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Abstract 

Neuroblastoma is a childhood neurological tumor which affects hundreds of thou-
sands of children worldwide, and information about its prognosis can be pivotal for 
patients, their families, and clinicians. One of the main goals in the related bioinfor-
matics analyses is to provide stable genetic signatures able to include genes whose 
expression levels can be effective to predict the prognosis of the patients. In this study, 
we collected the prognostic signatures for neuroblastoma published in the biomedical 
literature, and noticed that the most frequent genes present among them were three: 
AHCY, DPYLS3, and NME1. We therefore investigated the prognostic power of these 
three genes by performing a survival analysis and a binary classification on multiple 
gene expression datasets of different groups of patients diagnosed with neuroblas-
toma. Finally, we discussed the main studies in the literature associating these three 
genes with neuroblastoma. Our results, in each of these three steps of validation, 
confirm the prognostic capability of AHCY, DPYLS3, and NME1, and highlight their key 
role in neuroblastoma prognosis. Our results can have an impact on neuroblastoma 
genetics research: biologists and medical researchers can pay more attention to the 
regulation and expression of these three genes in patients having neuroblastoma, and 
therefore can develop better cures and treatments which can save patients’ lives.

Keywords:  Signatures, Prognostic signatures, Neuroblastoma, Neuro-oncology, 
Scientific literature, Review, Survey, Pediatric cancers, Endocrine neoplasia

Introduction
Neuroblastoma is a type of brain tumor that affects thousands of newborns and young 
children worldwide [1]. Neuroblastoma almost always develops before age 5 and rarely 
develops in children over age 10, and it can be of low-, middle- or high-risk. The therapy 
for patients with high-risk neuroblastoma includes combinations of chemotherapy, sur-
gery, high-dose chemotherapy with stem cell rescue (also known as autologous stem cell 
transplantation), radiation and immunotherapy [1].

Most of the times, neuroblastoma happens as a result of gene expression changes in 
neuroblasts that happen during the child’s development, sometimes even before birth, 
and the causes of these changes are still unknown  [2]. To this end, discovering which 
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genes have a prognostic role in neuroblastoma is fundamental to understand the patho-
genesis and the disease progression, but also for treatment decisions on potential tar-
geted therapies.

Genetic signatures are lists of genes that have an important prognostic or diagnostic 
role in patients with a specific disease: a strong prognostic signature for neuroblastoma, 
for example, contains a list of genes whose change of expression levels can be used in a 
model able to predict the survival risk of new patients.

Genetic signatures can be derived from microarray gene expression [3], RNA-Seq gene 
expression [4], but also from other regulatory gene expression elements like microRNA, 
DNA methylation [5] and other biomolecular data.

Despite their usefulness, genetic signatures of the same diseases can have low overlap 
between each other: signatures in fact might contain false positive genes, that are genes 
having a strong signal in an obsolete or noisy technology and therefore included in the 
signature, but actually are unrelated to that particular disease [6]. Integrating and com-
paring signatures of the same disease published in the literature can be a way to address 
this problem.

In this study, we queried the scientific literature and found ten neuroblastoma prog-
nostic signatures [7–16], we decided to extrapolate the most common genes and inves-
tigate their role in neuroblastoma. Only three genes resulted as the most common 
and shared in a limited number of signatures: AHCY, DPYSL3, and NME1. This result 
confirms the lack of reproducibility among the prognostic genetic signatures for neu-
roblastoma. We then performed a survival analysis considering the largest available 
neuroblastoma gene expression datasets in Gene Expression Omnibus (GEO) [17] and 
ArrayExpress [18] in order to understand the behavior of these three genes in relation 
to time-to-event data. Moreover, we tested the predictive power of these three genes by 
employing a machine learning algorithm on a binary dataset containing data of survived 
and deceased patients. Finally, we performed a thorough literature validation consider-
ing all the articles that show a correlation between these three genes and neuroblastoma 
treatments.

To the best of our knowledge, no previous studies have used the scientific literature to 
detect the most recurrent prognostic genes for neuroblastoma.

We organize the rest of this article as follows. After this Introduction, we explained 
the methods for genes and datasets retrieval, the methods for survival analysis, the 
methods for the machine learning analysis, and the methods for literature validation 
in section Methods, and we then report the results of these phases in section Results. 
Eventually, we discuss the impact and the consequences of our results and report some 
limitations (section Discussion).

