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Human genetics began as a field that used family-based linkage studies to identify genes 
associated with specific phenotypes. This approach was highly successful in finding 
genes of high penetrance that were essentially Mendelian in their inheritance patterns 
and highly predictive of phenotypes. This approach truly identified individuals at risk 
of disease within families based usually on a single mutation and in current lingo could 
provide precision health. Take for example, infants born with phenylketonuria (PKU) 
resulting from mutations in a single gene, phenylalanine hydroxylase. These children can 
be prevented from having adverse outcomes by a simple elimination of phenylalanine 
from the diet. This is an excellent example of precision health, where a serious outcome 
can be avoided or at least minimized by a targeted intervention based on an individual’s 
genotype.

Over the last 30 years the study design of choice for human geneticists moved from 
linkage to genetic epidemiological using increasingly large case–control association 
studies [1]. This approach has succeeded in identifying many genes that associate with 
disease, and these studies have been extremely informative in dissecting the under-
lying biological bases of many diseases. Few of these genes on their own are, how-
ever, highly predictive of disease. Nonetheless, genetics is still presented as a means 
to provide precision medicine for both targeted treatment and prevention. There is 
little doubt that the potential of genetics in these realms exists, but it is important to 
evaluate the limitations of research as currently performed under the guise of preci-
sion medicine, and how we can bring the field closer to these aspirations. Specifically, 
in the current large case control studies of complex genetic disease, variants and/or 
genes are identified that increase or decrease disease risk. It is important to note that 
the estimates of risk presented are in fact the average effects across the study sam-
ples (populations) [2] and not ones representing individual risk as often is the case in 
highly penetrant Mendelian disorders. Take for example a specific case where a sin-
gle mutation has been strongly associated with Alzheimer’s disease (AD). The ApoE4 
allele was discovered 30  years ago and still represents the single most important 
genetic risk factor for this disease where it accounts for as much as ~ 25% of the her-
itability of disease liability and as much as 20% of the attributable risk in Europeans 

*Correspondence:   
smw154@case.edu; jason.
moore@csmc.edu

1 Departments of Population 
and Quantitative Health 
Sciences, Department 
of Genetics and Genome 
Sciences, and Cleveland Institute 
for Computational Biology, Case 
Western Reserve University 
School of Medicine, Cleveland, 
OH, USA
2 Department of Computational 
Biomedicine, Cedars-Sinai 
Medical Center, Los Angeles, 
CA, USA

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13040-023-00327-z&domain=pdf


Page 2 of 3Williams and Moore ﻿BioData Mining            (2023) 16:9 

[3, 4]. This allele associates with AD in virtually every study across multiple popula-
tions studied. However, the odds conferred by this allele is highly variable and popu-
lation specific. In African Americans, the odds are estimated to be ~ 5 in individuals 
homozygous for ApoE4 whereas in Japanese the same genotype has an OR of ~ 30 [5, 
6]. Based on these findings alone we should be wary of the ability of association analy-
ses to provide individual level risk. For example, what is risk in a person of multiple 
ancestries?

More recently human genetics has adapted the use of polygenic risk scores, which, 
although calculated many ways, are compilations of risk as estimated by many variants 
assessed simultaneously [7–9]. At issue is whether the genetic factors derived in this way 
can be applied to the study of individual risk as they are often purported to do. The first 
question that needs to be addressed is whether the estimate of risk, presented as effect 
sizes or odds ratios, can be translated from population level results where they represent 
the average effect of alleles to individuals who do or do not carry them. The tenuous leap 
from population average odds to individual risk has been described in the epidemiologi-
cal literature as the “ecological fallacy” or as the inference derived from group analyses 
to individuals [10] and has been noted with respect to PRSs explicitly [7, 11]. Effects 
sizes derived from genetic epidemiological studies by their very nature suffer from this 
and PRSs are simply the compilation of multiple ecological fallacies tallied that carry a 
substantial amount of uncertainty [12]. And as noted above for ApoE, the effect sizes 
and hence predictability do not translate well across diverse populations. Neither do the 
PRSs themselves [13–15]. What causes variation in prediction accuracy and underlying 
pathoetiology is key to precision medicine but cannot be resolved by population level 
estimates. That said, we do recognize that in many cases PRSs at the extreme can be pre-
dictive of individual risk [16], but for the vast majority of people and for those of differ-
ent ancestries they suffer from both poor transferability and the ecological fallacy.

One approach to address the ecological fallacy is to attempt to identify subgroups of 
subjects more representative of each individual’s risk. This requires large sample sizes 
and powerful computational and statistical methods capable of identifying subgroups 
defined by different combinations of genetic and non-genetic factors. The types of 
genetic effects that can define subgroups not represented by population-level estimates 
include non-additive gene–gene and gene-environment interactions and genetic het-
erogeneity. Artificial intelligence methods including machine learning are ideally suited 
to risk prediction when the patterns to be detected and modeled are non-additive and/
or heterogeneous in nature. An example of a machine learning method designed spe-
cifically for detecting subgroups defined by these kinds of genetic effects is learning 
classifier systems or LCS [17]. What makes an LCS different from other statistical and 
computational methods is that  it optimizes a set of rules relating genetic measures to 
phenotype where each rule defines a subgroup. The collection of rules is evaluated as the 
model. This is different from most other analytical methods that develop one model on 
the entire sample. Methods such as LCS have the potential to alleviate some of the prob-
lems associated with the ecological fallacy by generating risk estimates that are much 
more closely aligned to each individual than those derived from an entire sample repre-
senting a heterogenous population. Integrating machine learning models with PRSs will 
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be necessary to derive better risk estimates for individuals. This will facilitate precision 
medicine informed by big data from observational studies.
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