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Abstract 

Background:  Quantitative Trait Locus (QTL) analysis and Genome-Wide Association 
Studies (GWAS) have the power to identify variants that capture significant levels of 
phenotypic variance in complex traits. However, effort and time are required to select 
the best methods and optimize parameters and pre-processing steps. Although 
machine learning approaches have been shown to greatly assist in optimization and 
data processing, applying them to QTL analysis and GWAS is challenging due to the 
complexity of large, heterogenous datasets. Here, we describe proof-of-concept for an 
automated machine learning approach, AutoQTL, with the ability to automate many 
complicated decisions related to analysis of complex traits and generate solutions to 
describe relationships that exist in genetic data.

Results:  Using a publicly available dataset of 18 putative QTL from a large-scale GWAS 
of body mass index in the laboratory rat, Rattus norvegicus, AutoQTL captures the 
phenotypic variance explained under a standard additive model. AutoQTL also detects 
evidence of non-additive effects including deviations from additivity and 2-way epi‑
static interactions in simulated data via multiple optimal solutions. Additionally, feature 
importance metrics provide different insights into the inheritance models and predic‑
tive power of multiple GWAS-derived putative QTL.

Conclusions:  This proof-of-concept illustrates that automated machine learning tech‑
niques can complement standard approaches and have the potential to detect both 
additive and non-additive effects via various optimal solutions and feature importance 
metrics. In the future, we aim to expand AutoQTL to accommodate omics-level data‑
sets with intelligent feature selection and feature engineering strategies.

Keywords:  QTL, GWAS, Automated, Machine learning, Genetic programming, 
Evolutionary algorithms, Epistasis, Dominance, Inheritance

Background
Quantitative trait locus (QTL) analysis and genome-wide association studies (GWAS) 
are widely used approaches  in the analysis of complex traits, and are commonly used 
to explore the genetics of both human diseases and phenotypes in  model organisms. 
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However, these methods commonly rely on univariate or interval mapping approaches 
and an additive genetic model to capture phenotypic variance [1]. Thus, they are limited 
in their ability to model non-additive genotypic effects, including epistatic interactions 
[2]. However, there are significant exceptions to this general trend.

A recent large-scale study in Saccharomyces cerevisiae identified that of the 61% 
broad-sense heritability detected, 21% was due to non-additive effects (dominance devi-
ations and epistasis) [3]. In a related previous study, also in S. cerevisiae, of the 91.7% of 
the phenotypic variance attributed to genetic sources, non-additive effects accounted for 
18.7% [4] Furthermore, non-additive QTL outnumbered additive QTL 3:1. These stud-
ies illustrate that significant sources of non-additive genetic variation, which are not 
usually detected using standard approaches, exist in living systems. However, in both 
studies, the identification of non-additive genetic effects were achieved by constructing 
a rigorous breeding design coupled with thousands of replicated lineages. This level of 
structure in known relatedness and replication can be especially challenging in human 
genetic studies or in non-model systems.

An alternative approach is to employ automated machine learning (autoML) techniques, 
which can be designed to detect both additive and non-additive effects while reducing the 
need to invest significant resources in constructing specific methodologies and selecting spe-
cialized parameters. AutoML approaches have the advantage of exploring vast parameter 
spaces while performing both algorithm selection and hyperparameter optimization without 
express human interaction post-initialization. Therefore, these approaches can be unleashed 
to detect patterns in large and complex datasets. Even though, to date, autoML packages spe-
cifically designed for phenotype to genotype association in omics level data have not been 
fully explored, there have been several significant and promising attempts. As initial exam-
ples, there have been studies that have identified epistatic interactions using random forest 
(RF) methodologies for major adverse cardiovascular events [5] and Alzheimer’s Disease [6] 
from simulated and real-world GWAS-scale data. RF-based methodologies have also been 
designed to identify non-coding variants [7, 8] and to predict rare variant pathogenicity [9]. 
Examples proximal to GWAS-level exploratory analyses come from successful applications 
of the software package TPOT [10–12] to several omics datasets built to explore medically 
relevant phenotypes. TPOT, the Tree-based Pipeline Optimization Tool, selects Pareto 
optimal pipelines with the highest multi-objective fitness after a user designated number 
of genetic programming (GP) generations. In this way, TPOT can optimize algorithms and 
hyperparameters using an approach akin to Darwinian evolution. To date, TPOT has been 
applied to RNAseq data to identify pathways and genes associated with major depressive dis-
order [12] and schizophrenia [13] as well as to metabolomics data to study type 2 diabetes 
[14] and coronary artery disease [15]. As for genotype to phenotype association, TPOT was 
recently used to analyze a large cohort from the UK Biobank to study coronary artery disease 
using an expert-knowledge feature filter [16]. A subset of 28 SNPs was identified and were 
linked to putative genes related to atherosclerotic plaques and myocardial infarction.

Despite the promising examples explored above, the application of autoML 
approaches to QTL analysis and GWAS has historically been limited for two reasons. 
The first is best described as the curse of dimensionality where the number of pre-
dictors (features or variants) are much larger than the number of observations. To 
remain computational tractable, autoML approaches to omics-level data must parse 
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and filter predictors based on expert biological knowledge or computationally derived 
methods to reduce dimensionality. However, optimizing these strategies can prove to 
be difficult, especially when it comes to universality of the approach. Second, the vast 
majority of autoML software packages are not specifically designed with quantita-
tive genetics and epistasis as a core part of algorithm and hyperparameter optimiza-
tion. Quantitative genetics is a field that attempts to describe a complex biological 
system that includes non-linear pairwise and higher order associations, a continuum 
of deviations from a purely additive inheritance pattern, and elaborate networks of 
genes and regulatory elements [2, 17–19]. This complexity presents unique challenges 
that require special attention and application of specific theories. Thus, designing an 
autoML approach specifically centered around the genetic analysis of complex traits 
with these considerations in mind has the capacity to elucidate aspects of biology not 
easily explored by standard genetic analyses.

Here, we provide a proof-of-concept for an open-source automated machine learn-
ing (autoML) method and software, AutoQTL, to automate QTL analysis by building 
an analytics pipeline optimized for explaining variation in a complex trait given a set 
of genetic variants. Most AutoML methods are agnostic to the application domain 
and thus unaware of decisions important to geneticists such as selecting features by 
allele frequency or feature encoding to capture non-additive genetic effects. Thus, we 
have developed AutoQTL as a method to automatically explore important aspects of 
quantitative genetics and the analysis of complex traits. Central to this method is an 
algorithm designed to make decisions a geneticist might make when planning and 
executing QTL analysis/GWAS. These decisions include genetics-based encoding of 
the genotypes for each genetic variant (i.e., feature encoding), selection of genetic 
variants based on genetic principles such as allele or genotype frequency (i.e., fea-
ture selection), and the selection of a parametric statistical or machine learning based 
regression method for relating genotype to phenotype, allowing AutoQTL to explore 
all sources of variation, including non-additive effects. These decisions are optimized 
globally in AutoQTL, representing one of its core strengths. Humans intuitively apply 
optimization strategies one after another in a set order, which limits the search space 
of what is possible to detect. However, AutoQTL’s algorithm allows it to construct 
pipelines with operators and hyperparameters in any order, maximizing the propen-
sity for discovering genetic relationships not explored by standard approaches.

