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Abstract 

Objectives:  Type 2 diabetes mellitus (T2DM) imposes a great burden on healthcare 
systems, and these patients experience higher long-term risks for developing end-
stage renal disease (ESRD). Managing diabetic nephropathy becomes more challeng‑
ing when kidney function starts declining. Therefore, developing predictive models 
for the risk of developing ESRD in newly diagnosed T2DM patients may be helpful in 
clinical settings.

Methods:  We established machine learning models constructed from a subset of 
clinical features collected from 53,477 newly diagnosed T2DM patients from January 
2008 to December 2018 and then selected the best model. The cohort was divided, 
with 70% and 30% of patients randomly assigned to the training and testing sets, 
respectively.

Results:  The discriminative ability of our machine learning models, including logistic 
regression, extra tree classifier, random forest, gradient boosting decision tree (GBDT), 
extreme gradient boosting (XGBoost), and light gradient boosting machine were eval‑
uated across the cohort. XGBoost yielded the highest area under the receiver operating 
characteristic curve (AUC) of 0.953, followed by extra tree and GBDT, with AUC values 
of 0.952 and 0.938 on the testing dataset. The SHapley Additive explanation summary 
plot in the XGBoost model illustrated that the top five important features included 
baseline serum creatinine, mean serum creatine within 1 year before the diagnosis of 
T2DM, high-sensitivity C-reactive protein, spot urine protein-to-creatinine ratio and 
female gender.

Conclusions:  Because our machine learning prediction models were based on rou‑
tinely collected clinical features, they can be used as risk assessment tools for develop‑
ing ESRD. By identifying high-risk patients, intervention strategies may be provided at 
an early stage.

Keywords:  Artificial intelligence, Diabetes mellitus, End-stage renal disease, Machine 
learning
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Introduction
Type 2 diabetes mellitus (T2DM) is a major challenge to public health worldwide, and 
the assessment and management of this chronic disease impose a heavy economic bur-
den [1, 2]. T2DM is associated with many complications and problematic symptoms, 
including micro- and macrovascular complications [3, 4]. Among these complications, 
diabetic kidney disease (DKD) is a leading cause of chronic kidney disease (CKD) and 
is associated with a future risk of progression to end-stage renal disease (ESRD) [5, 6]. 
However, a diagnosis of DKD is often delayed, particularly in the early stages of the dis-
ease, because most patients remain asymptomatic with respect to kidney dysfunction 
[7]. Therefore, identifying DKD patients with a rapid decline in the estimated glomerular 
filtration rate (eGFR) might be helpful for allowing early nephroprotective treatment to 
be administered to delay or prevent the progression of kidney failure.

Previous large-scale population-based cohort studies have identified multiple fac-
tors potentially contributing to rapid eGFR decline, such as hypertension [8, 9], pro-
teinuria [10], demographic factors, and underlying comorbidities [7]. A meta-analysis 
of demographic and clinical laboratory data from twenty cohorts representing 41,271 
T2DM patients was conducted to develop a categorization point system for DKD pre-
diction [11]. The prediction model achieved an average area under the receiver operat-
ing characteristic curve (AUC) of 0.765. Because electronic health record usage provides 
hundreds of clinical features and a large volume of data, prediction models using a cat-
egorization point system may be insufficient to effectively make use of unaligned and 
correlated data structures. Recently, artificial intelligence (AI) has changed modern pro-
cedures, and the progress of machine learning with big data analysis has improved the 
capacity of predictive model development [12].

In a cohort study consisting of diabetic patients, an AI model using logistic regres-
sion was developed to predict the progression of DKD according to 3073 features [13], 
and it achieved an AUC of 0.743 and an average accuracy of 71%. However, only logistic 
regression was applied in this study, and the predictive ability of other machine learning 
models with respect to renal function progression in diabetic patients remains unknown. 
In addition, in the abovementioned study, the AI model predicted DKD progression for 
6 months after the enrollment period; therefore, its predictive ability for a longer follow-
up period is unknown.

In our study, we used a large-scale newly diagnosed DM cohort to perform machine 
learning models by using clinical features, including demographic characteristics, 
comorbidities, laboratory data and concomitant medications from outpatient depart-
ment and emergency room visits as well as hospital admissions, to predict the risks of 
developing ESRD with a long follow-up period. We also used SHapley Additive exPlana-
tion (SHAP) values to evaluate the accurate attribution values for each important feature 
within machine learning models.

