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Abstract 

Single-cell RNA-sequencing (scRNA-seq) data can serve as a good indicator of cell-
to-cell heterogeneity and can aid in the study of cell growth by identifying cell types. 
Recently, advances in Variational Autoencoder (VAE) have demonstrated their ability 
to learn robust feature representations for scRNA-seq. However, it has been observed 
that VAEs tend to ignore the latent variables when combined with a decoding distribu-
tion that is too flexible. In this paper, we introduce ScInfoVAE, a dimensional reduction 
method based on the mutual information variational autoencoder (InfoVAE), which can 
more effectively identify various cell types in scRNA-seq data of complex tissues. A joint 
InfoVAE deep model and zero-inflated negative binomial distributed model design 
based on ScInfoVAE reconstructs the objective function to noise scRNA-seq data and 
learn an efficient low-dimensional representation of it. We use ScInfoVAE to analyze 
the clustering performance of 15 real scRNA-seq datasets and demonstrate that our 
method provides high clustering performance. In addition, we use simulated data 
to investigate the interpretability of feature extraction, and visualization results show 
that the low-dimensional representation learned by ScInfoVAE retains local and global 
neighborhood structure data well. In addition, our model can significantly improve the 
quality of the variational posterior.

Keywords:  Unsupervised clustering, Deep neural network, Variational autoencoder, 
Mutual information, scRNA-seq data

Introduction
In recent years, single-cell RNA sequencing (scRNA-seq) has become a hot topic in the 
field of biology as sequencing technologies continue to improve and cellular research 
deepens. Single cell RNA sequencing is a new technology that enables high-throughput 
sequencing of the genome at the level of individual cells. Traditional high-throughput 
RNA sequencing is based on the whole tissue and the genomic information is aver-
aged across the group; single-cell RNA sequencing provides data representing the 
genetic information of individual cells, which can be used to study genetic heterogeneity 
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between cells of the same phenotype and to discover their specific biological functions 
[1]. An important function of single-cell sequencing data is to differentiate between 
cell types, i.e. to build clustering models based on single-cell sequencing data that can 
be used to cluster cells with similar gene expression patterns into the same cell type, 
to infer cell function and to gain an understanding of the correlation between disease 
and genomic features [2]. If a more accurate and unbiased clustering of cells could be 
achieved, this would have a huge impact in areas such as oncology, gene expression and 
immunology [3].

Currently, most cell clustering methods are proposed based on traditional RNA 
sequencing data, and although they can be used on scRNA-seq data, scRNA-seq data 
have characteristics that clearly distinguish them from traditional high-throughput RNA 
data, such as large data volume, high dimensionality and having excessive noise. The 
direct use of clustering algorithms developed based on tissue RNA-seq data on scRNA-
seq data has significant constraints [4], so the design and construction of clustering algo-
rithms applicable to the feature of single-cell data has become a hot subject in the field of 
single-cell analysis.

The most critical step in the data analysis of scRNA-seq is to group cells belonging to 
the same cell type according to the gene expression pattern that can make them similar 
within the group and different between groups. However, the expression data of scRNA-
seq makes cell clustering difficult due to the following reasons: 

(1)	 Compared with traditional scRNA-seq, one can obtain the expression amount of 
each gene in each cell with higher precision and wider dimensions to use for more 
downstream personalized analysis.

(2)	 As each gene expression in each cell is to be sequenced, but not all genes in all 
cells can be transcribed and expressed in real life. Therefore, the expression data of 
scRNA-seq is a sparse matrix and the average sparsity can be as high as 50 percent, 
i.e., many genes in a cell of the gene expression are zero, even 50 percent of them 
are zero.

(3)	 A project can obtain tens of thousands to hundreds of thousands of cell samples 
and the number of genes is usually tens of thousands, such a high dimensional data 
set is difficult to analyze the differences in gene expression patterns between cell 
types.