Methods
Key to AutoQTL is the data structure for representing QTL analysis pipelines for 
optimization. We utilize expression trees as an intuitive graph-based data structure 
for representing pipelines where a regression method is selected in the root node, fea-
ture encoding and feature selection methods can be selected for the child nodes, and 
hyperparameters selected as terminals of the tree.

We selected GP as the search and optimization method for AutoQTL given it is 
designed to generate, diversify, evaluate, and select optimal expression trees given some 
fitness or quality metrics [20–22]. Below, we describe the components of AutoQTL 
pipelines, GP optimization, the data, and the experiments used to evaluate the method.
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AutoQTL operator classes

All operators (root nodes and child nodes) have been implemented using the Python 
programming language [23] including existing implementations in the scikit-learn [24] 
machine learning package. The three operator classes for AutoQTL are feature encoders, 
feature selectors, and regression methods.

We have implemented operators for the encoding phase that demonstrate an addi-
tive inheritance model and alternatives [17] (e.g. dominance deviations and heterosis). 
These operators modify the original values of the genotypes (Fig.  1A) into forms that 
can express varied genetic relationships, allowing our program to introduce inheritance 
models beyond those used in standard QTL analyses. Currently, there are five differ-
ent encoding operators which are applied across all genotypes in the data outside of a 
standard additive model (default encoding where AA = 0, Aa = 1, and aa = 2). Figure 1B 
illustrates examples of encoding changes. For a complete list of all the five additional 
encoding operators, refer to File S1. If a pipeline contains two or more encoding opera-
tors, multiple transformations will occur sequentially to achieve inheritance models not 

Fig. 1  Conceptual image of AutoQTL’s workflow. A A genotype/phenotype matrix is read into AutoQTL. B An 
optional feature encoding step recodes the data into five possible and distinct genetic inheritance models 
(File S1). C An optional feature selection step where features (loci) are removed by a selection operator and 
hyperparameter. Note that feature encoding and feature selection steps are optional and can occur more 
than once in any order. D A root regressor and hyperparameters (in machine learning regressors) are selected. 
E Examples of pipelines that are scored through GP
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necessarily indicative of the initial encoder and can even lead to final encodings not pos-
sible via one encoder (examples in File S1).

In the feature selection phase, we remove features based on pre-designed criteria. 
AutoQTL has three feature selection operators with their own respective hyperpa-
rameter ranges and increments: (Fig. 1C.) 1.) The scikit-learn VarianceThreshold (VT) 
operator removes features that do not satisfy a minimum variance threshold (0 – 0.35, 
increments of 0.05), 2.) the scikit-learn SelectPercentile (SP) operator selects the top n 
percentile of features based on an F-regression R2 score (where n can be between 5% 
– 95% in increments of 5%), and 3.) the genotype frequency (GF) operator removes fea-
tures if any genotype frequency is below a threshold (0 – 0.35, increments of 0.05). Like 
with feature encoding, multiple feature selection phases may be present in an AutoQTL 
pipeline, leading to combinatorial effects of feature selection based on multiple crite-
ria and hyperparameters. This global optimization strategy of feature encoding, fea-
ture selection, and respective hyperparameters allows AutoQTL to construct pipelines 
that can explore complex genetic relationships that may not be immediately intuitive to 
human geneticists and are not inherently included in standard analyses.

We have implemented three regression method operators from the scikit-learn pack-
age which serve as the root node of a pipeline: LinearRegression (LR), and two machine 
learning regressors: DecisionTreeRegressor (DT) (individual tree-based model) and 
RandomForestRegressor (RF) (ensemble tree-based model). Unlike feature encoding 
and feature selection phases, only one regression (root) can be selected per pipeline. The 
phenotype explored in this proof of concept is continuous, but we will expand Auto-
QTL to also handle discrete phenotypes by adding classifier methods readily available in 
scikit-learn.

Pipeline Generation via Genetic Programming

Graph-based data structures are nonlinear data structures consisting of two primary 
components: nodes and edges [25]. Each edge connects two nodes to form a path that 
represents a relationship between two entities. Expression trees are a type of graph-
based data structure where the root node along with each internal node refers to an 
operator and each terminal node is an operand [25] (see File S1 for example). In this 
work, we represent our machine learning pipelines as expression trees. This form of 
representation allows diverse solutions due to the flexibility of a tree structure. Nodes 
can be easily added, deleted, or modified in the expression tree allowing our program 
to explore many possible solutions and evolve to generate the best machine learning 
pipelines for QTL analysis. GP is a common approach for manipulating and optimiz-
ing expression trees [20–22]. Adapting concepts from modern genetics and Darwinian 
natural selection, GP has the capability to improve pipelines after each successive gener-
ation of selection. Hence, we selected GP as our search and optimization technique due 
to its interactablility with the unique design of expression trees and its ability to select 
optimal pipelines after generations of scoring and selection.

We have adapted the core algorithm comprised of GP and Pareto optimization [26] 
from the python package TPOT (Tree-based Pipeline Optimization Tool) [10–12]. 
AutoQTL pipelines are generated using GP implemented in DEAP (Distributed Evolu-
tionary Algorithms in Python) [27].
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We split the input data randomly into 80%/20% split and use the 20% split as a 
holdout dataset to evaluate our final Pareto front pipelines at the end of the process 
to assess for overfitting. We then split the remaining input data in half to produce 
the training and testing sets—each containing 40% of the original data. AutoQTL 
pipelines are generated randomly in the first generation and are each assigned a fit-
ness score. Each AutoQTL pipeline is evaluated using two metrics: test split R2 and 
the difference score (DS), which is calculated as: 4 (1/|TrainR2 − TestR2|) . The DS 
is transformed using a biquadratic root to reduce the scale. The objective of DS is 
to penalize overfitting. Thus, test R2 and DS are the objectives of Pareto optimiza-
tion performed at the end of each generation. Maximizing both metrics allows for 
more varied Pareto fronts with multiple optimal solutions. Once all the pipelines are 
evaluated, the Pareto front is updated.

To create the next generation, new pipelines (offspring) are generated from the 
existing population of pipelines by applying mutation and crossover. Those pipelines 
with higher fitness contribute more phases (akin to genes in biological evolution) of 
their pipelines compared to pipelines of lower fitness. Mutation of a pipeline can be 
performed in the following three ways, and each has equal probability of occurring: 
1.) Uniform mutation: Either a random AutoQTL operator in a pipeline is replaced 
with a new randomly selected operator (e.g., an additive encoder switching to a 
dominance encoder) or the hyperparameter values of an operator is modified (e.g., 
variance threshold of 0.05 changed to 0.10). 2.) Insert mutation: A new randomly 
selected AutoQTL operator is inserted in a pipeline at a random position, adding 
a step to a pipeline. 3.) Shrink mutation: A random AutoQTL operator is removed 
from the pipeline. Examples of mutation events are found in File S1.

Crossover is performed by splitting two eligible chosen pipelines at a random point 
in the pipeline tree and then swapping the subtrees. Eligibility between two pipelines 
is defined when both pipelines have a phase operator in common (e.g., both have a 
feature encoding phase). This is known as one-point crossover. This produces two 
offspring pipelines. The first offspring is selected to populate the next generation 
while the second is discarded. An example of a crossover event is found in File S1.

