radio or television? ", HHIE-10: "Does a 
hearing problem cause you difficulty when you are in a restaurant with relatives or friends?"
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In our study, the LGBM model demonstrated the best specificity (0.88), showcasing 
its proficiency in accurately identifying true negative cases. Additionally, it exhibited the 
highest PPV of 0.92, indicating its capability to correctly predict positive cases with high 
confidence. The AUC analysis revealed that the LGBM model achieved the highest AUC 
of 0.83, signifying its superior overall discriminative ability. These results align with our 
previous findings, where PTA > 40 dB HL showed the highest sensitivity (76.9%) in hear-
ing screening, indicating similar discriminatory power [18].

The HHIE-S tool is a cost-effective and easily applicable assessment, making it suitable 
for diverse settings such as nursing homes, senior centers, primary care facilities, and 
community hearing screenings with numerous participants within a short timeframe. 
These locations often lack access to conventional hearing tests. This research emphasizes 
the significance of the HHIE-S in public health applications, as it can identify moderate 
and severe hearing loss in a considerable population. To further enhance the practicabil-
ity and effectiveness of large-scale HHIE-S screenings, future studies should investigate 
the utilization of internet-based or smartphone-based methods for managing HHIE-S 
[59, 60].

By employing LGBM models in our study, we observed enhanced predictive perfor-
mance compared to that of traditional statistical methods. Notably, the LGBM achieved 
the highest AUC values, indicating its superior ability to predict ARHL risk. This result 
aligns with recent findings of the effectiveness of LGBM and other ensemble models in 
various medical applications. Conducting a feature importance analysis using SHAP val-
ues provided valuable insights into the most influential features [61]. Age and specific 
HHIE-S questionnaire items, particularly HHIE-4, emerged as the top predictors [18, 48, 
62]. These results are consistent with previous findings that have emphasized the role of 
age and self-perceived hearing difficulties in predicting hearing loss.

Six features on the importance matrix plot and the SHAP summary plot of LGBM 
were age and the five HHIE-S results. The most important factor for the model output 
was "Do you feel that you have a disability because of a hearing problem?": Our model 
identified the 4th item of the HHIE-S questionnaire as the most influential in determin-
ing hearing loss. This question directly addresses the issue of hearing loss in a clear and 
understandable way. It measures emotional responses to hearing loss and is similar to 
the commonly used single question (SQ): "Do you have any difficulty with your hear-
ing?", which has shown reasonable effectiveness in detecting hearing loss during large-
scale screenings [63–65].

Age

Age is an important variable in detecting hearing loss in our model. Our study aligns 
with several studies that demonstrated age as a significant variable in questionnaires 
for detecting hearing loss [66]. The significance may be due, in part, to the fact that the 
prevalence of ARHL increases with age [67–69]. Although some studies also indicate 
that older age could lead to overestimation or underestimation in self-reported hearing 
loss compared to objective hearing loss, it may be attributed to the social acceptability 
of older individuals experiencing hearing impairment [70–73]. Nonetheless, including 
age as a variable in a hearing screening session is convenient because age data are easily 
accessible in any massive screening situation [68, 72, 74, 75].
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Do you find it difficult to hear someone who speaks in a whisper?

Our analysis shows that the whisper test is the second most significant factor in measur-
ing hearing loss. This is an interesting finding, as the whisper test is a simple and accu-
rate screening method widely used in hearing screenings for elderly individuals, with 
reasonable sensitivity and specificity [64, 76–78]. In fact, the World Health Organization 
recommends using the whisper test in hearing screenings as part of the Integrated Care 
for Older People (ICOPE) program [79]. During a whisper test, air is pushed through a 
small opening between the vocal cords without adduction, resulting in a quieter, breath-
ier sound that may be less clear and distinct, making it more difficult to understand the 
speaker, especially in noisy environments or at a distance. Whispering is typically used 
to convey secret information or avoid disturbing others in a quiet setting, and failure to 
hear whispered sounds can cause individuals to perceive hearing loss in these situations.