Methods
Prognostic genes discovery and dataset search

We retrieved the most recurrent neuroblastoma prognostic genes by comparing the 
prognostic signatures currently available in the scientific literature  (Subsection  S1.1). 
We included the neuroblastoma signatures indicated for survival and prognosis, and we 
excluded the diagnostic ones. We then converted each gene symbol into Ensembl ID’s 
through g:Convert of g:Profiler [19]. We immediately noticed both the limited number 
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of studies providing a curated signature list of prognostic genes and the low overlap 
between the these lists, that motivated us for the selection of the the most recurrent 
genes.

For the machine learning validation phase on gene expression, we searched for neu-
roblastoma gene expression datasets on Gene Expression Omnibus (GEO) [17] through 
geoCancerPrognosticDatasetsRetriever  [20] having the survived-deceased binary label 
for each patient.

We found and downloaded one gene expression dataset through GEOquery [21] and 
BioMart [22]: the Hiyama2010 dataset coded as GSE16237 [23] on GEO. We performed 
the gene probeset-symbol annotation done through geneExpressionFromGEO  [24] 
and Jetset [25]. On the dataset found, we performed the batch correction [26] through 
limma [27]. We used this Hiyama2010 dataset for the machine learning validation phase 
and not for the survival analysis phase (next subsection) because it does not contain the 
temporal component and because we prefered to keep these two validation phases inde-
pendent from each other.

Validation of risk and hazard ratio in multi‑studies overall survival data

To validate the robustness of the most recurrent genes resulting from the literature 
search (Subsection Prognostic genes discovery and dataset search) as potential prognos-
tic biomarkers, we first investigated the pooled risk ratio (RR) based on the number of 
deaths in neuroblastoma associated with high/low expression of each gene. Specifically, 
for this survival analysis phase we manually searched for gene expression datasets on 
Gene Expression Omnibus  [17], ArrayExpress  [18] and R2 database  [28] with the sur-
vived status and the survival time feature for each feature.

Only large datasets, with at least 80 samples, providing pre-processed and normalized 
gene expression values with associated overall survival data were included. A RR > 1 
represents poorer prognosis for the higher expression group, whereas a RR < 1 indicates 
poorer prognosis for the lower expression group. Each gene was first analyzed sepa-
rately, and its expression was classified in a binary way, considering the expression values 
below the 25th or above the 75th percentile to identify the samples at low or high expres-
sion of that gene, respectively.

Then, a combination of the genes extracted by the literature search was also evalu-
ated: a consensus score was generated considering the average of the ranking positions 
obtained for each gene expression (increasingly ordered), assigning the same ranking 
position to ties and inverting the ranking of the genes showing RRs < 1 . In this case, 
the scores belonging to the first and last quartiles were classified as “low” and “high”, 
respectively. Both fixed- and random-effects models using Mantel-Haenszel [29] and 
restricted maximum-likelihood [30] estimators were considered, respectively. Het-
erogeneity across studies was assessed by the Cochrane I2 metric [31] and chi-squares 
statistics. Chi-squared p-values < 0.1 and an I2 values > 50 % were associated to statisti-
cally significant heterogeneity. Potential publication bias was evaluated using Begg and 
Mazumdar’s test [32] and Begg’s funnel plot [33], considering p-values < 0.05 to indicate 
statistical bias.

Afterwards, we considered the number of deaths in relation with the follow-up time 
and evaluated the expression values of the genes and their consensus score through Cox 
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proportional hazard model  [34], adjusted by the age of the patients. This confound-
ing factor was discretized into two classes, using a threshold of 18 months. The hazard 
ratios (HRs) with 95% confidential intervals (CIs) for overall survival observed along a 
follow-up time were estimated by the model. An HR > 1 implied poorer survival for the 
higher expression group. In contrast, an HR< 1 implied poorer survival for the lower 
expression group. Both Wald test applied to the coefficient of the model used to estimate 
the HR and Log-rank test were considered for the evaluation. p-values less than 0.05 
were considered statistically significant. All statistical analyses were performed using R 
programming language version 4.1.2. The R packages meta (version 5.2), dmetar (ver-
sion 0.9) and survival (version 3.2-13) were used for the meta-analysis of the RRs and 
the survival analysis through Cox proportional hazard model, respectively.

Binary classification method

To further verify the predictive power of our three proposed genes, we decided to use 
them for a prognostic binary classification based on Random Forests  [35] machine 
learning method, on an alternative dataset not employed for the previous phases of the 
analysis. We downloaded the Hiyama2010 dataset from GEO  (GSE16237  [23]), which 
contains microarray gene expression of patients diagnosed with neuroblastoma. In 
this cohort there are 12 deceased patients and 39 survived patients, that means 23.53% 
negative data instances and 76.47% data instances. We decided to employ this external, 
alternative dataset we did not use for the other validation steps, to make our analysis as 
robust as possible [36].