Once offspring are created, a new population for the next generation is produced 
by selecting pipelines from the present parent population and offspring population 
with the highest fitness by the selection algorithm Non-dominated Sorting Genetic 
Algorithm (NSGA)-II [28]. This selection process evolves the population by retain-
ing pipelines with optimal fitness. Each new population is evaluated, and the Pareto 
front is then updated. This sequence of pipeline evolution continues for n number 
of generations set by the user. At the end of nth generation, the Pareto front contains 
the most optimal pipelines discovered by AutoQTL over n generations.

For our analyses, population size is set at 100, offspring size is set at 100, the muta-
tion rate is set at 90%, and crossover rate is set at 10% for a maximum of 25 genera-
tions. All these parameters can be changed by the user before initializing AutoQTL 
but are optimal for analyses we present considering our number of operators and the 
size of the data.
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Feature importance

To determine each feature’s (locus) importance to each pipeline, we utilize Shapley [29] 
values. Shapley values are local metrics derived from game theory that correspond to 
how much each feature contributes to a ML model prediction. The SHAP (SHapley 
Additive exPlanations) package in python is used to calculate Shapley values for each 
feature in Pareto optimal pipelines at the end of the GP process. In a case where a feature 
selector is selected as a node in a Pareto optimal pipeline and a feature is removed, its 
Shapley value is 0 as this feature is not contributing to that pipeline’s model and, thus, 
has no predictive value. Because GWAS and QTL analyses rely on beta coefficients 
and p-values to determine variant effect size and significance, we incorporate a feature 
importance procedure to compare and rank features by measuring their model contribu-
tions. Although not analogous to standard hypothesis-driven statistical metrics used in 
GWAS and QTL analysis, Shapley values allow the user to select putative QTL (highly 
predictive features) for further study.

Benchmark data

To test AutoQTL’s GP pipeline processing and optimization, we use genotype data for 
18 putative QTL (significance threshold =  − log10 p > 5.6) for body mass index  (BMI), 
defined as the distance from the tip of the nose to the tip of the tail, in rats (Rattus nor-
vegicus) from a genome-wide association study (GWAS) using 3,400,759 single nucleo-
tide polymorphisms (SNPs) [30, 31]. We use these 18 putative QTL from the 3,400,759 
SNPs in the original GWAS to test the capability of AutoQTL to first capture phenotypic 
variance in a subset of loci before expanding to a larger, exploratory analysis. A smaller 
dataset allows us to determine if AutoQTL can detect interactions among random noise 
or features with main effects. Quantile normalized residuals of BMI for 5,566 rats were 
corrected for relatedness between individuals by performing a principal components 
analysis (PCA) in PLINK [32] using R [33]. A multiple linear regression between the 
residuals and the first 10 principal components was performed in R. Residuals were then 
retained as the phenotype values for all further analyses. The breeding design used to 
create this cohort of rats leads high levels of relatedness between certain individuals. 
Controlling for this relatedness removes biases in generated models.

Validation of AutoQTL

The multiple LR R2 (0.0968) for the genotype/phenotype dataset from the 5,566 rat 
cohort for the 18 putative QTL [30, 31] was determined in Python using LR class from 
scikit-learn package outside of AutoQTL to determine the total phenotypic variance 
(VP) explained by the main effects in the linear model. Since the 18 putative QTL were 
identified using standard GWAS approaches (linear regression assuming an additive 
inheritance model), AutoQTL should generate a final Pareto optimal pipeline with linear 
regression (LR) as the only phase in each run that captures all the VP (R2) in the dataset. 
However, since AutoQTL randomly splits the data, we compare each pipeline’s test R2 to 
the R2 of the test split with basic LR since it will vary from the LR R2 of the full dataset 
(unsplit). We perform 10 replicates, each with a distinct random seed, ensuring different 
data splits, and determine if one of the Pareto optimal solutions includes LR as the only 
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pipeline operator phase and captures the entirety of the VP in the test set for that split. 
We also explore the other Pareto optimal solutions and compared them to LR alone.

Detecting epistasis with AutoQTL

To evaluate AutoQTL’s ability to detect genetic epistasis, an interaction between two or 
more loci in which the effect of one gene is modified (e.g. masked, inhibited, or sup-
pressed) by one or more genes [34], we create 2-way interactions using the XOR pen-
etrance function (File S1), a non-linearly separable interaction which leads to a marginal 
penetrance of 0.5 assuming equal allele frequencies under Hardy–Weinberg equilibrium 
for every two-locus genotype combination [18, 35]. We generate a total of nine two-way 
interactions with each of the 18 loci involved in a two-way interaction with one other 
loci without overlap (e.g., each 2-way interaction is unique, and no loci are used more 
than once). To achieve this, we match two-locus genotype combinations that result in 
a penetrance of 1 in the XOR model to the top 50% (in ascending order) of phenotypic 
scores (y). This results in the strongest possible XOR signal. However, to generate a total 
R2 matching that of the 18 QTL datasets (0.0968) detectable by AutoQTL’s machine 
learning regressors, we randomly shuffle a percentage of the genotypes to weaken the 
total signal, partially breaking the strong association of complete penetrance with the 
phenotype (see File S1 for explanation and File S2 for R code). We do this for each 2-way 
interaction until we achieve a total VP (R2) detectable in AutoQTL by machine learn-
ing regressors of approximately 0.10 with all nine interactions to compare with the total 
phenotypic variance explained by multiple linear regression in the 18 QTL experiment. 
As a result of this shuffling, all main effects total nearly zero VP (multiple LR R2 after 
shuffling = 0.00480). Thus, the distribution of genotype and allele frequencies remains 
intact while we alter the genotype–phenotype relationships of the dataset by manipu-
lating two loci at a time (File S2). We input this dataset into AutoQTL and compared 
Pareto optimal pipelines to those of the 18 putative QTL experiment. Our hypothesis 
is that, in the presence of interactions, AutoQTL will select a higher proportion of 
machine learning regression roots (e.g., RF and DT) versus LR in the final Pareto front. 
This is because RF and DT have been shown to have the capability to  detect interac-
tions whereas multiple LR models without interaction terms cannot [36, 37]. Further-
more, cartesian products (multiplicative interaction terms) cannot accurately describe 
penetrance functions like XOR as the interaction effect is not a product of the genotypic 
states but rather described in non-linearly separable penetrance functions (in this case, 
pure 2-way epistasis in XOR, either 1 or 0 [35]; File S1). We perform 10 replicates, with 
the same random seeds as the 18 QTL validation experiment.

Describing phenotypic variance as interactions increase

To determine how VP explained by LR and machine learning regressors changes in the 
presence of an increasing quantity of 2-way epistatic interactions, we reduce the sig-
nificant main effects from the original 18 putative QTL dataset by shuffling columns 
(File S1; File S2) as we did in the previous XOR experiment. Then we add 2-way XOR 
interactions, one at a time, and enter each dataset (ranging from 0–9 interactions) into 
AutoQTL. As with in the XOR dataset experiment, each of the 18 loci are involved in 
a two-way interaction with one other loci without overlap. This is performed for 10 
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replicate datasets per interaction. This process results in 100 datasets, 10 with no inter-
actions, and 90 with interactions ranging from one to nine. For this experiment, we gen-
erate interactions with a maximum test R2 detectable by machine learning regressors of 
approximately 0.15 with all nine interactions to better illustrate the difference between 
regressor types.