According to the characteristics of scRNA-seq data, the scRNA-seq data first needs 
to be dimensionalized.Some linear dimension-reduction method has been favored by 
researchers such as principal component analysis (PCA). In addition, there are non-
linear methods such as uniform manifold approximation and projection (UMAP) and 
t-distributed stochastic neighbor embedding (t-SNE) to reduce dimension. After the 
rise of neural network, there are many methods of dimensionality reduction based 
on neural network [5–7]. In addition, the dropout events in scRNA-seq data may 
make the classic dimensionality reduction algorithm unsuitable. Pierson and Yauet 
al. 2015[8] modified the factor analysis framework to solve the dropout problem and 
provided a method zero-inflated factor analysis (ZIFA) based on an additional zero-
inflation modulation layer for reducing the dimension of single-cell gene expression 
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data. Compared with the above two linear methods, employing the zero-inflation 
model can give ZIFA more powerful projection capabilities but will pay a correspond-
ing cost in computational complexity.

Existing non-linear dimensionality reduction methods still have limitations such as 
lack of robustness to random sampling, inability to capture the global structure while 
focusing on the local structure of the data, sensitivity to parameters and high computa-
tional cost. Currently, the scale of scRNA-seq data has reached tens of thousands or even 
millions of cells, and deep learning techniques, as widely used non-linear transforma-
tion methods, are applicable to dimensionality reduction of large-scale scRNA-seq data. 
In deep learning methods, the use of Zero-inflated Negative Binomial (ZINB) model 
instead of the Mean Square Error (MSE) objective function commonly used in autoen-
coders can better handle the large number of “false zeros” in scRNA-seq data. It can 
better characterize scRNA-seq data, and explicitly optimize clustering when dimension-
ality reduction is performed [9]. For example, the scDeepCluster model [10] combines 
the ZINB model and deep learning’s AutoEncoder trained together to map scRNA-seq 
data to a low-dimensional space on which the clusters are clearly partitioned using KL 
(Kullback-Leibler ) divergence constraints, improves the computational efficiency of 
scRNA-seq data analysis.In addition, to further improve the accuracy of feature learning, 
some novel deep clustering algorithms have recently been proposed [11] that unify the 
learning of feature representations and class labels using a joint training strategy, which 
involves training the network parameters by making full use of the clustering results 
to output optimal feature representations, class centres, and class labels of cells. For 
example, Chen et al [12] proposed scziDesk, a joint training method combining fuzzy 
clustering and autoencoder based on scDeepCluster, which combines K-means with 
AutoEncoder and uses Soft K-means as the objective function to substantially improve 
the clustering accuracy of spherical cluster data. The method extracts low-dimensional 
features via the AutoEncoder in the first training, and adds the Soft K-means objec-
tive function to fine-tune the model in the second training to further improve accu-
racy. However, it is difficult to obtain the optimal solution during the second training, 
and there is a problem of gradually increasing and decreasing accuracy, which makes 
the training process unstable. Another major problem is the poor accuracy of cluster-
ing non-spherical data. Ciortan, M., Defrance, M.[13] investigated a method for extract-
ing features using graph autoencoder networks that is robust to input down-sampling, 
insensitive to input data outliers, but requires some computational time for input data 
composition [13]. Grønbech C.H. et al proposed a new method, scVAE [14], based on 
Variational Autoencoder (VAE) [15], for the analysis of scRNA-seq data. It bypasses the 
process of data pre-processing and allows for robust estimation of expected gene expres-
sion levels and potential representations for each cell by using raw count data as input. 
Zhao, S et al.[16] found that the existing objective function of VAE may lead to inaccu-
rate amortized inference distributions of the inferred data by the autoencoder and that 
the variational autoencoder tends to ignore potential hidden layer variables. They pro-
posed the InfoVAE model that increases the input data and the hidden space data, which 
increases the regular terms of the mutual information metric. The InfoVAE model can 
significantly improve the quality of the variational posterior probability distribution of 
the variational autoencoder [16].
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In summary, our contributions can be summarized as follows: (1)We propose an effi-
cient training framework that integrates InfoVAE and ZINB, leveraging autoencoders 
for clustering scRNA-seq data. The proposed method produces competitive results on 
both simulated and real datasets than other similar deep-learning approaches, robust to 
changes in input parameters and flexible to allow the integration any suitable clustering 
algorithm. (2)It is a challenge for dimension reduction to interpret structure in scRNA-
seq data . Existing algorithms are either not able to uncover the clustering structures in 
the data or lose global information such as groups of clusters that are close to each other. 
ScInfoVAE is able to capture and visualize the low-dimensional structures in scRNA-seq 
data . Simulation results demonstrate that low-dimensional representations learned by 
ScInfoVAE preserve both the local and global neighbor structures in the data. In addi-
tion, ScInfoVAE is robust to the number of data points and learns a probabilistic para-
metric mapping function to add new data points to an existing embedding.