After downloading this dataset, we applied a batch correction method through the 
limma  [27] package of Bioconductor  [37] to remove the noise of the batch effects 
from the microarray data  [26]. We then selected only the three gene profiles of the 
probesets of our three proposed prognostic genes in the HG-U133_Plus_2] Affym-
etrix Human Genome U133 Plus 2.0 Array  (GPL570) microarray platform: 200903_s_
at  (AHCY), 201431_s_at  (DPYSL3), and 201577_at  (NME1). Afterwards, we applied 
Random Forests  [35] by splitting the dataset into training (80% randomly selected 
patients’ profiles) and test (20% remaining patients’ profiles) sets [38]. We repeated the 
execution 100 times and generated confusion matrices on the tests sets, that we assessed 
through traditional rates such as the Matthews correlation coefficient (MCC) [39], ROC 
AUC and others (Table 5), recorded as average values and standard deviations. We high-
lighted the result measured through the MCC [40–42].

Validation on the literature

We investigated the role of AHCY, DPYSL3, and NME1 genes in the scientific literature 
by looking for studies involving at least one of these three genes and neuroblastoma in 
Google Scholar [43] on 20th February 2022.

We retrieved the aliases of the names of these three genes on GeneCards.org [44–46]:

•	 AHCY aliases: SAHH, S-Adenosyl-L-Homocysteine Hydrolase, S-Adenosylhomo-
cysteine Hydrolase.

•	 DPYSL3 aliases: CRMP4, CRMP-4, ULIP, DRP-3, DRP3, ULIP1.
•	 NME1 aliases: NM23-H1, NM23-H1, NDPKA, NM23.
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For each of this term, we made a search on Google Scholar [43] including the neuroblas-
toma keyword (for example, “AHCY neuroblastoma”, “SAHH neuroblastoma”, etc.) and 
recorded all the scientific studies describing an active role of the gene and neuroblas-
toma survival or prognosis.

Results
Prognostic genes found

In our literature search, we found ten neuroblastoma prognostic signatures, 
whose quantitative characteristics and references are reported in Table  1 and 
in Supplementary Subsection S1.2.

Three genes resulted being more present than the others in three signatures (Table 2): 
AHCY, DPYSL3, and NME1.

The probability that a three-genes triple occur in three different signatures can be 
experimentally estimated as P ≈ 5 · 10−8 . In fact, randomly rearranging the 300 genes 
included in the 10 signatures in the same setup of the current situation, and repeating 
such experiments for N runs, three genes occur in three different signatures in α · N  

runs, with α ≈ 0.24 in average. Since there are T =
300

3
= 4455100 distinct sets of 

three genes, the probability P can be evaluated as P = α

T
≈ 5 · 10−8 . This yields that ran-

dom effects are quite unlikely responsible for the selection of the investigated triple 
AHCY, DPYSL3, and NME1.

Table 1  List of neuroblastoma prognostic signatures found in the literature. Article: 
reference. # genes: number of genes. We reported the lists of the genes of these signatures 
in Supplementary Subsection S1.2

Publication
article year # genes

Vermeulen et al. [10] 2009 59

De Preter et al. [11] 2010 42

Garcia et al. [14] 2012 3

Valentijn et al. [12] 2012 157

Frumm et al. [15] 2013 59

Zhong et al. [13] 2018 4

Wang et al. [16] 2020 5

Cangelosi et al. [7] 2020 6

Jin et al. [9] 2020 9

Zhong et al. [8] 2021 5

Table 2  Most recurrent prognostic genes for neuroblastoma. For each gene, we report its symbol, 
its Ensembl ID, and its complete gene name on GeneCards.org. The signatures column indicates the 
references of the neuroblastoma signatures which contain each gene

Gene symbol Ensembl gene ID Gene name Signatures

AHCY ENSG00000101444 Adenosylhomocysteinase [8, 10, 11]

DPYSL3 ENSG00000113657 Dihydropyrimidinase Like 3 [10, 11, 15]

NME1 ENSG00000239672 NME/NM23 Nucleoside Diphosphate 
Kinase 1

[10, 11, 14]
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This aspect confirms the low overlap between gene lists of the neuroblastoma prog-
nostic signatures found: among 10 signatures, only 3 gene lists share 3 common genes, 
which are the most frequent elements among the lists (Subsection S1.2). Surprisingly, the 
famous neuroblastoma-related MYCN gene is not among the most frequent genes [47]. 
It is present only in two signatures [10, 11] out of ten.

