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Abstract 

Background:  Motor imagery brain-computer interfaces (BCIs) is a classic and poten-
tial BCI technology achieving brain computer integration. In motor imagery BCI, 
the operational frequency band of the EEG greatly affects the performance of motor 
imagery EEG recognition model. However, as most algorithms used a broad frequency 
band, the discrimination from multiple sub-bands were not fully utilized. Thus, using 
convolutional neural network (CNNs) to extract discriminative features from EEG 
signals of different frequency components is a promising method in multisubject EEG 
recognition.

Methods:  This paper presents a novel overlapping filter bank CNN to incorporate 
discriminative information from multiple frequency components in multisubject 
motor imagery recognition. Specifically, two overlapping filter banks with fixed low-cut 
frequency or sliding low-cut frequency are employed to obtain multiple frequency 
component representations of EEG signals. Then, multiple CNN models are trained 
separately. Finally, the output probabilities of multiple CNN models are integrated 
to determine the predicted EEG label.

Results:  Experiments were conducted based on four popular CNN backbone models 
and three public datasets. And the results showed that the overlapping filter bank CNN 
was efficient and universal in improving multisubject motor imagery BCI performance. 
Specifically, compared with the original backbone model, the proposed method can 
improve the average accuracy by 3.69 percentage points, F1 score by 0.04, and AUC 
by 0.03. In addition, the proposed method performed best among the comparison 
with the state-of-the-art methods.

Conclusion:  The proposed overlapping filter bank CNN framework with fixed low-cut 
frequency is an efficient and universal method to improve the performance of multi-
subject motor imagery BCI.
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Background
Brain computer interface (BCI) is a communication interface directly established 
between the brain and the computer, which can realize the interconnection between 
brain and external objects, and achieve the interactive integration of biological intelli-
gence and machine intelligence. It has important applications in the fields of medicine, 
neurobiology and psychology [1]. Many mature paradigms have emerged in the BCI 
field, including motor imagery BCI, steady-state visual evoked potential (SSVEP) BCI, 
P300 visual-evoked potentials BCI and emotional BCI [1, 2].

Motor imagery electroencephalography (MI-EEG) is a kind of endogenous spontane-
ous EEG with low environmental requirements. Thus, MI-EEG is widely used in BCI. 
The MI-BCI system collects EEG signals when the subject performs specific motor 
imagery, then recognizes the MI content according to the EEG signals, and converts the 
recognition results into control commands of the peripheral devices [3]. EEG signals 
have the characteristics of a low signal-to-noise ratio and low spatial resolution, so effec-
tive features and classifiers are the keys to the success of the MI recognition system, and 
BCI researchers have increasingly proposed many algorithms for MI classification.

Common spatial pattern‑related method

The common spatial pattern (CSP) algorithm and its variants have been widely applied 
to construct spatial filters and extract highly discriminative features in EEG-based MI 
classification by maximizing the variance difference between two classes of EEG signals 
[4]. The outstanding performance of the filter bank common spatial pattern (FBCSP) 
won the BCI Competition IV in the 2a dataset and 2b dataset [5]. The FBCSP used a fil-
ter bank consisting of 9 nonoverlapping subband bandpass filters covering the frequency 
range of 4 to 40 Hz to preprocess the signal. Then, the CSP features were extracted and 
selected for specific subjects by the mutual information-based rough set reduction algo-
rithm and fed to the naïve Bayesian Parzen window classifier. The filter bank regularized 
common spatial pattern was proposed to simultaneously solve the dependency problems 
on frequency bands and sample-based covariance estimation, and the proposed method 
improved the mean classification accuracy compared with other CSP-based methods 
[6]. Zhang proposed a hybrid network consisting of a CNN and a long-term short-term 
memory network for extracting temporal and spatial features from CSP features [7].