To illustrate how VP explained changes with increasing interactions in the presence 
of main effects, we also replicated the above procedure by creating 2-way interactions, 
one at a time, while keeping the original main effects of all other loci intact. Each time 
a new interaction pair is generated, two loci are selected and have their main effects 
converted into a 2-way interaction, thereby breaking the original main effect. In other 
words, as the number of interactions increases, the number of loci with significant main 
effects reduces. To accurately compare between the test LR R2 with 18 main effects (18 
QTL validation experiment) and with nine interactions, the maximum test R2 explained 
by 9 interactions via machine learning regressors was limited to 0.10. We perform this 
experiment with ten replication datasets per interaction for a total of 100 datasets. We 
also generate Shapely feature importance for an example run (R random seed = 0 and 
AutoQTL random seed = 0) across interactions from zero to nine to explore how the 
difference in feature importance between interacting loci is altered as main effects are 
replaced by interactions.

Demonstrating the robustness of AutoQTL’s genetic operators

To demonstrate the capabilities of the encoding and feature selection operators in 
AutoQTL to increase model performance, we compare the performance of AutoQTL 
machine learning pipelines (RF and DT) to hyper-tuned random forest and decision 
trees without genetic operators. Hence, we chose Optuna [38], an open source hyper-
parameter optimization framework that selects the hyperparameters of random forest 
and decision tree to get the best model performance. We constructed the same multi-
objectives (Test R2 and DS) in Optuna and use the same hyper-parameter search space 
in AutoQTL. To make the performance of AutoQTL and Optuna hyper-tuned models 
comparable, we executed Optuna for the number of minutes (rounded to the nearest 
minute) closest to the run-time of AutoQTL for each experiment except the 18 QTL 
experiment (File S5). The 18 QTL experiment does not commonly pick machine learn-
ing regressors due to the preponderance of univariate effects in the dataset (File S5). 
Therefore, comparing to other hyper-tuned machine learning regressors is not equiva-
lent as linear regression does not have hyperparameters to optimize. Moreover, the vari-
ation observed among AutoQTL runs in the 18 QTL experiment is due to the selection 
of genetic operators changing inheritance models and/or selected features based upon 
quantitative genetic theory which Optuna is not designed to do.

Results
AutoQTL captures phenotypic variance of GWAS QTL and detects dominance deviations

All the AutoQTL final Pareto fronts for each separate random seed generates a pipeline 
(pipeline marked with a star in Fig. 2A) where only the root LR method is selected as 
the only operator resulting in the test R2 matching that of the test R2 before GP was exe-
cuted in AutoQTL (File S3; File S4). This validates AutoQTL’s ability to capture the VP 
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explained by multiple LR alone. However, in addition to this pipeline, each final Pareto 
front also includes pipelines with lower R2 than LR alone but with feature selection and/
or encoding operators selected resulting in a better DS. Table 1 highlights the pipelines 
in an example run of AutoQTL (random seed = 12) that are also illustrated in Fig. 2A. 
The two pipelines that are optimized in both metrics (Pareto efficient), which are in the 
middle of Fig. 2A with arrows pointing to them, are in bold. All Pareto optimal pipe-
lines over the six generations for this example run are found in File S4. On average, final 
Pareto fronts for the 18 QTL dataset over the ten runs contain 7 pipelines and 88.5% of 
these pipelines had LR selected as the root regressor (File S5).

The locus with the highest Mean Shapley value across pipelines in the example run’s 
final Pareto front is chr1.281788173_G, almost double that of the next highest locus 
(chr6.29889998; Fig. 2B; File 5). This was also the SNP with the highest signal in the orig-
inal GWAS (File S1). Three of the SNPs with the top five Shapley values also have the top 
five GWAS signals in the original study. However, overall, the rank order of SNPs in this 
analysis and the original GWAS are different. For instance, chr6.29889998 has the sec-
ond highest average Shapley value but the second lowest GWAS signal. This is not sur-
prising as Shapley feature importance values indicate predictive power of each feature 

Fig. 2  A Final Pareto front of an example AutoQTL run from 18 QTL dataset. Pipelines (blue dots) with arrows 
are those that are optimized for both scoring metrics. The pipeline marked with a star is the pipeline with a 
test R2 matching the test R2 before GP was executed. B Mean SHAP feature importance scores across the five 
pipelines from the example AutoQTL run from 18 QTL dataset for each locus. Black error bars represent S.E.M. 
Red-blue gradient denotes higher (red) and lower (blue) mean feature importance scores

Table 1  Final Pareto optimal pipelines from an example run of the 18 QTL dataset (also depicted in 
Fig. 2A). Pipelines in bold correspond to pipelines with arrows in Fig. 2A which are optimized in both 
test R2 and DS (Pareto efficient). HP = Hyperparameter. The first pipeline (row), with * in Regressor 
column (LR), corresponds to the pipeline with a star in Fig. 2A

1st Operator (HP) 2nd Operator (HP) 3rd Operator (HP) Regressor R2 DS

- - - LR* 0.086 3.58

- - - LR 0.078 3.59

Recessive VT (0.05) - LR 0.061 4.90
VT (0.05) VT (0.35) Recessive LR 0.058 5.51
Recessive Overdominance GF (0.30) LR 0.027 8.82
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(locus) regarding the model (pipeline) being tested and not a specific hypothesis test. We 
explore the differences between Shapley values and p-values further in the discussion.

Regarding GP pipeline evolution for the example run, only slight improvement of DS 
is observed over the first two GP generations while mean R2 reduces slightly in genera-
tion two before stabilizing in generation three and beyond (File S1). This is because some 
Pareto optimal pipelines with lower R2, but high DS, are not discovered by GP until later 
generations. Additionally, the 18 QTL dataset reaches optimization before 25 genera-
tions have elapsed. The mean optimization time for the 18 QTL dataset across the 10 
runs occurred at 5.2 generations (File S5). This is likely due to the strong additive main 
effects of the dataset indicated by the low pipeline and root regressor diversity found in 
final Pareto fronts (mean of seven pipelines and 88.6% LR regressors; File S5). Addition-
ally, larger datasets will likely yield more optimization potential.

Patterns of regressor selection emerge with simulated epistasis

With nine XOR interactions, AutoQTL selects machine learning regressors more frequently 
than LR. This is observed in all runs (25.3 machine learning regressors (89.1% (79.9% RF 
and 9.2% DT)) compared to 3.1 LR (10.9%) in final Pareto front on average; example in 
Fig. 3A; Fig. 3B; File S5). The final Pareto fronts of AutoQTL’s analyses of the XOR data-
set yields higher pipeline diversity compared to LR (28.4 pipelines on average compared to 
seven in 18 QTL dataset; see Fig. 3A for example Pareto front; File S5). Table 2 contains 
the final Pareto optimal pipelines selected in an example run of AutoQTL with the XOR 
dataset (AutoQTL random seed = 12). Pipelines shown in bold are Pareto efficient (opti-
mized for both metrics) and have arrows pointing to them in Fig. 3A. Across all ten runs 
with the XOR dataset, most pipelines have 2-level encoders (two possible genotype values 
instead of three) as the final inheritance model (mean = 87.68%) followed by 3-level encod-
ers (mean = 10.56%) and no encoders (e.g., additive model; mean = 1.76%) (Fig. 3C; File S5).