Computational evaluation of the impact of the most recurrent prognostic genes 

across the largest neuroblastoma studies

Both array-based and sequencing-based data were considered. A description of the 
selected datasets, together with the information related to the features considered for 
the three genes of interest (AHCY, DPYSL3, NME1) is reported in Table  3. Some of 
these datasets were employed (as training set or test set) in the studies identifying the 
ten neuroblastoma signatures we found in the literature  (Supplementary Table  1), but 
these studies leverage other datasets, too, to verify the effectiveness of their proposed 
signatures. The overlap between the set of datasets used by these ten signature studies 
and the set of dataset we used for our survival analysis and binary classification phases is 
always lower than 50% (Supplementary Table 1).

The expression of all the three genes resulted significantly associated with the death 
rate, as displayed in Fig. 1. Specifically, at higher expression of both AHCY and NME1 

Table 3  Datasets used in the meta-analysis. Description of the 7 datasets used in the meta-analysis 
with the related reference to the study, specifying the size, the array/sequencing platform, the pre-
processing approach used to normalize the data and the type of feature (for example, probeset ID, 
Refseq ID, Ensembl transcript/gene ID) considered to identified each gene analyzed

Dataset Samples Platform Normalization Features

GSE16476 [48] 88 HG-U133_Plus_2 MAS5.0 algorithm 
(target signal = 100) 
using GCOS software 
(Affymetrix)

AHCY:200903_s_at; 
DPYSL3:201431_s_at; 
NME1:201577_at

GSE62564 (SEQC) [49] 498 Illumina HiSeq 2000 Reads per million 
mapped reads (RPM)

AHCY:NM_000687; 
DPYSL3:NM_001387; 
NME1:NM_000269

E-MTAB-8248 [50] 223 Agilent-020382 Human 
Custom Microarray 44k

preprocessCore 
(quantile)

AHCY:A_23_P17575; 
DPYSL3:A_24_P149036; 
NME1:A_23_P152804

TARGET [51] 161 Illumina Hiseq 2000 Fragments per kilo base 
of transcript per million 
mapped fragment 
(FPKM)

AHCY: ENST00000217426; 
DPYSL3: 
ENST00000398514; NME1: 
ENST00000393196

E-MTAB-38 [52] 251 customized 11K olig-
nucleotide-microarray 
(Agilent)

Variance Stabilization 
Normalization (VSN)

AHCY: A-MEXP-255.2721, 
A-MEXP-255.3013, 
A-MEXP-255.7928; 
DPYSL3: A-MEXP-255.617, 
A-MEXP-255.7551; NME1: 
A-MEXP-255.8195

GSE85047 [53] 283 Affymetrix Human Exon 
1.0 ST Array

Robust Multichip Aver-
age (RMA)

AHCY:3903361; 
DPYSL3:2880292; NME1: 
not available

Westermann [54] 144 Illumina Hiseq 2000 and 
Hiseq 4000

Transcripts per million 
(TPM)

AHCY: ENSG00000101444; 
DPYSL3: 
ENSG00000113657; 
NME1: ENSG00000239672
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higher death rates were observed (considering median percentages across all the stud-
ies, 55.9% at high versus 5.8% at low AHCY expression with estimated RR 6.4 and 
p < 0.0001 from Mantel-Haenszel test, while 49.7% at high versus 12.2% at low NME1 
expression with estimated RR equal to 3.85 for the random-effects model and to 4.31 for 
fixed(common)-effect model, obtaining p < 0.0001 in both models). On the other hand, 

Fig. 1  Forest plot of the association between associating low/high gene expression with and all-cause 
mortality. Forest plots displaying the results from the meta-analysis for the three genes considered separately, 
i.e. AHCY (A), DPYSL3 (B), NME1 (C), and for the score which combines the expression-based ranks of the three 
genes, considering the reversed rank for DPYSL3 since it showed RRs < 1 . Results from both fixed- (common) 
and random-effects models are reported. Abbreviations: RR, Risk Ratio; CI, Confidence Interval
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lower death rates were observed at higher expression of the gene DPYSL3 (considering 
median percentages across all the studies, 6.4% at high versus 46.4% at low expression 
with estimated RR 0.2 and p < 0.0001 from Mantel-Haenszel test).