Methods
The deep clustering algorithm is divided into two separate processes of feature learning 
and cluster partitioning. The former part does not necessarily learn the feature representa-
tion that is most suitable for cluster partitioning, thus affecting the clustering performance. 
With the joint mutual information variational autoencoder (InfoVAE) and ZINB training 
strategy, the deep clustering problem can be described as follows: the original scRNA-seq 
dataset is defined as Dn = {x1, x2, · · · , xn} where xi represents the i-th cell and n is the 
number of cells; the center of the clusters are Rn = {r1, r2, · · · , rk} , where k is the num-
ber of cell classes. The aim is to reduce dimension and cluster zero-inflated single-cell data. 
The Workflow of InfoVAE-based deep clustering is shown in Fig.  1a, where the scRNA-
seq dataset was first preprocessed using SCANPY [17] to remove genes with “non-zero” 
expression below 1% in all cells and to remove cells with “non-zero” expression below 1% 
in all genes. The data were then normalised using a log(x + 1) transformation and Quality 

Fig. 1  Workflow of clustering based on InfoVAE. The network is trained by both clustering loss and 
reconstruction loss
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Control(QC) is performed using SCANPY (Fig. 1b). The 500 genes with the highest vari-
ance (Fig. 1c) were identified and retained, and the data were centered and the value of each 
entry in the gene expression matrix was subtracted from the mean expression value of the 
cell in which it was located, making it easier to solve the covariance matrix with a variance 
of 1 between cells. The SCRNA data were pre-trained using InfoVAE combined with the 
ZINB model, called ScInfoVAE. The training process is then optimised jointly with the clus-
tering objective function (Fig. 1d) and finally the embedded feature vectors are extracted 
and the latent feature vectors are clustered for analysis and visualisation (Fig. 1e). K-means 
and spectral clustering methods are used in this paper.

InfoVAE

InfoVAE (Mutual Information in Variational Autoencoders) consists of two parts: the 
encoder and the decoder. The encoder is defined as: fϕX → Z where Xpdata(x) is the input 
raw data and Z is the reduced-dimensional data; ϕ is the set of encoder network param-
eters. The decoder is defined as gθ : Z → X where θ is the set of decoder network param-
eters. The dimensionality of the latent space Z is usually smaller than that of the data layer, 
so it can be used to learn a compressed representation of raw data. The reconstructed rep-
resentation X̃ must be as close as possible to the input data X. Here we defind q(zi|xi,ϕ) as 
the deep neural network encoder, p(xi|zi, θ) as the deep neural network decoder, and zi as 
the latent space sample encoded by q(zi|xi,ϕ) . The loss function of the autoencoder is to 
minimize the reconstruction loss. The dimensional reduction is achieved by reducing the 
dimensionality of the latent layer feature space. However, if the autoencoder is trained with 
sufficient freedom, the reconstruction loss becomes small, reaching 0 when the network is 
deep enough (causing over-fitting). The variational auto-encoder incorporates some slight 
modifications to the autoencoder, and by encoding the input data as normally distributed 
data rather than as a number of points, over-fitting is effectively avoided. The generic form 
of the variational auto-encoding objective function [15] is defined as:

where D ≥ 0 is a distance formula that measures the difference between two probability 
distributions, and D(q||p) = 0 when p = q and � > 0 is a scaling factor. The traditional 
VAE solution process suffers from two major drawbacks. The first drawback can be cat-
egorized as being that the mutual information of the latent variable z and the observed 
variable x is too small. The second drawback can be categorized as the fact that the 
approximate posterior distribution qφ(z|x) of the latent variable z will never converge 
to the true posterior distribution pθ (z|x)[18], even though it is possible to maximize the 
Mutual Information of the latent variable z and the observed variable x. To address these 
two issues, the mutual information Iq(x; z) of the hidden variable z and the observed 
variable x is added to Eq. (1)as a regularization term to improve the generalization of the 
model, where � and α are the conditioning parameters, as shown in Eq. (2).