Mean test R2 evolves more steadily in the XOR experiment than in the 18 QTL dataset 
and for more generations (19.5 generations on average compared to 5.2; File S5). DS slightly 
decreases over GP generations (File S1). This is likely due to more machine learning regres-
sors being selected over GP generations which results in pipelines optimized for test R2 
(likely overfit) increasing in prevalence (depicted in the lower right portion of Fig. 3A).

Although somewhat arbitrary as all loci were involved in XOR interactions, we plot 
average Shapley feature importance values (as violin plots) of each locus in this data-
set in File S1. We hypothesized that features involved in epistatic interactions will have 
similar feature importance scores. This is mostly the case except for interaction pairs 3, 
8, and 9. Due to the random shuffling process, we likely created stronger main effects in 
some loci over others, leading to these discrepancies. Generally, however, most interac-
tion pairs appear to have similar values of feature importance.

Linear regression fails to capture Vp as interactions are added

The model R2 from LR of the dataset with all main effects removed via shuffling is rela-
tively close to zero (mean = -0.00027; File S5). With each successive addition of an XOR 
interaction, the test R2 using LR alone remains stable with increases or decreases result-
ing from minor changes in main effects due to genotype shuffling (-0.0020 – 0.0085, on 
average). However, after each XOR addition, mean test R2 of machine learning regressors 
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Table 2  Final Pareto optimal pipelines from an example run of the XOR dataset (also depicted in 
Fig. 3A). Pipelines in bold correspond to pipelines with arrows in Fig. 3A which are optimized in both 
test R2 and DS (Pareto efficient). HP = Hyperparameter. Random Forest hyperparameters = bootstrap 
(T/F), max features, minimum samples per leaf, minimum samples per split. Decision Tree 
hyperparameters = max depth, minimum samples per leaf, minimum samples per split

1st Operator 
(HP)

2nd Operator 
(HP)

3rd Operator 
(HP)

4th Operator 
(HP)

5th Operator 
(HP)

Regressor (HP) R2 DS

Heterosis - - - - RF (F, 0.2, 3, 12) 0.108 1.37

Heterosis GF (0.1) - - - RF (T, 0.25, 3, 11) 0.107 1.45

Heterosis Overdominance Heterosis Recessive Recessive RF (T, 0.25, 3, 11) 0.106 1.45

Heterosis - - - - RF (T, 0.2, 3, 12) 0.106 1.52

Heterosis Heterosis - - - RF (T, 0.25, 1, 20) 0.103 1.63

Heterosis Heterosis Underdomi‑
nance

- - RF (T, 0.25, 3, 20) 0.102 1.64

Heterosis - - - - RF (T, 0.4, 11, 5) 0.098 1.65

Heterosis - - - - RF (T, 0.65, 14, 
20)

0.097 1.68

Overdominance Dominant - - - RF (T, 0.2, 8, 12) 0.096 1.73

Heterosis Underdomi‑
nance

- - - RF (T, 1.0, 19, 20) 0.095 1.76

Heterosis - - - - RF (T, 0.75, 19, 
17)

0.095 1.78

Heterosis - - - - RF (T, 0.35, 14, 
20)

0.093 1.80

Heterosis Underdomi‑
nance

- - - RF (T, 0.65, 19, 
20)

0.092 1.80

Overdominance Dominant Heterosis Overdominance - RF (T, 0.6, 19, 12) 0.091 1.82

Heterosis Heterosis - - - RF (T, 0.25, 14, 
20)

0.090 1.89

Heterosis Heterosis - - - RF (T, 0.25, 16, 
20)

0.088 1.95

Heterosis Heterosis - - - RF (T, 0.25, 17, 
20)

0.088 1.97

Heterosis Heterosis - - - RF (T, 0.25, 19, 
11)

0.085 2.01

Heterosis Heterosis VT (0.0) - - RF (T, 0.2, 18, 12) 0.082 2.09

Heterosis Underdomi‑
nance

- - - RF (T, 0.15, 19, 
20)

0.074 2.24

Overdomi-
nance

Dominant - - - RF (T, 0.1, 16, 
17)

0.066 2.24

Overdomi-
nance

Dominant Overdomi-
nance

Dominant GF (0.35) RF (T, 0.1, 16, 
12)

0.065 2.30

Overdomi-
nance

Dominant Overdomi-
nance

GF (0.35) - RF (T, 0.1, 19, 
17)

0.062 2.40

Heterosis - - - - RF (T, 0.05, 19, 
20)

0.058 2.42

Overdomi-
nance

Dominant Heterosis - - RF (T, 0.1, 19, 
17)

0.057 2.43

SP (65) VT (0.3) SP (10) Heterosis - DT (3, 9, 15) 0.055 3.91

SP (55) VT (0.3) SP (10) Heterosis - DT (4, 1, 14) 0.051 4.68

- - - - - DT (2, 5, 8) 0.027 4.73

SP (55) VT (0.15) VT (0.3) SP (65) Heterosis LR 0.017 7.21
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rises steadily with increasing interactions (Fig. 4A). Over the course of the experiment, 
the mean test R2 of machine learning regressors increases by 0.016 on average per addi-
tional XOR interaction with the highest mean R2 (0.14) occurring at nine interactions. 
The average number of machine learning regressors in the final Pareto fronts increases 
as soon one interaction is added (at zero interactions, mean of 2.4 pipelines (67%); at 
one interaction, mean of 9.2 pipelines (83.5%); at nine interactions, mean of 22.2 pipe-
lines (83.5%); File S5). However, once reaching an average of 83.5% of pipelines at one 
interaction, the proportion of machine learning regressors remains relatively stable up 
until nine interactions (Fig.  4C). Additionally, the average number of pipelines in the 
final Pareto front increases as interactions are added (3.6 on average at zero interactions; 
25.5 on average at nine interactions). Encoder diversity remains relatively stable across 
the experiment with 2-level encoders being the final inheritance pattern selected in most 

Fig. 4  A Mean test R2 of machine learning regression (DT and RF; blue dots and lines) and LR (orange dots 
and lines) for final Pareto optimal pipelines using dataset with random variables replaced by increasing XOR 
interactions. Gray shading around lines represents S.E. B Mean test R2 of machine learning regression (DT and 
RF; blue dots and lines) and LR (orange dots and lines) for final Pareto optimal pipelines using datasets with 
putative QTL (main effects) replaced by increasing XOR interactions. Gray shading around lines represents 
S.E. C Stacked bar graphs illustrating the proportion of root regressors in final Pareto fronts with increasing 
number of epistatic pairs for datasets with random variables replaced by increasing XOR interactions. Orange 
bars = LR pipelines. Purple bars = DT pipelines. Blue bars = RF pipelines. Numbers inside bars represent 
respective proportions of each root regressor in that run. D Stacked bar graphs illustrating proportion of 
root regressors in final Pareto fronts for datasets with putative QTL (main effects) replaced by increasing XOR 
interactions. Colors of bars and numbers in bars represent the same features as in C. E Stacked bar graphs 
illustrating the proportion of encoder type in final Pareto fronts  for datasets with random variables replaced 
by increasing XOR interactions. Pink bars = 2-level encoders. Green bars = 3-level encoders. Yellow = no 
encoder selected (Additive encoding). Numbers inside bars represent respective proportions of encoder in 
that run. F Stacked bar graphs illustrating the proportion of encoder type in final Pareto fronts  for datasets 
with putative QTL (main effects) replaced by XOR epistatic interactions. Colors of bars and numbers in bars 
represent the same features as in E
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final Pareto pipelines (mean = 79.2%; Fig.  4E; File S5). Average 2-level encoder preva-
lence rises slightly over the course of the experiment (69% at zero interactions; 81% at 
nine interactions; Fig. 4E; File S5).