Combining all the genes, where the ranking of the DPYSL3 expression was inverted 
to be integrated with the rankings from AHCY and NME1, it is possible to observe an 
increased pooled RR (8.58 for the random-effects model and 8.65 for fixed(common)-
effect model, obtaining p < 0.0001 in both models with Mantel-Haenszel test), with a 
median death rate equal to 42.9% at high and to 5.4% at low consensus score. The het-
erogeneity across the studies ranges between 41% (observed for DPYSL3, p = 0.12 ) and 
80% (observed for AHCY, p < 0.01 ). However, funnel plots inspection (Supplemen-
tary Fig. S1) and Begg and Mazumdar’s test results indicate the presence of funnel plot 
asymmetry, showing that the publication bias was unlikely (all p-values > 0.05).

Afterwards, we investigated the time-dependent risk of death in terms of hazard ratios 
(adjusted for the age). Results are reported in Table 4. All the Cox models which include 

Table 4  Hazard ratios from Cox proportional hazard models testing the prognostic role for all-cause 
mortality. Results are reported for the three genes considered separately (AHCY, DPYSL3, NME1) 
and for the score which combines the expression-based ranks of the three genes, considering the 
reversed rank for DPYSL3 since it showed RRs < 1 . Abbreviations: HR, Hazard Ratio; CI, Confidence 
Interval; LR, Log-Rank

Gene Study HR HR CI lower HR CI upper HR p-value LR test p-value

AHCY GSE16476 1.99 1.29 3.07 0.002 3.56 ×10
−13

AHCY GSE62564 1.59 1.4 1.81 1.43 ×10
−12 3.87 ×10

−43

AHCY E-MTAB-8248 1.68 1.35 2.1 3.61 ×10
−06 6.25 ×10

−14

AHCY TARGET 1.12 0.883 1.42 0.353 0.004

AHCY E-MTAB-38 2.49 1.87 3.31 4.96 ×10
−10 9.03 ×10

−27

AHCY GSE85047 1.8 1.43 2.26 4.11 ×10
−07 1.05 ×10

−19

AHCY Westermann 1.81 1.42 2.31 1.62 ×10
−06 7.76 ×10

−08

DPYSL3 GSE16476 0.47 0.321 0.689 1.07 ×10
−04 2.45 ×10

−14

DPYSL3 GSE62564 0.577 0.448 0.745 2.31 ×10
−05 3.74 ×10

−28

DPYSL3 E-MTAB-8248 0.577 0.38 0.877 0.01 3.35 ×10
−09

DPYSL3 TARGET 0.744 0.546 1.01 0.0613 0.001

DPYSL3 E-MTAB-38 0.659 0.486 0.893 0.007 4.87 ×10
−14

DPYSL3 GSE85047 0.729 0.592 0.897 0.003 4.30 ×10
−15

DPYSL3 Westermann 0.639 0.491 0.832 0.001 4.37 ×10
−05

NME1 GSE16476 1.38 0.934 2.04 0.105 1.46 ×10
−11

NME1 GSE62564 1.4 1.24 1.57 2.89 ×10
−08 4.21 ×10

−35

NME1 E-MTAB-8248 1.55 1.17 2.05 0.002 4.22 ×10
−10

NME1 TARGET 1.15 0.885 1.48 0.302 0.00319

NME1 E-MTAB-38 2.3 1.72 3.08 2.33 ×10
−08 2.34 ×10

−24

NME1 Westermann 1.52 1.14 2.03 0.004 1.52 ×10
−04

Combined GSE16476 2.23 1.4 3.55 0.001 9.82 ×10
−14

Combined GSE62564 2.92 2.25 3.79 1.12 ×10
−15 1.73 ×10

−41

Combined E-MTAB-8248 2.25 1.55 3.25 1.7E ×10
−05 5.79 ×10

−12

Combined TARGET 1.29 0.965 1.72 0.086 0.001

Combined E-MTAB-38 3.24 2.14 4.92 3.22 ×10
−08 8.35 ×10

−22

Combined Westermann 2.04 1.55 2.7 4.71 ×10
−07 6.08 ×10

−08
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both expression and age as confounding factors showed signicant association with over-
all survival. In 6 over 7 studies for AHCY and DPYSL3, in 4 over 6 studies for NME1 and 
in 5 over 6 studies for the consensus score the related HR was found significant.

Moreover, our Random Forests classifier on the Hiyama2010 obtained ROC AUC = 
0.877 and PR AUC = 0.952 in the [0;  1] range, with MCC = +0.517 in the [−1;+1] 
interval, that means excellent binary classification (Table 5).