Does a hearing problem cause difficulty when you are listening to the radio or television?

TV and radio are currently very common forms of media. However, a study has sug-
gested that patients who report increased volume levels while watching TV may have 
an increased risk of hearing loss [80]. It is possible that individuals who have difficulty 
hearing the sounds from these devices may assume they have hearing loss when, in fact, 
they may simply be unable to detect certain frequencies or volumes of sound. Further 
research is needed to clarify the relationship between increased TV volume and hearing 
loss.

Does a hearing problem cause you difficulty when you are in a restaurant with relatives 

or friends?

Restaurants are bustling environments filled with sounds such as background music, 
conversations, and the clanging of utensils, which can make it challenging for people 
with hearing loss to discern between sounds or comprehend speech. In fact, speech 
understanding difficulties in noisy environments are frequently cited as the top reason 
for consultations in audiology or hearing health services [81]. It is important to conduct 
further research to better understand this association.

Our study adds to the expanding body of evidence supporting the integration of 
machine learning models into hearing screening protocols. By accurately identifying 
individuals at risk of ARHL, healthcare professionals can implement timely interven-
tions, such as hearing aids or rehabilitation programs, to mitigate the impact of hear-
ing loss on quality of life. The use of machine learning models enhances the efficiency 
and accuracy of screening processes, leading to improved patient outcomes. How-
ever, it is essential to acknowledge several limitations in our study. Focusing on a spe-
cific population of older adults limits the generalizability of our findings to other age 
groups or populations [62]. Future research should aim to validate the HHIE-S tool and 
machine learning models in diverse populations to ensure their applicability across set-
tings. Additionally, the quality and availability of data may influence model performance. 
Future studies should consider larger sample sizes and more comprehensive datasets to 
enhance the robustness and generalizability of the models.
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Comparison with traditional HHIE approaches

Our study significantly extends the utility of the Hearing Handicap Inventory for the 
Elderly (HHIE) by integrating it with cutting-edge machine learning models. Tradi-
tionally, HHIE has been used primarily to assess the psychosocial impacts of hear-
ing impairment through subjective experiences and self-perceived hearing difficulties. 
This novel method improves the precision and accuracy of Age-Related Hearing 
Loss (ARHL) predictions and introduces a more individualized approach to hearing 
healthcare by transforming HHIE from a simple self-reporting tool into an advanced 
predictive tool. We can customize interventions based on each patient’s unique risk 
profile by utilizing machine learning, which combines quantitative, data-driven pre-
dictions with qualitative insights into patients’ actual experiences. This combination 
marks a significant breakthrough in the field of hearing healthcare and the start of a 
new phase of proactive, patient-centered, precision-based care. Our approach pro-
vides a comprehensive and nuanced view of the management of hearing health by 
bridging the gap between subjective self-assessment and objective risk prediction. 
This adds quantitative and data-driven capabilities to the traditional HHIE approach, 
enabling a more holistic approach to hearing healthcare.

Conclusion
Our research, which combines cutting-edge machine learning methods with the tra-
ditional Hearing Handicap Inventory for the Elderly-Screening (HHIE-S) tool, marks 
a major advancement in the assessment of hearing loss. In the field of audiology and 
hearing healthcare, the use of the Light Gradient Boosting Machine (LGBM) classi-
fier in particular has shown impressive progress in improving predictive accuracy. In 
addition to demonstrating the enormous potential of data-driven approaches to sup-
plement conventional diagnostic tools, this study paves the way for more prompt and 
precisely targeted interventions for age-related hearing loss (ARHL). The significance 
of adopting such novel approaches is highlighted by our study, as the healthcare sec-
tor continues to undergo swift transformation. Ensuring better patient outcomes and 
leading the way in the transition to a more proactive, precision-driven paradigm in 
hearing care depend on this. By utilizing machine learning, we create new opportuni-
ties for early detection and intervention, which will ultimately improve the quality of 
life for those who are impacted by hearing loss.
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