Methods
Data sources and study population

During the period of January 2008 to December 2018, we constructed a T2DM 10-year 
retrospective longitudinal cohort based on the information of patients with newly 
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diagnosed T2DM from the Big Data Center, which includes the detailed patient demo-
graphic, underlying comorbidities, medication prescriptions, and laboratory data from 
all inpatient, outpatient and emergency services [14]. Patients without at least two eGFR 
values were excluded from our analyses. In addition, we excluded T2DM patients who 
had undergone renal replacement therapy, such as hemodialysis, peritoneal dialysis, and 
kidney transplant, before the enrollment points. This study was approved by the Institu-
tional Review Board (Taipei Veterans General Hospitals, Approval no. 2022–03-006 AC), 
and the need for informed consent was waived because the data were deidentified.

Feature selection

We extracted 78 features used for machine learning, including demographic characteris-
tics, underlying comorbidities, laboratory data and concomitant drugs. The demographic 
characteristics included age, gender, smoking and alcohol consumption. Underlying 
comorbidities included histories of hypertension, transient ischemic attack, ischemic 
stroke, hemorrhagic stroke, myocardial infarction, coronary artery disease, congestive 
heart failure, chronic liver disease, cirrhosis, peptic ulcer disease, autoimmune disease, 
chronic obstructive pulmonary disease, asthma, peripheral arterial occlusive disease, 
cancer, gout, atrial fibrillation, valvular heart disease and diabetic retinopathy. The labo-
ratory data included baseline serum creatinine, mean serum creatinine assessed within 
1 year before the diagnosis of T2DM, cholesterol, triglycerides, low-density lipoprotein 
cholesterol, high-density lipoprotein cholesterol, uric acid, calcium, phosphate, white 
blood cells, hemoglobin, albumin, alanine aminotransferase, aspartate aminotransferase, 
total bilirubin, direct bilirubin, alkaline phosphatase, gamma-glutamyl transferase, gly-
cated hemoglobin, glucose, the international normalized ratio, activated partial throm-
boplastin time, high-sensitivity C-reactive protein, iron, thyroid-stimulating hormone, 
free thyroxine, and spot urine protein-to-creatinine ratio (UPCR). Concomitant medica-
tions included renin-angiotensin-aldosterone system (RAAS) inhibitors, alpha blockers, 
beta blockers, calcium channel blockers, warfarins, direct oral anticoagulants, aspirins, 
clopidogrels, nitrates, statins, diuretics, spironolactones, metformins, sulfonylureas, 
meglitinides, sodium–glucose cotransporter 2 inhibitors, glucagon-like peptide-1 recep-
tor agonists, dipeptidyl peptidase-4 inhibitors, thiazolidinediones, alpha-glucosidase 
inhibitors, insulins, nonsteroidal anti-inflammatory drugs, cyclooxygenase-2 inhibitors, 
proton pump inhibitors, steroids, allopurinols, febuxostats and benzbromarones.

Class definition

In our study, the class was annotated as 1 if there was ESRD occurrence during the 
follow-up periods (defined as eGFR < 15 ml/min/1.73 m2 or the receipt of maintenance 
dialysis or kidney transplant), and the class was annotated as 0 if there was no ESRD 
occurrence. We calculated eGFR using the Chronic Kidney Disease Epidemiology Col-
laboration (CKD-EPI) equations [15].

Data cleaning and machine learning model development

Categorical variables are presented as numbers (proportions) and continuous paramet-
ric variables are shown as the median (interquartile ranges [IQRs]). To impute the miss-
ing values of the clinical features, the K-nearest neighbor (KNN) algorithm was used 



Page 4 of 14Ou et al. BioData Mining            (2023) 16:8 

before the machine learning methods [16, 17]. For model development, the study cohort 
was randomly divided to create a 70%:30% training set to test set ratio. Because the num-
ber of ESRD cases was much smaller than the number of non-ESRD cases, we performed 
the synthetic minority over-sampling technique (SMOTE)-Tomek algorithms to balance 
the number of samples taken for imbalanced data [18, 19]. Six machine learning models, 
including logistic regression, extra trees [20], random forest [21], gradient boosting deci-
sion tree (GBDT) [22], extreme gradient boosting models (XGBoost) [23], and light gra-
dient boosting machine (LGBM) [24], are performed. We used forward-feature selection 
for the reduction in dimensions, which selects the most useful subset of features from 
all available features [25, 26]. Five-fold cross-validation is performed on the training set 
to estimate the performance and validate the stability of the applied machine learning 
models [27, 28].

Hyperparameter optimization

A grid search in combination with the five-fold cross-validation was conducted to opti-
mize the hyperparameters of logistic regression, extra trees, random forest, GBDT, 
XGBoost, and LGBM to achieve the best F1 score [29–31]. The details of hyperparam-
eter optimization for each ensemble model are listed in Table 1. Grid searches determine 
the best hyperparameter value based on a set of given values.