AHCY, DPYSL3, and NME1 in the neuroblastoma literature

In the following text, we report a description of the relevant role of AHCY, DPYSL3, 
and NME1 in neuroblastoma development highlighted by the studies considered by the 
state-of-the-art literature, as described in subsection Validation on the literature.

AHCY and neuroblastoma
The metabolic enzyme adenosyl-homocysteinase (AHCY) is one of the most con-

served enzymes in living organisms. In mammals, AHCY mediates the reversible catal-
ysis of S-adenosylhomocysteine (SAH) to adenosine and L-homocysteine, and it plays 
a key role in DNA methylation maintenance, thus resulting fundamental during epig-
enomic reprogramming throughout embryo development and/or in disease progression. 
In cancer, AHCY seems to have a dual role both as tumor suppressor [55] or tumor pro-
moter, based on the cancer type. Its inhibition for example was linked to anti-migratory 
and anti-invasive activity of breast cancer cells  [51, 56]. In neuroblastoma, literature 
evidence paint a picture where AHCY is constitutively active in cancer cells, but fur-
ther enhanced by MYCN. Indeed, AHCY is directly regulated by MYC proteins and like 
these, associated with poor prognosis of neuroblastoma patients. As a matter of fact, 
the depletion of MYCN cause the down-regulation of AHCY. Moreover, AHCY inhibi-
tion reduces colony formation capacity and glutathione synthesis especially in neuro-
blastoma cell lines with high MYCN expression. The specific synthetic lethality through 
genetic or pharmacological AHCY inhibition is also corroborated by the increase in 
apoptosis of MYCN-amplified neuroblast cells  [57]. Of note, the first evidence on the 
role of this enzyme as a key molecule in the progression of MYCN-amplified neuroblas-
toma dates back to the early 1990s when several studies in different NB mouse mod-
els were employed [58–62] More recently, considering the potential implication of this 
gene on the clinical management of NB, Novak and colleagues  [63] hypothesized that 

Table 5  Binary classification results on the Hiyama2010 dataset. We consider only the three genes 
AHCY, DPYSL3 and NME1. We report the mean scores of 100 executions with corresponding 
standard deviations, obtained through the Random Forests [35] algorithm. Positives: data of survived 
patients. Negatives: data of deceased patients. MCC: Matthews correlation coefficient. MCC: worst 
and minimum value = −1 and best and maximum value = +1 . TP rate: true positive rate, sensitivity, 
recall. TN rate: true negative rate, specificity. PR: precision-recall curve. PPV: positive predictive 
value, precision. NPV: negative predictive value. ROC: receiver operating characteristic curve. AUC: 
area under the curve. F 1 score, accuracy, TP rate, TN rate, PPV, NPV, PR AUC, ROC AUC: worst and 
minimum value = 0 and best and maximum value = 1 . Confusion matrix threshold for TP rate, TN 
rate, PPV, and NPV: 0.5. Hiyama2010 dataset: GSE16237 [23]

MCC F1 score accuracy TP rate TN rate PPV NPV PR AUC​ ROC AUC​

mean +0.517 0.885 0.834 0.892 0.647 0.893 0.685 0.952 0.877

std. dev. 0.355 0.096 0.128 0.127 0.329 0.110 0.331 0.080 0.151
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the identification of its genetic variations may have significant impact during develop-
ment of the recurrent or progressive disease. Non-synonymous variants in AHCY gene 
have been found for example to contribute to the slow progression of the disease, even 
in more aggressive cases. It affects the maintenance of the catalytic capacity of AHCY, 
leading to the consequent functional effects in NB patients. Thus, also the potential 
use of AHCY variants may constitute a molecular biomarker. Finally, it is known that 
MYCN-amplification alters key metabolic pathways as glycolysis and gluconeogenesis. 
Oliynyk et al. [64] found that the stressed phenotype of MYCN amplified NB cells was 
characterized by a shift in the metabolic balance toward robustly increased oxidative 
phosphorylation as well as enhanced aerobic glycolysis. Interestingly, AHCY has been 
recently included in the glycosyl compound metabolic process gene set, suggesting that 
AHCY might link glucose with adenosine or homocysteine [65] and alter this metabolic 
process. This data suggest that, beyond their correlation, these genes are effectively func-
tionally interconnected to each other.