Based on the derivation of reference [18], the objective function of Eq. (2) can be mod-
ified for programming implementation, as shown in Eq. (3)

(1)LVAE = −�D
(
qφ(z)�p(z)

)
+ Ep data (x)Eqφ(z|x)[log (pθ (x | z))].

(2)L InfoVAE = −�D
(
qφ(z)�p(z)

)
+ Ep data (x)Eqφ(z|x)[log (pθ (x | z))]+ αIq(x; z).
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Reconstructing the loss function

Consider the second term of Eqφ(z|x)[log(pθ (x|z))] which can be substituted in the autoen-
coder in the form of Eq. (4)

where the constant c is a regularization parameter weighing the left and right terms, 
with a larger c indicating a larger variance in the decoder and a greater tendency towards 
the regularization term and z = fϕ(xi) is the latent variable.

The effect of the encoder is to encode the high-dimensional input X into a low-dimen-
sional latent variable Z, thus forcing the neural network to learn the features of the most 
useful information. The purpose of the decoder is to recover the latent variable Z in the 
latent layer to its initial dimension. The optimal outcome is that the output of the decoder 
is a perfect or close approximation of the original input, i.e. X ≈ X̃ . The difference between 
the original input and the reconstruction is referred to as the reconstruction error. In order 
to learn the best encoding and decoding, the goal of the autoencoder is to minimize the 
reconstruction error, so the reconstruction loss function of the autoencoder is expressed in 
Eq. (5):

The scRNA-seq data are highly sparse, in the sense that there are very many zeros (zero 
inflation). It is crucial to make reasonable assumptions about the distribution of the data. 
For the reads count data of scRNA-seq, the most common normal distribution is not rea-
sonable. Firstly, the normal distribution describes continuous data, whereas the reads count 
data is discrete; secondly, the reads count data can only take values that are nonnegative 
integers. After numerous attempts, the use of the ZINB distribution [9] to process the out-
put X̃ and then calculate the mean square error was found to be more capable of differenti-
ating cell types than a typical autoencoder using the mean square error (MSE) loss function 
alone. This suggests that the use of a computational model in the autoencoder to process 
the output data is necessary to derive features from the scRNA-seq data.

Since zero values in gene representation data can result from both genes that are not 
expressed during the biological process (called True Zero) and from technical losses during 
sequencing (called False Zero or Dropout Zero), a zero-inflation is added to the negative 
binomial NB (without zero-inflation) model. The zero-inflated negative binomial distribu-
tion (ZINB) is used to model the autoencoder output data and calculate the reconstruction 
loss.

(3)
LInfoVAE = Epgθ (x)

Eqφ(z|x)[log (pθ (x | z))]− (1− α)Epgθ (x)
DKL

(
qφ(z | x)�p(z)

)

−(α + �− 1)DKL

(
qφ(z)�p(z)

)
.

(4)LVAE = −�D
(
qφ(z)�p(z)

)
+ Ep data (x)Eqφ(z|x)

[
−
�x − g(z)�2

2c

]
.

(5)Lrec =
∥∥xi − gθ

(
fϕ(xi)

)∥∥2
2
.

(6)NB
(
X count | µ, v

)
=

Ŵ
(
X count + v

)

X count !Ŵ(v)
×

(
v

v + µ

)v( v

v + µ

)X count

.
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where Xcount = gθ (fϕ(xi)) denotes the decoder output data of the autoencoder, π denotes 
the ratio of zero values, and µ, v are the parameters of the negative binomial distribution. 
Thus Eq. (5) can be written as

Deep clustering with KL divergence

Optimizing the autoencoder and extracting the latent embedding features is challeng-
ing. However, unlike supervised learning, we cannot train our deep networks with 
labelled data. There is a considerable literature, which proposes the use of soft clus-
tering in the auxiliary target distribution to assign feature vectors as a training itera-
tion to obtain a more clustering-friendly feature representation [19–21].