Deep learning‑based method

Recently, deep learning algorithms have developed quickly, and related algorithms have 
been proposed for EEG-based BCI. In particular, CNNs have been widely used in EEG-
based MI classification due to their ability to effectively extract temporal and spatial fea-
tures from EEG signals. Schirrmeister proposed a Shallow ConvNet and a Deep ConvNet 
for end-to-end MI-based EEG recognition and showed better performance compared 
with the FBCSP algorithm. In addition, the CNN visualization results showed that the 
proposed model learned to use spectral power characteristics from different frequency 
bands [8]. EEGNet was proposed by Lawhern to suggest that a compact CNN can be 
applied and provide robust performance across many BCI paradigms, such as P300 
event-related potential, feedback error-related negativity, movement-related cortical 
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potential and sensory motor rhythm (MI recognition) [9]. Chen designed a deep learning 
approach termed filter bank spatial filtering and temporal-spatial CNN for MI decoding. 
Filter bank spatial filtering extracts the feature presentation of raw EEG signals, and the 
temporal-spatial CNN implements a decoding procedure. A stagewise training strategy 
including optimizing the triplet loss and cross-entropy loss was proposed to mitigate 
the optimization difficulty [10]. Li proposed an end-to-end EEG decoding framework 
that regards the original multichannel EEG as the input and improves the classification 
accuracy through a channel projection mixed-scale convolutional neural network (CP-
MixedNet) and amplitude perturbation data augmentation [11]. Sakhavi proposed a 
novel filter bank convolutional network (FBCNet) for MI classification, which extracted 
a multiview data representation through a filter bank, extracted spatial features through 
depthwise convolutional layers, and effectively aggregated temporal information by the 
proposed variance layer [12]. Zhao built a multibranch 3D convolutional neural net-
work, where the 3D representation was generated by transforming EEG signals into a 
series of 2D arrays focusing on the spatial distribution of channels [13]. Li proposed a 
novel temporal-spectral-based squeeze-and-excitation feature fusion network, which 
extracted high-dimensional temporal features and discriminative spectral representa-
tions from raw EEG signals via deep-temporal convolution block and multilevel wave-
let convolutions, respectively. Channelwise discriminative responses were highlighted 
by constructing interdependencies among different domain features [14]. Five adaptive 
schemes of the EEG-BCI system based on CNN were proposed for decoding MI-EEG. 
The adaptive transfer learning method fine-tuned an extensively trained, pretrained 
model and adjusted it to adapt the target subject [15].

Multisubject calibration‑free MI‑BCI

At present, research on MI-BCIs mainly focuses on subject-dependent systems, in 
which a model is built for a single target subject and has achieved satisfactory results 
[6, 8]. However, a subject-dependent system needs to collect data for calibrating 
the target subject, which is time-consuming and only applicable to the target sub-
ject. Therefore, research on multisubject calibration-free BCI systems has appeared. 
Kwon constructed a large MI-based EEG database consisting of 54 subjects perform-
ing left- and right-hand MI and proposed a subject-independent multibranch CNN 
framework for subject-independent BCI. The spectral–spatial inputs are individually 
trained through the CNN and then combined by a concatenation fusion technique 
to make predictions [16]. Zhang proposed a convolutional recurrent attention model 
for subject-independent EEG signal analysis. Specifically, they split an EEG trial into 
multiple temporal slices, utilized the spatial-temporal block to extract the spatial-
temporal information of every temporal slice, and finally, leveraged a recurrent atten-
tion mechanism to explore the temporal dynamics among different temporal slices. 
The improved performance in the experiment indicated that the proposed convolu-
tional recurrent attention model can utilize potential invariant EEG patterns among 
different subjects [17]. To improve the classification accuracy of multisubject motor 
imagery, Autthasan designed a novel end-to-end multitask learning architecture 
called MIN2Net, which applied a deep metric learning method in a multitask autoen-
coder model to learn discriminative potential representations and make predictions 
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simultaneously [18]. Luo proposed a twin cascaded softmax convolutional neural 
network (TCSCNN) for multisubject MI-BCIs. The cascaded softmax structure was 
applied to achieve subject recognition and MI recognition simultaneously, and the 
twin EEG and twin structure were employed to further improve the performance [19].