DPYSL3 and neuroblastoma
DPYSL3 (also referred to as collapsing response mediator protein 4, CRMP4) is a 

member of the DPYSL gene family, highly expressed in developing and adult nervous 
systems. It functions in a variety of cellular processes, including cell migration, differen-
tiation, neurite extension, and axonal regeneration. It has been reported to be involved 
also in the metastatic process of tumor cells  [66]. Some authors debrided DPYSL3 as 
a metastasis suppressor, while others  [67] reported it facilitates pancreatic cancer cell 
dissemination via a strong interaction with other cell adhesion factors, including Ezrin, 
focal adhesion kinase and c-SRC. In breast cancer, DPYSL3 knockdown determined a 
reduced proliferation, but a still enhanced motility and increased expression of epithe-
lial-to-mesenchymal transition markers, suggesting that DPYSL3 is a multifunctional 
signaling modulator. In neuroblastoma cells, it has been shown that DPYSL3 regulates 
the actin cytoskeleton, whose dynamic reorganization is known to be fundamental for 
cell migration. DPYSL3 was found abundant in the cytosol of B35 neuroblastoma cells 
and to co-localizes with F-actin in regular rib-like structures within lamellipodia of 
these cells, with which physically interacts. The critical functional equilibrium between 
DPYSL3 and F-actin is demonstrated by the fact that DPYSL3 overexpression inhibited 
the migration of B35 neuroblastoma cells, while its knockdown enhanced cell migration 
and disturbed rib-like actin-structures in lamellipodia  [68]. Interestingly, studies using 
genetic approaches showed that DPYSL3 levels were inversely altered with changes in 
MYCN expression, thus suggesting a MYCN negative regulation of DPYSL3 in NB cells, 
probably via EZH2. This negative regulation may be also mediated by GSK3b [69]. The 
regulation of DPYSLs by GSK-3b in neuronal polarity or axon outgrowth has already 
been reported. Moreover, it is known that Akt in NB cells phosphorylate and thus inac-
tivate GSK-3b [70] and that inactivation of GSK-3b would lead to an increase of MYCN 
protein expression. Thus increased MYCN levels, via amplification or as the result of 
Akt-mediated GSK-3b inactivation would lead to DPYSL3 suppression in NB cells. This 
mechanistic evidence also support an important prognostic role for DPYSL3 expression. 
Indeed, tumors of advanced-stage NB patients have a good prognosis if characterized by 
elevated levels of DPYSL3, and even in high-risk NB patients the levels of DPYSL3 mark 
those patients who may have a better overall survival [71].
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NME1 and neuroblastoma
The NME1 gene is located in the 17q21.3 region, whose gain is a common evaluated 

factor predicting adverse clinical outcome in neuroblastoma patients. NME1 has been 
shown to be involved in multiple critical cellular behaviors, including cell proliferation, 
differentiation, and neural development. In cancer, its overexpression has a dichotomous 
role as both a suppressor and a promoter of tumor metastasis, based on the cancer type. 
In breast and prostate carcinomas for example, high levels of this protein is associated 
with good survival and low-risk features. In contrast, in pediatric cancer such as neu-
roblastoma, it correlates with aggressive neuroblastoma tumor features while increased 
NME1 expression has been identified as a component of gene expression, signatures 
most significantly associated with poor neuroblastoma patient outcomes. Some authors 
attribute this evidence to the histidine kinase capacity of NME1 that catalyze transfer 
of the activated phosphate from the autophosphorylated histidine 118 residue (H118) 
onto target proteins. It is plausible to assume that this results in an increased activity 
of proteins involved in cell migration and differentiation. Indeed, NME1 shRNA knock-
down disrupts differentiation of neuroblastoma cells induced by 13-cis-retinoic acid 
(CRA) treatment  [72]. Carotenuto et al.  [73] demonstrated that NME1 form a protein 
complex with h-Prune, trough which could act as a pro-metastatic gene. As a matter 
of fact, the overexpression of NME1 and h-Prune enhances the aggressiveness of NBL 
cells both in  vitro and in  vivo. Thus, the disruption of this interaction might consti-
tute a potential therapeutic intervention for neuroblastoma patients  [73]. Moreover, A 
Negroni et al. [74], discovered that patients bearing S120G mutation in NME1 gene have 
worst prognosis respect to wild type ones. It has been demonstrated that NME1-S120G 
is more effective in promoting cell invasiveness and metastasis of neuroblastoma in vitro 
and in vivo. S120G may be defined as a gain-of-function mutation, since it increases the 
invasiveness not only of neuroblastoma, but also of breast and prostate carcinoma cells. 
An apparent gain-of-function of the S120G mutation of NME1 is likely caused by a pro-
tein-folding defect, which affects its protein-protein interactions. However, the molec-
ular mechanism(s) by which NME1 promotes neuroblastoma metastasis still remains 
elusive  [74]. Finally, Okabe-Kado et  al  [75] examined serum NME1 protein levels in 
217 patients with neuroblastoma, demonstrating that (i) the serum NME1 protein level 
was higher in neuroblastoma patients than in control children; (ii) patients with MYCN 
amplification had higher serum NME1 levels than those with a single copy of MYCN. 
Thus, the detection of serum NME1 protein levels, contributing to predictions of clinical 
outcome in patients with neuroblastoma, may be also proposed as not invasive prognos-
tic markers [75].