The Student-t distribution can be used to estimate the overall sample mean that 
is normally distributed and has unknown variance based on a small sample, and we 
will design the auxiliary target distribution based on the Student-t distribution. The 
objective function LKL is therefore defined as the KL divergence between the soft dis-
tribution qi and the auxiliary distribution pi , as shown in Eq. (9).

where pij is the cluster optimisation target distribution. By squaring qi to calculate pi , we 
expect to bring the data points closer to the cluster centers and improve the cohesion of 
the clusters. The data representation is optimized by learning a high confidence assign-
ment such that the sum of the projected distances of all data points from the nearest 
cluster center ri is minimized, as shown in Eq. (10).

where qij is the probability of assigning data point i to cluster j (i.e. soft assignment). The 
similarity between the latent embedding zi and the cluster center rj is measured using 
Student’s t-distribution as a kernel, as shown in Eq. (11).

where, for xi ∈ X , its low-dimensional embedding vector zi = fϕ(xi) ∈ Z ; α is the degree 
of freedom of the Student-t distribution. Since α cross-validation on the validation set 
cannot be performed during unsupervised learning, α is set to 1. In summary, the final 
objective function is shown in Eq. (12).

(7)ZINB
(
X count | π ,µ, v

)
= πδ0

(
X count

)
+ (1− π)NB

(
X count | µ, v

)
.

(8)Lrec =
∥∥xi − ZINB

(
gθ
(
fϕ(xi)

))∥∥2
2
.

(9)LKL = KL(P�Q) =
∑

i

∑

j

pij log
pij

qij
.

(10)pij =
q2ij/

∑
j qij

∑
j′

(
q2ij′/

∑
j′ qij′

) .

(11)qij =

(
1+

∥∥zi − rj
∥∥2/α

)− α+1
2

∑
j′

(
1+

∥∥zi − rj′
∥∥2/α

)− α+1
2

.



Page 8 of 16Pan et al. BioData Mining           (2023) 16:17 

where � and γ are regulating parameters to balance the training process for each loss 
function.

Experiments and results
In this section, we construct a deep clustering model for scRNA-seq data using the 
method proposed in this paper. We tested the clustering performance on 15 real data-
sets and the ability of ScInfoVAE to learn low-dimensional representations that preserve 
local and global neighborhood structure on simulated datasets.

Evaluation criteria

The real scRNA-seq datasets with actual class labels used in this paper was evaluated for 
clustering performance using four metrics. Adjusted Rand Index (ARI) score [22], Nor-
malised Mutual Information [23] and internal score(Silhouette) [24] and Calinski Hara-
basz [25]. For all metrics, the higher the value, the better the performance.

ARI is commonly used in cluster analysis to measure the degree of agreement between 
two data partitions. The ARI will be used to quantify the agreement between a reference 
and a predicted clustering on the scale [−1, 1] , with score of 1.0 denoting perfect agree-
ment. However, as there might be multiple equally valid/plausible/useful partitions , the 
outputs generated by a single algorithm is evaluated against all the available reference 
labellings and the maximal similarity score is reported.

Normalized Mutual Information (NMI) is a measure used to evaluate network par-
titioning performed by community finding algorithms. It is often considered due to its 
comprehensive meaning and allowing the comparison of two partitions even when a dif-
ferent number of clusters.

The silhouette score is based on the principle of maximum internal cohesion and max-
imum cluster separation. In other words, we would like to find the number of clusters 
that produce a subdivision of the dataset into dense blocks that are well-separated from 
each other. In this way, every cluster will contain very similar elements and, selecting 
two elements belonging to different clusters, their distance should be greater than the 
maximum intra-cluster one.

The Calinski-Harabasz index (also known as the Variance Ratio Criterion) is calcu-
lated as a ratio of the sum of inter-cluster dispersion and the sum of intra-cluster dis-
persion for all clusters (where the dispersion is the sum of squared distances). It is most 
commonly used to evaluate the goodness of split by a K-Means clustering algorithm for 
a given number of clusters.