In multisubject MI-BCI systems, the individual differences in EEG signals cause 
great difficulties for research [20]. In particular, the effective frequency band related 
to event-related desynchronization (ERD) and event-related synchronization (ERS) 
varies from subject to subject. Utilizing the discriminative information of different 
frequency bands is key to improving the capability of multisubject MI-BCI, but exist-
ing CNN models perform poorly in this aspect. This paper presents a novel overlap-
ping filter bank CNN framework for multisubject motor imagery EEG recognition. 
Through the proposed overlapping filter bank, the filtered EEG forces the CNN to 
learn from different frequency bands. To combine the discriminative ability from dif-
ferent frequency bands, ensemble probability from multiple CNNs is employed to 
make predictions.

The main contributions of this paper are as follows.

A)	We develop the overlapping filter bank CNN framework, which is universal and 
effective for different CNN backbones, to capture discriminative information from 
multiple EEG frequency bands for multisubject MI-BCI.

B)	Compared with the traditional nonoverlapping filter bank with narrow pass bands, 
the proposed novel overlapping filter bank with broad pass bands and fixed low-cut 
frequency is more suitable for CNN based multisubject MI recognition.

C)	Comprehensive experimental evaluations on three benchmark datasets are applied 
to demonstrate the effectiveness and universality of the proposed overlapping filter 
bank CNN framework.

The rest of this paper is organized as follows. Methods section presents the proposed 
overlapping filter bank CNN framework. Experimental data section introduces the data-
set and experimental settings in detail. Then, the experimental results and discussion are 
presented in Results and discussion section. Conclusion section gives the conclusions.

Methods
Analysis of FBCSP

Using discriminative information from multiple frequency bands is a promising 
method to improve the MI classification performance. The FBCSP algorithm is a suc-
cessful example of using discriminative information from multiple frequency bands 
and won the champion of BCI Competition IV dataset 2a and dataset 2b [5]. To date, 
the FBCSP has been applied and modified by numerous researchers [4, 6, 21].

In the FBCSP algorithm, a nonoverlapping bandpass filter bank is employed first to 
decompose the EEG into multiple frequency bands. Thus, the discriminative informa-
tion of different frequency bands can be collected in the following feature extraction. 
Second, the CSP algorithm is applied to design a spatial filter, and the log variance 
feature is extracted from the EEG signals filtered by the spatial filter.
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where E is the raw EEG signals and Wi is the i th spatial filter [22]. As CSP is a super-
vised feature learning method using a spatial filter to maximize the variance differences 
between the two classes of EEG signals, it is more like a classification method rather 
than a feature extraction method. The CSP features can directly be used in classification 
by a threshold. However, the discriminative ability of a single classifier built on a specific 
EEG frequency band is usually weak in classification. Thus, the following feature selec-
tion and classifier training procedures are applied.

Analysis of the FBCSP method shows that it is indeed an ensemble learning method. 
Multiple weak classifiers (CSP features extracted in different frequency bands) are com-
bined (training of classifier) to build a strong classifier. This is a valuable experience that 
should be used in CNN-based MI recognition methods.

However, this framework of training and combining weak classifiers from different 
frequency bands is difficult to transfer directly. Compared with the simple linear spa-
tial filter provided by the CSP, the complexity of the CNN model is much higher. If the 
input bandpass filtered EEG does not have enough discriminative information, the CNN 
begins to search for less discriminative information and even indiscriminative informa-
tion, which finally results in overfitting. In conclusion, the CNN model performs better 
based on wide frequency band EEG, which contains more discriminative information. 
The discriminative information in the EEG signals filtered by a narrow bandpass filter 
(4 Hz in FBCSP) is insufficient, so a narrow bandpass filter easily causes overfitting in 
the CNN-based method.

Overlapping filter bank

To supply enough discriminative information for the CNN model, the filter bank should 
have a wider passband. Compared with the nonoverlapping filter bank applied in FBCSP, 
filter banks with overlapping frequency bands are applied before the CNN model in this 
paper. Two kinds of overlapping filter banks are proposed. The first type is a fixed-low-
cut-frequency filter bank, the second type is a sliding-low-cut-frequency filter bank, and 
the specific setting is described in Table 1.