Similar patterns are observed with the original 18 QTL dataset as main effects 
are replaced with interactions. With each successive removal of two loci with main 
effects and the addition of one XOR interaction, the mean test R2 using LR alone 
decreases from 0.0728 at zero interactions to -0.00629 at nine interactions while the 
mean test R2 of machine learning regressors increases from 0.00847 at zero interac-
tions to 0.0539 at nine interactions (Fig. 4B; File S5). Interestingly, there is a spike of 
average machine learning regressor test R2 at three interactions (0.0478). This value 
falls slightly (0.0378 at four interactions) until again increasing from six to nine 
interactions. Machine learning regressors replace LR as the most prevalent root 
regressor in Pareto fronts at four interactions (average of 9.6 pipelines (62.3%)) and 
remain the most prevalent up to nine interactions (average of 19.4 pipelines (74.8%); 
Fig.  4D: File S5). As observed in the previous experiment with random variables 
replaced by XOR interactions, pipeline number in the final Pareto front increases 
as interactions are added (8.4 on average at zero interactions; 28 on average at nine 
interactions; File S5). However, unlike the previous experiment, encoder diversity 
shifts as interactions are added (Fig. 4F). At zero interactions, most final encoders 
are 2-level (78% on average) while the remainder are additive (no encoder; 22% on 
average). This is due to many pipelines with lower test R2 and higher DS selecting 
two level encoders in the final Pareto front. However, it is important to note that all 
runs at zero interactions include pipelines with no encoders and high test R2 as seen 
in the example run in our 18 QTL experiment (pipeline with star in Fig.  2A). As 
interactions increase from one to five, 3-level encoders rise in prevalence (mean of 
4% at one interaction to a mean of 61% at five interactions). However, at six interac-
tions and beyond, 2-level encoders make up most final inheritance models observed 
(83.5% on average from six to nine interactions).

The absolute value of the difference in Shapley feature importance in the example 
run for each interaction pair reduces for four pairs as loci transition from main effects 
to being involved in a 2-way XOR interaction (Fig. 5A-D; File S5). However, there are 
two pairs where the difference increases (Pairs 5 and 9; File S5) while three pairs remain 
similar (Pairs 6, 7, and 8) (Fig. 5E-I; File S5). These results are explored further in the 
discussion.

AutoQTL’s genetic operators out‑performs hyper‑tuned machine learning regressors

We compare the upper and lower bounds for both Test R2 and DS of the Pareto opti-
mal solutions of AutoQTL and Optuna for each experiment. For experiment 2, the XOR 
experiment, the lower bound and upper bound for Test R2 in both RF and DT is higher 
for AutoQTL (File S5). However, the lower bound in DS for both RF and DT is higher in 
Optuna while both DS upper bounds are higher in AutoQTL (File S5). For experiment 3, 
where features with noise are replaced with interactions, AutoQTL outperforms Optuna 
in the majority of replicates for both Test R2 and DS (lower bound RF Test R2 = 77.8%; 
upper bound RF Test R2 = 77.8%; lower bound DT Test R2 = 77.8%; upper bound DT 
Test R2 = 100%; lower bound RF DS = 88.9%; upper bound RF DS = 77.8%; lower bound 
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DT DS = 66.7%; upper bound DT DS = 100%; File S5). Similar results are observed in 
experiment 4, where univariate features are replaced by interactions (lower bound RF 
Test R2 = 57.1%; upper bound RF Test R2 = 100%; lower bound DT Test R2 = 100%; upper 
bound DT Test R2 = 100%; lower bound RF DS = 85.7%; upper bound RF DS = 85.7%; 
lower bound DT DS = 100%; upper bound DT DS = 100%; File S5).

Discussion
Validation and extensibility of AutoQTL

Results from the 18 QTL benchmark data validate AutoQTL’s ability to capture the total 
VP via a Pareto optimal pipeline. This is the pipeline with the highest test R2 but the 
lowest DS (Fig. 2A, Table 1). In the example run illustrated in the results, there are four 
additional pipelines that explain less VP but are less overfit (higher DS) and, thus, are 
more generalizable. This generalizability is observed by these pipelines’ performance on 
holdout data where the increase in R2 is proportionally higher than more overfit models 
(File S4). In addition to higher generalizability, these pipelines have additional operators 
selected, with most having features (putative QTLs) removed and some performing both 
feature selection and encoding, as in the two bolded pipelines in Table 1 from the exam-
ple run. These additional pipelines may be identifying false positives from the original 

Fig. 5  Boxplots illustrating the absolute value of the difference between Shapley feature importance values 
for loci while main effects are retained (Non-Interacting; red boxplots) and when they are part of an XOR 
interaction (Interacting; blue boxplots). Each boxplot (A-I) represents one of the nine possible interaction 
pairs. Locus names are in the title of each boxplot
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GWAS via removal of features that do not meet the criteria of the feature selection 
hyperparameters. Our feature selection methods employ two distinct strategies. The VT 
and GF feature encoders select features based upon metrics of allele/genotype diversity 
while SP selects features by employing f-regression and the association between feature 
and phenotype [24]. The latter strategy (SP) likely has a greater potential to sort out false 
positives. However, VT and GF, which are chosen in both bolded example pipelines in 
Table 1 and all additional pipelines in the example final Pareto front from the 18 QTL 
dataset (seed 12; File S4), also have the potential to remove false positives as features 
with lower minor allele frequencies have inherently less heterozygosity and are usually 
less informative [39].

The addition of encoder operators is interesting in that there are likely QTL within 
the 18 QTL dataset with significant deviations from additivity. In other words, the 
VP explained by these loci increase when converted to an inheritance model other 
than additive. This was experimentally validated using liner models for four loci 
(chr1.281788173_G – Recessive; chr8.103608382_G – Dominant; chr9.71715296_A – 
Underdominant; chr18.27348077_G – Recessive; File S1). Of these, chr1.281788173 
also had the highest average Shapley feature importance values. This likely drives the 
selection of pipelines that remove other, less predictive loci and loci that are not well 
described using 2-level encoders. This explains why so many 2-level encoder pipe-
lines were found in our final experiment when no interactions were added (File S9). 
The predictive value of chr1.281788173 in its proper encoding (recessive) was likely 
so high that many Pareto optimal pipelines were built around this optimization strat-
egy. Indeed, the average Shapley feature importance of this locus under an additive 
inheritance model is 0.089 while under the recessive model it is 0.118 (File S5). This 
is further illustrated by three of the five Pareto optimal pipelines in the example run 
(seed 12) of the 18 QTL dataset selecting the recessive encoder (Table  1; File S4) 
and 78% of Pareto optimal pipelines in our final experiment having 2-level encod-
ers at zero interactions (Fig.  4F; File S9). These results illustrate that AutoQTL has 
the potential to identify deviations from additivity via feature selection and encoding 
operators. In future versions, we plan on adding encoding checks into both feature 
importance strategies and in pipeline construction to identify deviations from addi-
tivity on a locus-by-locus basis.