Discussion
The prognostic role of AHCY, DPYSL3, and NME1 The evaluation of the impact of 
AHCY, DPYSL3 and NME1 on the prognosis of patients affected by Neuroblastoma 
showed the importance of these genes in terms of association with the death rate (Fig. 1) 
and prediction of the survival probabilities across time (Table  4). Despite the limited 
number of studies able to provide a high number of patients with available survival data, 
both observed risk and hazard ratios suggested that low levels of DPYSL3 expression 
and high levels of AHCY and NME1 expressions shorten overall survival, even taking 
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in consideration potential confounders like the age of the patients. The combination of 
these genes showed that, except for one dataset, in all the other studies the combined 
effect of these genes showed significant hazard ratios (p-values ≤ 0.001 ). Only for TAR-
GET data the p-value was not significant, but < 0.01 . The evaluation of the pooled risk 
ratios showed high risk ratios for the combined score ( > 8.5 ). Despite the heterogene-
ity was high ( I2=74%), no significant biases across the studies were observed from the 
funnel plots (Begg and Mazumdar’s test p-value > 0.05 , Fig. S1). Similar results were 
observed also when the three genes were analyzed independently. Considering the 
potential overlap between the datasets used in our analysis (Table 3) and those used in 
the studies of the prognostic signatures reported in Table 1, we observed that the num-
ber of samples in each study does not exceed the 40% of overlap with respect to the total 
number of samples considered in our analysis, i.e. 1,648, as reported in the Supplemen-
tary Table S1. In addition, except for AHCY which was detect in [8], showing an overlap 
equal to 32.3% with our samples, the other studies where we found the three genes show 
an overlap below 15.5%.

Moreover, we verified the predictive power of the three genes employed with machine 
learning to an independent gene expression dataset. Our three proposed methods and 
Random Forests were able to correctly classify survived patients with neuroblastoma 
and deceased patients with the same disease with a high accuracy, reaching MCC = 
+0.517 and ROC AUC = 0.877 on average. This binary classification result confirms the 
prognostic ability of these three genes.

We then performed a thorough literature search where we retrieved tens of peer-
reviewed published studies associating each of our proposed prognostic genes with 
neuroblastoma survival. We did not only look for the ACHY, DPYSL3, and NME1 gene 
names, but also their aliases found on GeneCards.org. Our brief review of this biomedical 
literature confirmed a strong association between the three prognostic genes and neuro-
blastoma development. This confirmation comes with no surprise, since we selected our 
three prognostic genes from ten signatures already available in the biomedical literature.

These results confirm the robustness of the three proposed prognostic genes, that we 
validated in this study in three different ways (statistical analysis, machine learning analy-
sis, and literature review). Since the prognostic signatures for neuroblastoma have minimal 
overlap, indicating that most genes are prognostically relevant mainly in one single study, 
our outcomes result being particularly relevant and interesting in oncologic research.

It is also relevant to notice that the NME1 is present as prognostic gene in three signa-
tures’ studies [10, 11, 14] which employ the GSE3960 and E-TABM-38 datasets, among 
others.

Conclusions To the best of our knowledge, there are no studies on neuroblastoma 
reviewing the current status of the associated genetic signatures available in the litera-
ture. Here, we showed the low overlap among the prognostic genetic signatures provided 
so far and highlighted the most recurrent genes detected by the neuroblastoma studies, 
We then validated these genes using the largest gene expression datasets from the public 
repositories in order to provide an evaluation of the prognostic impact at high accuracy 
on the highest number of samples available. Our results pointed out the relevant impact 
of the genes AHCY, DPYSL3 and NME1 on neuroblastoma prognosis as future targets 
for future neuroblastoma genetics studies and the development of novel therapies.
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