Overlapping filter bank CNN

Due to the powerful feature learning capabilities of the CNN model, it is applied to 
extract discriminative information from multiple EEG frequency bands. The flow-
chart of the proposed overlapping filter bank CNN (OFBCNN) is shown in the upper 

(1)vp = log
var(WpE)
I
i=1var(WiE)

Table 1  The bandpass filters included different overlapping filter banks

Filter bank First filter Second filter Third filter Last filter

Fixed-0 Hz 0–8 Hz 0–12 Hz 0–16 Hz … 0–36 Hz

Fixed-4 Hz 4–12 Hz 4–16 Hz 4–20 Hz … 4–36 Hz

Sliding-0 Hz 0–12 Hz 4–16 Hz 8–20 Hz … 24–36 Hz

Sliding-4 Hz 4–16 Hz 8–20 Hz 12–24 Hz … 24–36 Hz
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part of the Fig. 1. As the proposed framework is universal for different CNN back-
bones, the structure of Deep ConvNet [8] is shown in the lower part of the Fig. 1 as 
an example of the CNN. Multiple CNN models are trained by the EEG signal filtered 
by the overlapping filter bank, and the output probabilities are combined to make 
the final prediction in the testing stage. The details are given below.

First, the raw EEG is filtered by a bandpass filter:

where E and Ên represents the raw EEG and the filtered EEG, Fn represents the nth 
bandpass filter in the filter bank. For example, if the overlapping filter bank with 0 Hz 
fixed-low-cut-frequency (as shown in Table  1) is applied, the passband of first band-
pass filter is 0–8 Hz, and the passband of second bandpass filter is 0–12 Hz, and so on. 
Second, the EEG signals filtered by same bandpass filter and the related motor imagery 
labels are used to train each CNN backbone model using cross entropy loss. Finally, we 
obtain multiply CNN models corresponding to multiply frequency bands.

In the testing stage, the prediction probability of each frequency band is the out-
put of the corresponding CNN model:

where Mn is the CNN model for Ên and On is the output prediction probability of 
Mn . The output probabilities of all CNN models are summed to determine the final 
prediction:

where N is the total number of bandpass filters in the overlapping filter bank and L is the 
predicted label.

(2)Ên = Fn(E)

(3)On = Mn(Ên)

(4)L = argmax(

N∑

n=1

On)

Fig. 1  Illustration of the overlapping filter bank CNN and the structure of the CNN
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CNN backbone

Four popular CNN backbone models, including shallow ConvNet, deep ConvNet [8], 
EEGNet [9] and ATCNet [23], are applied in the proposed overlapping filter bank CNN 
framework (OFBCNN) in this paper.

Deep ConvNet is a deep CNN proposed by Schirrmeister that includes four “Conv 
Pool Blocks” and a classification layer. A standard “Conv Pool Block” includes a con-
volutional layer and a max pooling layer. However, the first “Conv Pool Block” includes 
a temporal convolution to extract low-level temporal feature representations, a spatial 
filter (convolution along all EEG channels) and a max pooling layer. For specific network 
details, see [8].

Shallow ConvNet is a shallower network with only one “Conv Pool Block”, including a 
temporal convolution, spatial filtering layer and an average pooling layer. This architec-
ture is inspired by the FBCSP and uses the first two convolutional layers to replace the 
bandpass and CSP spatial filters in the FBCSP. For specific network details, see [8].

EEGNet is a robust end-to-end network showing outstanding performance in multiple 
BCI paradigms, i.e., P300 visual evoked potential, error-related negative response (ERN), 
motor-related cortical potential (MRCP) and sensorimotor rhythm (SMR). EEGNet con-
sists of three convolutional pooling blocks and a softmax layer. Each convolutional layer 
is followed by the batch norm, ELU activation function, max pooling and dropout. For 
specific details of the network, see [9].

ATCNet [23] is an attention-based temporal convolutional network, which mainly 
consists of convolutional block, multi-head attention block, and temporal convolutional 
block. The raw EEG is input into the convolutional block, and the output high-level tem-
poral features of temporal convolution block are input into a fully connected layer with a 
softmax classifier to make prediction. For specific details of the network, see [23].