Model evaluation

The discriminative abilities of the different machine learning models were compared 
based on their AUCs. In addition, the F1 score, accuracy, precision, recall, average pre-
cision and log loss values of each model by using testing dataset were also presented. 
SHapley Additive exPlanations (SHAP) was used to evaluate the risk of developing ESRD 

Table 1  Hyperparameters of machine learning models

Abbreviations: GBDT gradient boosting decision tree, XGBoost extreme gradient boosting, LGBM light gradient boosting 
machine

Model Hyperparameters Range Optimal values

Logistic regression penalty [l1, l2] l2

Cs [0.001, 0.1, 1, 100, 1000] 1

Extra trees min_samples_leaf [5, 8, 10] 5

criterion [gini, entropy, log_loss] entropy

max_features [sqrt, log2, none] sqrt

Random forest max_depth [3, 5, 10] 10

min_samples_split [2, 5, 10] 5

GBDT learning_rate [0.01, 0.1, 0.2] 0.2

max_depth [3, 5, 8] 8

n_estimators [10, 20] 20

XGBoost gamma [0.5, 1, 5] 0.5

colsample_bytree [0.6, 0.8, 1.0] 1.0

max_depth [3, 4, 5] 5

LGBM n_estimators [8, 16, 24] 24

num_leaves [6, 12, 16] 16

max_bin [255, 510] 510
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in T2DM and to provide explanations for the attribution values of clinical features in a 
unified framework to interpret model predictions.

Software and package applicating for modeling

We used Python (Python Software Foundation version 3.7.6, available at http://​www.​
python.​org) and open-source Scikit-learn library for the establishment of machine learn-
ing models and SAS version 9.4 (SAS Institute, Cary, NC) for statistical analysis [32]. 
We used Python and Scikit-learn library packages, including sklearn.impute.KNNIm-
puter for missing value imputation, sklearn.model_selection.train_test_split for ran-
domly dividing data into train and test sets, sklearn.model_selection.GridSearchCV for 
hyperparameter optimization, sklearn.linear_model.LogisticRegression for development 
of the logistic regression model, sklearn.ensemble.ExtraTreesClassifier for development 
of the extra tree model, sklearn.ensemble.RandomForestClassifier for development of 
the random forest model, sklearn.ensemble.GradientBoostingClassifier for development 
of the GBDT model, XGBoost Python package for development of the XGBoost model, 
lightgbm.LGBMClassifier Python package for development of the LGBM model, and 
sklearn.model_selection.StratifiedKFold for cross-validation. A P value of 0.05 was con-
sidered statistically significant.

Results
Characteristics and distribution of patients

A total of 105,234 T2DM patients aged > 20 years old were identified during the 10-year 
study period, of whom 34,059 had no eGFR measurements, 16,351 did not have at least 
two eGFR values, and 1347 patients receiving renal replacement therapy were excluded, 
which resulted in a final cohort of 53,477 T2DM patients. The detailed patient demo-
graphic data are provided in Table 2. The median patient age was 67.05 years (IQR 57.37 
to 77.74 years), and 41.4% of the patients were female. In addition, 58.2% of patients had 
hypertension, 19.8% had coronary artery disease, and 23.4% had cancer. Regarding renal 
function, T2DM patients had baseline serum creatinine levels of 0.94 mg/dL (IQR 0.75 
to 1.27 mg/dL), mean serum creatinine of 0.95 mg/dL (IQR 0.76 to 1.26 mg/dL) within 
1 year before the diagnosis of T2DM. The dataset was randomly divided into a training 
set (70%) and a testing set (30%). Of all the T2DM patients, 4769 (8.9%) patients devel-
oped ESRD. A total of 3334 (8.9%) patients developed ESRD on the training set, and 
1435 (8.9%) patients developed ESRD on the testing set.