Datasets

We collected 15 published scRNA-seq datasets. These datasets were generated from 
representative sequencing platforms such as the 10X genomics platform, the Drop-seq 
platform, and the SMART-seq2 platform. Class labels for these datasets were obtained 

(12)

L SCInfoVAE = −�D
(
qφ(z)�p(z)

)
+

Ep data (x)Eqφ(z|x)

[
−

∥∥x − ZINB
(
gθ
(
fϕ(x)

))∥∥2

2c

]
+ γLKL.
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using the computational methods from the cited papers. Specific details of the datasets 
are described in Table 1 of Supplementary Materials.

Experiments and analysis

In this section, we perform a clustering test on the dataset in Table  1 of Supplemen-
tary Materials. We used the cell type information provided by the authors of the dataset. 
They identified cell types experimentally or by other biological methods, and these cell 
type labels can be considered as benchmarks for clustering accuracy. We then applied 
our method to obtain clustering results and analysed them using an ARI, where higher 
ARI values are associated with better clustering.

The lower the starting RNA amount in single-cell sequencing, the lower the gene 
expression correlation of technical replicate samples. Therefore, after generating a 
standardised gene expression profile, a very important step is to assess the technical 
variability. ScziDesk proposes an ablation study in which the raw data is pre-processed 
to extract a small number of highly variable genes and eliminate outliers, which not 
only reduces the dimensionality of the data and increases the training speed, but also 
significantly improves the clustering performance. It is therefore necessary to perform 
pre-processing of the raw data by SCANPY [17] before inputting it into the model for 
training. Similar to ScziDesk, the 500 genes with the highest discrepancies were retained 
as model input.

The dataset was trained and tested independently using various methods from Table 2 
in Supplementary Materials. Among them ScDeepCluster, SCVI, scziDesk, etc. all use 
the default parameter settings of the original author’s source code and they are not opti-
mised. ScInfoVAE uses the same denoising autoencoder model as ScDeepCluster, and 
we set the size of the autoencoder to d − 500− 256− 256− 10 , where d is the size of 
the input data. Using Eq. (3), pre-train the mutual information-based autoencoder. The 
final optimization is performed using Eq.  (12). The pre-training used 600 epochs and 
the optimisation process used 500 epochs. We use Adam optimizer[26] as the optimizer, 
and the learning rate is set as 10−3 in pre-training and 10−4 in the fine-tuning stage. 
After training and extracting the feature vectors, the ARI results were obtained using 
the K-means, SpectralClustering of the scikit-learn python package and Robust Spec-
tral Clustering(RSC) for Noisy Data(Bojchevski, Matkovic, and Günnemann 2017[27]), 
respectively. We performed all methods 5 times and reported the average results to pre-
vent extreme cases. Of these, for all the methods that used the K-means algorithm to 
generate clustering assignments, we initialised five times and selected the best solution, 
and the results are shown in Fig. 2. ScInfoVAE(KM) and ScInfoVAE(SP) denote cluster-
ing of latent embedding features using the K-means algorithm and Spectral clustering 
algorithm respectively, while ScInfoVAE(RSC) denotes clustering using the RSC spectral 
clustering method. The results depicted in Fig. 2 show that the method proposed in this 
paper performs no worse than other clustering techniques on realistic datasets.

Figure 3 visualized the results on five real data sets. First, the embedding data obtained 
from the training of multiple models were t-SNE 2D projected and the clusters predicted 
by ScInfoVAE were compared with other competitive methods scziDesk, scDeepCluster 
and scGNN. Figure 3 shows that the clustering results calculated using ScInfoVAE are 
aligned with the given class labels, as well as forming well-defined cluster divisions.
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All our experiments present the results of three consecutive runs of each method on 
each dataset. Our methods are usually highlighted in bold. This experimental setting is 
used to benchmark the presented methods on a collection of 15 real scRNA-seq data-
sets, as detailed in Supplementary Fig. 3-5. From the bar chart, it can be seen that many 
indicators have achieved the top 3 results.