Experimental data
BCI Competition IV dataset 2a

The BCI Competition IV dataset 2a includes a four-category MI-based EEG signal rec-
ognition task. This dataset includes MI-based EEG signals from 9 subjects. For each sub-
ject, there were 72 trials in each class in the training set and test set, recorded at different 
times. According to four types of prompts, including MI of the left hand, right hand, 
tongue, and foot, the subjects performed MI, and EEG signals were monitored from 22 
channels. The sampling rate of the EEG signals was 250 Hz, and the resolution of the 
amplifier was 100 mV. In each trial, the prompt appeared on the screen in seconds, and 
the execution time of the MI task was between the third second and sixth second. A 
0.5–100  Hz bandpass filter and a 50  Hz notch filter were used to preprocess the col-
lected EEG signals. After recording, an expert marked the artefact trial. For more details, 
see [24]. The experiments in this paper used all the training data of 9 subjects as the 
training set and all the test data of 9 subjects as the test set to construct a multisubject 
MI recognition task.

High‑Gamma dataset

The High-Gamma (HG) dataset is a large-scale EEG dataset composed of four types of 
EEG signals from 14 subjects performing motor execution tasks (left hand, right hand, 
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feet, and rest) [8]. For each subject, there were 13 runs and approximately 1,000 four-
second trials. The first 11 runs included approximately 880 trials belonging to the train-
ing set, and the last 2 runs consisted of approximately 160 trials belonging to the test set. 
EEG signals were collected from 128 channels (44 channels were used in the following 
experiments according to Braindecode [8]) and resampled at 250 Hz. More details can 
be found in [8]. All training EEG signals from 14 subjects were used as the training set, 
and all the testing EEG signals from 14 subjects were used as the test set for multisubject 
EEG recognition.

OpenBMI dataset

The OpenBMI (BMI) dataset consisting EEG signals from 54 subjects was collected by 
Korea University [25]. In BMI dataset, each subject executed two EEG signal collec-
tion sessions on different days. The data in each session included a train set and a test 
set, where each set contains 100 trials (50 left hand motor imagery tasks and 50 right 
hand motor imagery tasks). EEG signals were collected from 64 channels and sampled 
at 1000 Hz (We resampled it at 250 Hz). In the EEG collection, the first 3 s of each trial 
began with a black fixation cross that appeared at the center of the monitor to prepare 
subjects for the MI task. Afterwards, the subject performed the imagery task of grasp-
ing with the appropriate hand for 4 s when the right or left arrow appeared as a visual 
cue. More details can be found in [25]. In our experiments with OpenBMI dataset, we 
removed 33 MI blind subjects, so EEG signals from 21 subjects were employed (subject 
1, subject 2, subject 3, subject 5, subject 6, subject 9, subject 17, subject 18, subject 19, 
subject 21, subject 22, subject 28, subject 29, subject 32, subject 33, subject 36, subject 
37, subject 43, subject 44, subject 45, subject 52).

Experimental setup

The EEG signals were only minimally preprocessed to encourage the CNN model to 
learn features by itself. The 4.5 s EEG segment was used in dataset 2a and HG dataset, 
from 0.5 s before the MI prompt appeared to 4 s after it appeared. The all 4 s EEG trial 
was used in OpenBMI dataset, from the MI prompt appeared to 4 s after it appeared. 
The EEG signals were filtered by the overlapping filter bank, and then the filtered EEG 
signals were normalized using channel exponential running standardization, as config-
ured in [8]. After that, the EEG signals were input into each CNN model. The Adam 
optimization method was used in the training phase [26].

In the experiment, a sever with Intel Core i7-10700, NVIDIA GeForce RTX 3090 and 
48  GB RAM was applied. And the proposed framework was implemented in Python 
using the PyTorch [27] and Braindecode [8] frameworks.

To reduce the influence of randomness and epoch number, the average test accuracy, 
F1 score and AUC were used to evaluate the accuracy of the model. In addition, the vari-
ance in the test accuracy was used to assess the convergence of the model.

Results and discussion
To verify the effectiveness, universality and feasibility of the proposed overlapping filter 
bank CNN algorithm, a series of experiments were conducted. First, OFBCNN (includ-
ing sliding or fixed Low-Cut Frequency) was compared with the original CNN and the 
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CNN with the nonoverlapping filter bank in the multisubject MI recognition task. Sec-
ond, the performance of OFBCNN was compared with the state-of-the-art algorithm. 
Finally, a parameter sensitivity test was performed.