Shapley value-based Feature importance values place SNPs in a different rank order 
than the p-value rank order in the GWAS results (File S1). This is not surprising for 
multiple reasons. The first is that the original GWAS p-values were derived from mil-
lions of independent tests while our feature importance values are only from a total of 
18 features. More importantly though, feature importance metrics are not linked to 
hypothesis testing. Rather, feature importance metrics indicate the predictive power of 
each feature in their respective model (pipeline in the case of AutoQTL). Another reason 
these ranks are different is because AutoQTL provides the user multiple Pareto opti-
mal pipelines, each with different models potentially containing feature selection and/
or encoding phases. As we have discussed, encoding changes can alter each feature’s 
importance, sometimes drastically. Additionally, if a feature is removed from a pipeline, 
its feature importance is zero, considerably affecting the mean in most cases. Due to the 
combined effects of potentially variable feature importance values across models and the 
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dissimilar interpretations of feature importance metrics compared to p-values, research-
ers should compare the results of AutoQTL and GWAS/QTL analysis with caution as 
both approaches are asking different questions. However, what feature importance met-
rics offer are new and/or alternative insights into genotype/phenotype associations and 
putative variant identification. This, coupled with the diverse pipelines produced by 
AutoQTL, can lead researchers to new discoveries in quantitative genetics.

Evidence for epistasis detection in AutoQTL

In the presence of nine XOR interactions, AutoQTL’s final Pareto front is populated by 
more pipelines selecting machine learning regression (25.3 (89.1%) machine learning 
vs. 3.1 LR (10.9% on average; Fig. 3B; File S5; File S6) compared to final Pareto front of 
the example run (seed 12) of the 18 QTL dataset (0.8 (11.4%) machine learning vs. 6.2 
LR (88.6%) on average; File S4). The XOR dataset also optimizes over more generations 
(19.5 in XOR vs. 5.2 in 18 QTL on average; File S5; File S7) and has a higher number of 
final Pareto optimal pipelines compared to the LR dataset analysis (28.4 in XOR vs. 7 in 
18 QTL on average; File S5).

The proportion of machine learning regressors selected in the XOR dataset is par-
tially attributable to the ability of machine learning regressors (especially RF) to detect 
interactions [6]. Indeed, our results show that AutoQTL has the potential to detect epi-
static interactions. However, the longer optimization period and greater pipeline count/
regressor diversity observed in the XOR analysis has two other possible explanations. 
The first is that machine learning regressors have a higher tendency to overfit compared 
to LR, leading to potentially more Pareto optimal solutions being generated (as seen in 
the lower right portion of Fig. 3A). The second, and likely most considerable, is that both 
RF and DT have several hyperparameters that can be selected by AutoQTL whereas 
LR has none, expanding the nodes that can be modified by future rounds of selection 
and, therefore, the number of possible pipelines that can be generated. However, these 
diverse pipelines can yield multiple points of evidence for the strength of certain interac-
tions over others or compare the strength of interactions to main effects in real world 
data. Additionally, diverse pipelines offer more model options to researchers for future 
inquiry.

The vast majority of Pareto optimal pipelines in the nine XOR analysis have at least 
one feature encoder selected (98.2% of pipelines; Fig. 3C; File S5). Of the 279 pipelines 
that select encoders, 249 result in a 2-level final encoding. That is, two genotypic states 
instead of three. In the 18 QTL dataset and likely all datasets with only main effects, 
2-level encoding is likely due to large effect QTL better explained with dominance devia-
tions or heterosis. However, in a dataset made up of nine XOR interactions, as in experi-
ment two, another possible explanation could be that 2-level encodings better match the 
strict penetrance function of XOR, in which two-locus genotypes result in a penetrance 
of 1 or 0. It may be possible that AutoQTL is attempting to restructure the data in a for-
mat that better mirrors the complete penetrance of the XOR model. More testing with 
other types of interactions, including those that model incomplete penetrance and car-
tesian products, is needed to verify this. Since there are potentially four values a carte-
sian product can take with standard additive encodings (0, 1, 2, and 4), 2-level encoding 
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prevalence may only be a detectable signal of epistasis in full penetrance models or in 
epistatic interactions involving one or more non-additive loci.

In the experiment where one XOR interaction is added at a time to a dataset of little 
to no main effects, we observe that the R2 detectable my machine learning regressors 
increases with successive interactions while R2 detectable by LR remains low (Fig. 4A; 
File S5; File S8). This provides further evidence that machine learning regressors have 
the capability detect epistatic interactions. We also observe that even as low as one 
added interaction, the proportion of machine learning regressors in the final pareto 
front increases by approximately 24% on average (Fig. 4C; File S5; File S8). However, the 
change was not as stark as in the final experiment when interactions are added to main 
effects as the relative proportion of regressors remains mostly unchanged from one to 
nine total interactions. This is likely due to machine learning regressors being able to 
describe more variance when there are very low main effects compared to LR and the 
propensity of machine learning regressors to overfit. A similar result is observed with 
encoders as the overall proportion of encoder types changed little across this experiment 
(Fig. 4E; File S5; File S8). However, what this experiment importantly illustrates is that 
AutoQTL can detect increasing levels of epistatic signal as interactions are added in a 
dataset.

Epistatic detection and feature importance in the presence of main effects

Like the experiment where random features are replaced by XOR interactions, we 
observe that as main effects are removed and converted to XOR interactions, the R2 
detectable by machine learning regressors increases. However, along with this comes a 
concurrent reduction in R2 detectable by LR (Fig. 4B; File S5; File S9). This was expected 
but provides further evidence of the ability of machine learning regressors (particularly 
RF) to detect epistasis over LR. In contrast to the previous experiment, however, we 
observe strong trends in regressor and encoder diversities as main effects are replaced 
by interactions. At zero interactions, the only regressor to population the final Pareto 
front is LR due to the strong main effects (Fig. 4D; File S5; File S9). However, at three 
total interactions, the proportion of machine learning regressors begins to increase 
and overtook LR as four interactions were added. The proportion of machine learn-
ing regressors remains high up to nine total interactions. This illustrates that machine 
learning regressors, driven by RF, can more accurately describe epistatic relationships 
over LR. However, along with this trend also comes the inflation of the final Pareto front 
with more optimal pipelines (File S5). As with previous experiments, this is likely due 
to these pipelines having a higher potential to overfit as well as having more hyperpa-
rameters to optimize. The proportion of 3-level encoders (other than additive) increases 
with each successive interaction added from one to five total interactions before falling 
sharply at six total interactions (Fig. 4F). It is unclear why this occurrs. One explanation 
is, because this pattern occurrs when there were similar instances of 2-way interactions 
and single loci with large main effects, this type of encoder pattern arises when there is 
a mix of main effects and epistatic signals in a dataset. Further analysis is required to 
strengthen this explanation as this, if true, may only occur with interactions modeled 
with pure penetrance functions as in XOR. However, when main effects reduce in num-
ber, 2-level encoders become much more prevalent which is what is also observed in the 
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datasets with nine XOR interactions and in the experiment with increasing XOR inter-
actions replacing random features. In future experiments, we aim to model features that 
have strong main effects and are also involved in epistatic interactions with other loci. It 
has been observed that loci with strong main effects are also epistatic hubs, involved in 
many 2- and 3-way epistatic interactions in the genome [3]. We hope to discover these 
epistatic hubs as well as epistatic loci without large main effects in future experiments 
using AutoQTL.