Method stability analysis

The coefficient of variation (CV) is a relative measure of variability that indicates the 
size of a standard deviation in relation to its mean, calculated as standard deviation 
divided by mean score, it allows to compare the stability of results across values having 
potentially different ranges for each dataset (Fig. 4a-d). All analyzed methods have been 
executed 3 times on each dataset, starting from different initialization seeds.The results 

Fig. 2  Dataset-level analysis of real scRNA-seq data on ARI scores. The dataset annotations (e.g. #1) indicate 
the ranking of ScInfoVAE, respectively, with K-means-Spectral-clustering and RSC clustering on each analyzed 
dataset
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suggest that ScInfoVAE(KM) has an average stability compared to the other competing 
methods, while the most similar techniques, scziDesk, scDeepCluster and scGNN are 
generally more unstable. Clustering the learned embedding with K-means or with RSC 
does not change the stability of the predicted partition.

Two known shortcomings of VAEs are that (i) The variational bound (ELBO) can lead 
to poor approximation of the true likelihood and inaccurate models and (ii) the model 
can ignore the learned latent representation when the decoder is too powerful. Info-
VAE is proposed to tackle these problems by adding an explicit mutual information 
term to the standard VAE objective. InfoVAE with three different divergences: Jensen, 
Stein Variational Gradient and Maximum-Mean Discrepancy. Results seem to indi-
cate that InfoVAE leads to more principled latent representations, and better balance 
between reconstruction and latent space usage. As such, reconstructions might not look 
as crisp than ones from VAE but unsupervised task that make use of the representa-
tion are of better clustering. As shown in Supplementary Fig. 9, for the 5 real dataset 

Fig. 3  Visualization of identified clusters. The partitions identified with scDeepCluster, scziDesk, scGNN, 
ScInfoVAE(RSC) and ScInfoVAE(KM)) on five datasets (Muraro, Quake Limb Muscle, Quake Smart seq2 Trachea 
,Young, Adam). The plots illustrate the t-SNE 2D projections of the created embeddings. All selected methods 
start by producing an embedding for the cells, which is clustered in a second phase. The quality of the 
method depends on both the created embedding and the clustering algorithm. Both our methods clustered 
the same embedding, produced by ScInfoVAE
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experimentation, it show that InfoVAE extracts better latent representation for cluster-
ing than VAE, ARI clustering results are somewhat enhanced.

Computational complexity analysis

Available data in machine learning applications is becoming increasingly complex, due 
to higher dimensionality and difficult classes. There exists a wide variety of approaches 
to measuring complexity of labeled data, according to class overlap, separability or 
boundary shapes, as well as group morphology. For the original data before dimension-
ality reduction, many traditional clustering methods run and consume large amounts 
of memory and fail. For example, the spectral-based clustering methods (RSC) were 
imposed with quadratic space complexity, and we failed to run them with even large 
memory (for example, 256G). Many autoencoder based clustering techniques can trans-
form the original input data and batch input in order to specifically reduce memory 
overhead.

After having analyzed the clustering performance of ScInfoVAE , the average execu-
tion time across all real-world scRNA-seq datasets is presented in Supplementary Fig. 8. 
For each real dataset, each method has been executed 3 times. The scores reported by 
our methods are average execution times, being placed at the median of all analyzed 

Fig. 4  Benchmarking ScInfoVAE and t-SNE on synthetic data
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methods. All methods have been executed on GPU.The computational efficiency is 
explained by the short convergence times (10 epochs for graph-sc) while for instance, 
scziDesk and scDeepCluster perform a pretraining of 1000 and respectively 600 epochs, 
In ScInfoVAE, the epoch is not adjusted according to the data set size , it is all per-
form a pretraining of 1000 and a funetraining of 1000, it won’t stop finetraining early 
as scziDesk when gradient don’t descent, time overhead is greater than other methods 
based on neural networks. Therefore, adjusting the epoch parameter can reduce the time 
overhead of ScInfoVAE. Using only the most variable genes as input cell representations, 
instead of the usual high dimensional space brings a computational gain, reduces com-
puting time. ScDeepCluster using original data as input , run time is much longer than 
other methods.