Performance comparison of the proposed OFBCNN with the original CNN 

and the nonoverlapping filter bank CNN in multisubject MI recognition

The performance of OFBCNN (including sliding or fixed Low-Cut Frequency) was com-
pared with the original backbone CNN without the overlapping filter bank and the CNN 
with the nonoverlapping filter bank in the multisubject MI recognition task. In data-
set 2a and dataset HG, the maximum number of epochs for training was set as 500 to 
ensure the convergence of the model. Because of the larger sample number in Open-
BMI dataset, the maximum number of epochs for training was set as 300. The average 
testing accuracy, F1 score and AUC of last 100 epoch were applied in the experimental 
evaluation.

The results (measured by accuracy/F1 Score/AUC) are given in Table 2. The first col-
umn represents the original CNN model name, dataset, and low-cut frequency of the 
filter bank encoded in the form of a “model-dataset-filter”. For example, “EEGNet-2a-0” 
indicates that OFBCNN was built based on the EEGNet backbone model, evaluated on 
the BCI Competition IV dataset 2a, and the low-cut frequency of the filter bank is 0 Hz. 
NOFBCNN denotes the nonoverlapping filter bank CNN with bandpass filters includ-
ing 0–4 Hz (if the low-cut frequency is 0), 4–8 Hz, 8–12 Hz, 12–16 Hz … 32–36 Hz (as 
the configuration in FBCSP). Due to the existing of the significant low frequency noise 

Table 2  Performance comparison of the OFBCNN. The results are measured by accuracy (%)/F1 
score/AUC​

Original NOFBCNN Sliding OFBCNN Fixed OFBCNN

EEGNet-2a-0 68.57/0.66/0.89 60.76/0.58/0.87 65.15/0.64/0.89 71.76/0.71/0.91
Shallow-2a-0 72.80/0.74/0.93 68.31/0.68/0.88 71.51/0.71/0.91 76.57/0.76/0.93
Deep-2a-0 71.42/0.72/0.91 65.14/0.64/0.87 68.27/0.67/0.89 75.53/0.75/0.93
ATCNet-2a-0 76.96/0.76/0.92 73.14/0.72/0.91 73.41/0.73/0.91 79.63/0.79/0.95
EEGNet-2a-4 61.68/0.58/0.84 54.49/0.52/0.82 59.23/0.57/0.85 63.40/0.62/0.88
Shallow-2a-4 65.44/0.67/0.87 62.58/0.62/0.84 67.65/0.67/0.88 69.97/0.69/0.90
Deep-2a-4 56.76/0.57/0.82 58.26/0.56/0.81 61.89/0.61/0.85 61.38/0.60/0.85
ATCNet-2a-4 71.75/0.71/0.89 66.97/0.66/0.87 68.40/0.68/0.88 76.19/0.76/0.93
EEGNet-HG-0 83.16/0.83/0.97 70.08/0.67/0.95 76.20/0.75/0.96 85.60/0.85/0.97
Shallow-HG-0 88.69/0.88/0.97 87.50/0.87/0.97 89.19/0.89/0.98 89.91/0.89/0.97