Figure 5 illustrates that for four pairs of loci, the absolute difference in feature impor-
tance values reduce as loci lose their main effects and become part of a 2-way interac-
tion. However, for the remaining five pairs, the difference in feature importance either 
increases or remains similar. We originally hypothesized that feature importance scores 
of interacting loci would converge as they lost their main effects and become part of an 
interaction pair. However, there are two main reasons why this wasn’t observed univer-
sally. The first is that these are manufactured interactions with similar proportions of the 
genotype scores being used to generate the interaction. This leads to similar signals and, 
therefore, likely very similar feature importance metrics. The second is that some loci 
already exhibit similar feature importance scores with main effects (Fig. 2B; File S5). The 
act of removing the main effects of each locus and generating an interaction signal led to 
a greater difference in feature importance scores for some pairs, perhaps by chance. It is 
our goal in future experiments to detect true epistatic relationships and compare feature 
importance metrics of additive vs. non-additive effect loci.

Limitations and future expansion of AutoQTL

One potential criticism of the approach, likely to arise from trained geneticists, is that 
AutoQTL provides too many options (i.e., Pareto optimal predictive models). How 
should one approach selecting which model to apply to their data? This is a valid 
concern that deserves a focused response. In addition to understanding that predic-
tion is wholly distinct from hypothesis testing, machine learning approaches have 
the potential to overfit the training set and not become generalizable to other data-
sets. We chose to address this issue by invoking a Pareto optimization strategy which 
employs two optimization metrics with one specifically tailored to address overfitting 
(DS). Furthermore, the graph-based expression tree structure of our pipelines allows 
us to explore more dimensions than standard approaches can including non-additive 
effects, feature selection, regressor type, and hyperparameter optimization globally. 
Due to these factors, there are potentially many equally optimal predictive models 
for any dataset. However, we recommend researchers think about Pareto efficiency 
when selecting a pipeline (model). That is, ones that are optimized in both scoring 
metrics like the pipelines we have outlined with arrows in Figs. 2A and 3A and in bold 
in Tables 1 and 2. It is important to consider that each Pareto efficient pipeline can 
elucidate different aspects of the dataset or reinforce common patterns. For exam-
ple, in the XOR experiment, of the seven pareto optimal pipelines in bold in Table 2, 
despite illustrating different encoder operator combinations, the final inheritance 
model models heterosis where homozygous genotypes are equal. The only aspect that 
is different between each pipeline is the feature selection criteria. Comparing which 
features are retained in each model will allow the researcher to determine which loci 
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have significant deviations from additivity, potentially filter false positives, or, as in 
this case, suggest the presence of interactions within the dataset. Similarly, in the 
18 QTL experiment, each of the two pareto efficient pipelines result in a recessive 
encoding. This tells the researcher that there are deviations from additivity in some 
features. In combination with feature selection, AutoQTL aids in pinpointing these 
loci. In addition to focusing on each Pareto efficient pipeline, we recommend running 
AutoQTL multiple times with different random seeds (different training/testing data 
splits) to allow the GP to explore and discover new pipelines. Although the output 
of each random seed split may be unique, patterns of operator selection are likely to 
emerge. Detecting these patterns is important to build a line of evidence for certain 
genetic relationships. For example, in the 18QTL experiment, of the 10 replicate runs, 
nine had Pareto efficient pipelines containing encoders (File S2; File S4). These pipe-
lines remove features that likely do not fit these inheritance patterns and highlight the 
putative QTL that have dominance deviations (File S1), especially chr1.2817881173_G 
which has the highest univariate signal and has a recessive deviation from additivity. 
We recommend researchers look for patterns in operator selection in Pareto efficient 
pipelines across runs to arrive at informed decisions when selecting models. Even 
though AutoQTL is still able to explain all the Vp in the standard linear model (18 
QTL dataset experiment), the Pareto efficient pipelines tell us important information 
about loci that have strong non-additive effects and loci that could be false positives 
in the GWAS. Thus, AutoQTL has the capability to elucidate genetic relationships 
that are extremely difficult or impossible to reveal using standard approaches. Fur-
thermore, our comparison with standalone machine learning models without Auto-
QTL’s genetic operators, illustrates that feature encoding and feature selection aid in 
explaining more phenotypic variance and are likely uncovering non-additive genetic 
variation not describable using standard approaches (File S5).

As with many autoML methods, AutoQTL is currently limited in the number of 
features that can be analyzed through its automated workflow to maintain computa-
tional tractability. One major benefit of standard QTL analysis/GWAS is that there 
is no theoretical limit to the number of loci that can be analyzed as these methods 
employ modified versions of univariate regression. However, AutoQTL uses mul-
tiple LR as a base regressor option and can therefore not have more features than 
observations. To address this limitation, we are currently investigating and develop-
ing pruning strategies that identify important features from large GWAS-level data-
sets using autoML methods, statistical thresholds, and/or a priori expert biological 
knowledge.

We have currently added Shapley values as an AutoQTL feature importance mod-
ule. However, in the future, we wish to modify our current feature importance strat-
egy to consider both univariate effects and epistatic interactions. This will provide 
more detailed information of the genetic variance that underlies important traits 
of interest and aid in identifying novel genetic relationships. Furthermore, we wish 
to apply encoders on a locus-by-locus basis to produce genotype values indicative 
of the actual inheritance model of each SNP to better describe each feature’s impor-
tance to the model being tested as well as increasing the overall phenotypic variance 
explained.
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In addition to the encoder and feature selection operator classes we currently employ, 
we aim to add other classes of operators that can contain detailed structural and function 
genomic information. Examples of this would be if a SNP is within a gene model or regu-
latory region, if the gene(s) associated with a particular SNP is part of a certain biologi-
cal pathway or biological function, and if there is expert knowledge available on a SNP’s 
effect on phenotypes, genes, and/or other biological entities. We also aim to explore fea-
ture engineering operators that have the capability of adding pertinent information to 
existing features or transforming features into forms that better describe genetic rela-
tionships like epistatic interactions. Operator classes like this will allow AutoQTL to be 
more informed about genetic variants, potentially enhancing downstream analyses and 
putative QTL detection.

Finally, we are currently developing a feature which will provide researchers with exe-
cutable Python code of the models generated in AutoQTL’s final Pareto front. This will 
allow easy application of AutoQTL models to genomic data for further analysis.

Conclusions
We have demonstrated that AutoQTL can both capture VP in a dataset of putative QTL 
from real-world experimentation and provide evidence of its ability to detect epistatic 
interactions in simulated data. In addition, our optimization strategy provides diverse 
solutions that differ from standard QTL analysis using a set of feature selectors, feature 
encoders, and machine learning regressors with a varied set of hyperparameters that is 
optimized globally. This strategy allows AutoQTL to explore genetic relationships not 
easily detected in QTL analysis. Feature importance adds to this by providing research-
ers a different perspective on selecting potential targets of further study compared to 
standard statistical approaches. We intend to further improve the software to both 
enrich and supplement the analysis of complex traits in both human and non-human 
systems. It is our aim that AutoQTL can assist in the spaces of precision medicine and 
quantitative trait analysis by enhancing the exploration of diverse phenotypes, disease 
models, and non-additive effects in omics-level datasets.

AutoQTL is open-source and available on Github: https://​github.​com/​Epist​asisL​ab/​
autoq​tl.
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