Experimental results

As in reference [28], to demonstrate that ScInfoVAE is able to robustly learn low-dimen-
sional representations of the input data, we first simulated the data in two dimensions 
(for visualization purposes), as shown in Fig.  4a. The large cluster on the left consists 
of 1000 points and the five smaller clusters on the right each have 200 points. These 
five small clusters are very close to each other and can be roughly considered as one 
large cluster. Around these six clusters are 200 uniformly distributed outlier points. Each 
two-dimensional data point with coordinates (x, y), for the reason that nine-dimensional 
space occurs frequently in mathematics, and is a perfectly legitimate construct. Then for 
each two-dimensional data point with coordinates (x, y), we map it to a nine-dimen-
sional space by the transformation (x + y, x − y, xy, x2, y2, x2y, xy2, x3, y3) . Each of the 
nine features is then divided by its corresponding maximum absolute value.

Figure  4a shows the original 2200 two-dimensional synthetic data points (they are 
labeled by the clustering labels). Randomly distributed outliers are also indicated by dif-
ferent colors. In general, the two-dimensional representation of ten runs (Supplemen-
tary Fig. 6 ScInfoVAE 1-6) shows a similar pattern to that in Fig. 4c. As a comparison, 
we also ran t-SNE six times and the results (Supplementary Fig. 6 t-SNE 1-6) show that 
the layout of the clusters is not preserved as in Fig. 4b, e.g. the relative positions of the 
clusters change from run to run. Thus, by obtaining low-dimensional density informa-
tion (Fig. 4d), we can better explain the structure in the original data and account for the 
uncertainty in the predictions.

High-dimensional data is an integral part of modern systems biology. Computational 
methods for dimensional reduction are rapidly evolving for application to single-cell and 
multimodal techniques. To understand the impact of these non-linear transformations 
on the underlying biological patterns in our data, we tested K-nearest neighbor preser-
vation before and after the transformations using the DR algorithm [29]. We then cal-
culated the K-nearest neighbor preservation values ( K = 100 to 1500) and found that 
the ScInfoVAE results had significantly higher Knn preservation values than the t-SNE 
results, as shown in Fig. 5.

To demonstrate that ScInfoVAE leads to the interpretability of the model, A scatter 
plot is presented in the Fig. 6, illustrating the cell distribution obtained by training the 
ScInfoVAE model on the Romanov dataset [30] on the left, and by training t-SNE on 
the right. The cells in the plots are categorized into seven main types: oligodendrocytes, 
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neurons, astrocytes, ependymal cells, endothelial cells, vascular lineage, and micro-
glia. we observed a close proximity between ependymal and endothelial cells, while 
ependymal cells were farther from oligodendrocytes and neurons. This observation can 
be explained by the distinct gene expression patterns and biological functions of these 
cell types, which are captured by our method. Ependymal and endothelial cells both 
play important roles in maintaining the brain’s microenvironment. Ependymal cells 
are involved in the production and circulation of cerebrospinal fluid (CSF), whereas 
endothelial cells contribute to the formation of the blood-brain barrier (BBB). The 
shared functions of these cell types in regulating the brain’s extracellular milieu likely 
lead to similarities in their gene expression patterns, which our method detects and rep-
resents through their proximity in the graph. Conversely, oligodendrocytes and neurons 
have different functions and gene expression patterns compared to ependymal cells. 
Oligodendrocytes are responsible for producing myelin, which insulates axons, while 
neurons serve as the primary information-processing cells in the brain. These differ-
ences in function and gene expression result in their separation from ependymal cells in 
the graph, highlighting the ability of our algorithm to identify and distinguish between 
diverse cell types based on their gene expression profiles. In contrast, t-SNE can also 
differentiate between different cell types, but the scatter plot suggests that a significant 
number of cells are intertwined in the figure, including ependymal and endothelial cells, 
as well as neurons and the other six types of cells.

Conclusion
In this paper, we propose a new method, ScInfoVAE, which combines the InfoVAE depth 
model with a zero-inflated negative binomial distributed model for clustering scRNA-
seq data. The proposed method produces competitive results on real data sets, and 
the low-dimensional representation learned by ScInfoVAE preserves local and global 

Fig. 5  Average K-nearest neighbor preservations across ten runs for different Ks
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neighbourhood structure data well. We believe that this advantage of the framework can 
open up new research directions and improve the clustering results of existing models. 
However, due to the diversity of single-cell data distributions, improvements to model 
performance may not always be readily achievable in this case. We hope that this work 
will inspire future researchers considering mutual information models for the analysis of 
scRNA-seq.
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