Deep-HG-0 89.68/0.89/0.98 80.88/0.80/0.96 83.94/0.83/0.97 91.90/0.91/0.99
ATCNet-HG-0 92.00/0.92/0.97 91.96/0.91/0.98 91.65/0.91/0.98 93.25/0.93/0.99
EEGNet-HG-4 79.11/0.72/0.95 64.85/0.62/0.93 71.29/0.70/0.94 80.18/0.79/0.96
Shallow-HG-4 87.15/0.86/0.97 84.38/0.84/0.96 86.76/0.80/0.98 87.51/0.87/0.98
Deep-HG-4 80.37/0.78/0.95 75.85/0.75/0.95 80.11/0.79/0.96 82.16/0.82/0.97
ATCNet-HG-4 88.03/0.88/0.96 89.24/0.89/0.98 89.19/0.89/0.98 91.56/0.91/0.98
EEGNet-BMI-4 89.22/0.89/0.89 87.22/0.88/0.87 91.94/0.91/0.91 91.11/0.91/0.91
Shallow-BMI-4 91.91/0.91/0.91 90.92/0.91/0.90 92.57/0.92/0.92 92.61/0.92/0.92
Deep-BMI-4 63.80/0.73/0.63 87.22/0.88/0.87 89.97/0.90/0.89 89.05/0.89/0.89
ATCNet-BMI-4 84.65/0.84/0.92 77.82/0.77/0.85 84.88/0.84/0.91 87.60/0.87/0.94
Average 78.15/0.77/0.90 74.87/0.73/0.90 78.16/0.77/0.92 81.84/0.81/0.93
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in dataset BMI, the low-cut frequency of the filter bank is set as 4 Hz. The best measure-
ments of each experimental setting are shown in bold.

Some conclusions can be drawn from the above experimental results: (1) The fixed 
OFBCNN achieved or approached the highest performance using different setups and 
datasets. (2) The performance improvements provided by the fixed OFBCNN are uni-
versal for the CNN backbone, EEG dataset and low-cut frequency. (3) ATCNet with 
fixed OFBCNN achieved the highest accuracy in multisubject MI recognition tasks. (4) 
The performance of the nonoverlapping filter bank CNN was the worst because of the 
narrow bandpass filters applied before CNN.

Moreover, the accuracy boxplots of the fixed OFBCNN, sliding OFBCNN, NOFBCNN 
and original CNN for BCI Competition IV dataset 2a are compared in Fig. 2. The test 
accuracy was used to draw the boxplot. The upper and lower edges of the box represent 
the 25th and 75th percentiles of the accuracy, and the horizontal lines in the box repre-
sent the median of the data. The lines running above and below the box represent the 
maximum and minimum values. Outliers are marked with dots. As seen in the boxplot, 
the fixed OFBCNN achieved the highest or close to the highest accuracy in all configura-
tions. In addition, the box body of the fixed OFBCNN was short, which indicates small 
fluctuations in accuracy. NOFBCNN had the lowest accuracy and the largest accuracy 
fluctuation due to insufficient discriminative information in narrow-band EEG signals.

To confirm the significance of the accuracy improvement, a paired-sample one-
sided Student’s t test was conducted (the null hypothesis was that the accuracy of the 
OFBCNN model was equal to the accuracy of the original/NOFBCNN model, against 
the alternative that the accuracy of the OFBCNN model was greater than the accuracy of 
the original/NOFBCNN model). The p values are shown in Fig. 3. These results showed 
that the accuracy improvement of the fixed OFBCNN compared with the original model 
and NOFBCNN was significant.

To verify the convergence improvement provided by the OFBCNN, the variance 
in test accuracy in epochs 400–500 (epochs 200–300 in OpenBMI dataset) was 

Fig. 2  Accuracy boxplot comparison of fixed OFBCNN, sliding OFBCNN, NOFBCNN and original CNN for BCI 
Competition IV dataset 2a
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compared with that of the original CNN and NOFBCNN by the variance in the test 
accuracy. The results are shown in Table  3. A smaller variance in the test accuracy 
means better convergence and stability.

We can draw conclusions from Table 3 that the fixed OFBCNN was the most sta-
ble model, and the average improvement factor (the original CNN accuracy variance 
divided by the proposed fixed OFBCNN accuracy variance) was 2.06.

Fig. 3  Evaluation of the statistical significance of the performance difference between the OFBCNN and 
original CNN or NOFBCNN. (*p < 0.05, **p < 0.01, ***p < 0.001)

Table 3  The convergence comparison (variance of accuracies (e-5)) of the proposed OFBCNN with 
the nonoverlapping filter bank CNN and original CNN in multisubject MI recognition

CNN-Dataset-Low-Cut 
Frequency

Original NOFBCNN Sliding OFBCNN Fixed OFBCNN

EEGNet-2a-0 Hz 9.24 36.67 13.33 3.45

Shallow-2a-0 Hz 15.32 10.00 8.77 3.42

Deep-2a-0 Hz 12.11 16.67 10.00 3.53

EEGNet-2a-4 Hz 23.55 23.33 16.67 13.33

Shallow-2a-4 Hz 14.82 9.33 7.74 5.81

Deep-2a-4 Hz 10.85 13.15 8.67 5.00

EEGNet-HG-0 Hz 7.94 40.00 25.00 4.28

Shallow-HG-0 Hz 3.90 7.71 4.35 2.25

Deep-HG-0 Hz 13.33 85.00 35.00 3.88

EEGNet-HG-4 Hz 8.30 25.00 25.00 20.00

Shallow-HG-4 Hz 7.05 9.13 5.79 4.98

Deep-HG-4 Hz 60.00 105.00 45.00 20.00

Average 15.53 31.75 17.11 7.49
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Compared with the state‑of‑the‑art algorithm

To fully show the superiority of the proposed method, the fixed OFBCNN was com-
pared with the state-of-the-art algorithm on the BCI Competition IV dataset 2a. In addi-
tion to the backbone model, the following models were included in comparison:

•	 CNN++ [28]: CNN++ is an improved version of the CNN model consisting of 5 
CNN and max pooling layers with an input fully connected (FC) layer. Inspired by 
CSP, a channel projection by a fully connected layer is conducted before the convolu-
tion layer.

•	 PSTNet [29]: PSTNet is a CNN architecture based on a self-attention mechanism 
that extracts distinguishable spatial-temporal features through the attention mecha-
nism in the time domain and space domain.

•	 TS_SEFFNet [14]: TS_SEFFNet designed the DT-Conv block and MS-Conv block for 
feature extraction and finally used the SE-Feature-Fusion block for feature fusion.

The maximum number of epochs for training was also set as 500 for performance 
comparison, and other configurations are the same as those in the original literature. 
The average test accuracy was used for comparison, and the results are shown in Fig. 4. 
The proposed method showed a higher accuracy than the other state-of-the-art algo-
rithms in the comparison.

Parameter selection

The key parameter in the proposed OFBCNN framework is the frequency step of the 
filter bank. In previous results, the frequency step of bandpass filters was set as 4 Hz. 
The influence of different frequency steps was tested in this section. As the excellent 
capability of the fixed OFBCNN based on Shallow ConvNet was shown previously, 
it was employed in the test on the BCI Competition IV dataset 2a, and the results 
are shown in Table 4. The first bandpass filter was set as shown in Table 1, and the 

Fig. 4  Performance comparison with state-of-the-art algorithms
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following bandpass filters were set according to the frequency step. For example, if 
the low-cut frequency was 0 Hz and the frequency step was 1 Hz, the bandpass filter 
frequency of the overlapping filter bank was 0–8 Hz, 0–9 Hz, 0–10 Hz, …, 0–36 Hz, 
and thus, this overlapping filter bank had 29 bandpass filters. To visually show the 
influence of the frequency step on the recognition accuracy, the results in Table 4 are 
shown in Fig. 5.

If the frequency step is smaller, more bandpass filters will exist in the OFBCNN, and 
more CNN models need to be trained. In contrast, if the frequency step is larger, fewer 
bandpass filters will exist. However, the OFBCNN cannot take advantage of the dis-
criminative information from all frequency bands, and the probability ensemble of a few 
models will diminish the discriminatory ability. Therefore, the selection of the frequency 
step in the filter bank was a compromise between performance and computational com-
plexity. Based on the results in Table 4, 4 Hz was selected as an empirical value.

Conclusion
In this paper, an overlapping filter bank CNN framework was proposed to enable the 
CNN model to learn discriminative information from multiple frequency bands of EEG 
for multisubject MI-BCI. Specifically, the novel overlapping filter bank with a fixed low 
cut frequency and overlapping filter bank with a sliding low cut frequency were applied 
for preprocessing EEG. Comprehensive experimental evaluations using two benchmark 
datasets were conducted to test the effectiveness and universality of the proposed over-
lapping filter bank CNN framework. The experimental results showed that the fixed 
OFBCNN achieved the highest classification accuracy.
Acknowledgements
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Fig. 5  The average testing accuracy comparison of different frequency steps
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