Model prediction ability

Six machine learning models, i.e., logistic regression, extra tree classifier, random forest, 
GBDT, XGBoost, and LGBM, were performed, and the AUCs and other performance 
indices, such as accuracy, F1 score, precision, recall and average precision achieved by 
the machine learning models after data augmentation are presented in Supplementary 
Table  1. The AUCs resulting from 5-fold cross-validation of XGBoost models with a 
mean of 0.984 (Supplementary Fig.  1). On the testing dataset, AUCs showed that the 
XGBoost model had the highest predictive ability, with an AUC of 0.953, followed by the 
extra tree model with an AUC of 0.952 (Fig. 1).

http://www.python.org
http://www.python.org
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Table 2  Demographics and clinical features between T2DM patients

Full cohort Training set Testing set
(n = 53,477) (n = 37,433) (n = 16,044)

Demographic data
  Age, years 67.05 [57.37, 77.74] 67.09 [57.46, 77.78] 66.97 [57.20, 77.66]

  Female gender,n(%) 22,162 (41.4) 15,508 (41.4) 6654 (41.5)

  Smoking,n(%) 12,424 (23.2) 8690 (23.2) 3734 (23.3)

  Alcohol consumption,n(%) 9117 (17.0) 6438 (17.2) 2679 (16.7)

Underlying comorbidities
  Hypertension,n(%) 31,142 (58.2) 21,816 (58.3) 9326 (58.1)

  Transient ischemic attack,n(%) 541 (1.0) 371 (1.0) 170 (1.1)

  Ischemic stroke,n(%) 3359 (6.3) 2339 (6.2) 1020 (6.4)

  Hemorrhagic stroke,n(%) 758 (1.4) 533 (1.4) 225 (1.4)

  Myocardial infarction,n(%) 1806 (3.4) 1251 (3.3) 555 (3.5)

  Coronary artery disease,n(%) 10,585 (19.8) 7449 (19.9) 3136 (19.5)

  CHF,n(%) 3032 (5.7) 2139 (5.7) 893 (5.6)

  Chronic liver disease,n(%) 4377 (8.2) 3085 (8.2) 1292 (8.1)

  Cirrhosis,n(%) 1193 (2.2) 859 (2.3) 334 (2.1)

  Peptic ulcer disease,n(%) 4613 (8.6) 3238 (8.7) 1375 (8.6)

  Autoimmune disease,n(%) 508 (0.9) 360 (1.0) 148 (0.9)

  COPD,n(%) 2881 (5.4) 2026 (5.4) 855 (5.3)

  Asthma,n(%) 1132 (2.1) 784 (2.1) 348 (2.2)

  PAOD,n(%) 99 (0.2) 74 (0.2) 25 (0.2)

  Cancer,n(%) 12,513 (23.4) 8788 (23.5) 3725 (23.2)

  Gout,n(%) 2445 (4.6) 1751 (4.7) 694 (4.3)

  Atrial fibrillation,n(%) 1589 (3.0) 1133 (3.0) 456 (2.8)

  Valvular heart disease,n(%) 1311 (2.5) 917 (2.4) 394 (2.5)

  Diabetic retinopathy,n(%) 2744 (5.1) 1911 (5.1) 833 (5.2)

Laboratory data at the diagnosis of T2DM
  Creatinine, mg/dL
    Baseline serum creatinine, mg/
dL

0.94 [0.75, 1.27] 0.94 [0.76, 1.27] 0.94 [0.75, 1.27]

    Mean serum creatinine, mg/dLa 0.95 [0.76, 1.26] 0.95 [0.76, 1.26] 0.94 [0.76, 1.26]

Cholesterol, mg/dL 175.00 [155.00, 195.20] 175.00 [155.00, 195.00] 175.00 [155.95, 196.00]

Triglyceride, mg/dL 129.40 [94.00, 177.00] 130.00 [94.60, 177.00] 129.00 [94.00, 176.00]

LDL-C, mg/dL 104.00 [89.20, 120.00] 104.00 [89.00, 120.00] 104.40 [89.80, 120.40]

HDL-C, mg/dL 44.60 [39.00, 50.60] 44.60 [39.00, 50.60] 44.80 [39.00, 50.80]

Uric acid, mg/dL 5.98 [5.00, 7.00] 5.98 [5.00, 7.00] 5.96 [5.00, 7.00]

Calcium, mg/dL 9.18 [8.92, 9.40] 9.18 [8.92, 9.40] 9.16 [8.92, 9.40]

Phosphate, mg/dL 3.30 [3.04, 3.54] 3.30 [3.04, 3.54] 3.30 [3.04, 3.56]

White blood cells, /mm3 7300 [6100, 8860] 7300 [6100, 8860] 7300 [6100, 8820]

Hemoglobin, g/dL 12.60 [11.40, 13.70] 12.60 [11.40, 13.70] 12.60 [11.40, 13.70]

Albumin, g/dL 3.90 [3.58, 4.16] 3.90 [3.58, 4.16] 3.90 [3.56, 4.16]

Alanine transaminase, U/L 23.00 [17.00, 35.00] 23.00 [17.00, 35.00] 23.00 [17.00, 35.00]

Aspartate transaminase, U/L 23.20 [19.00, 31.00] 23.20 [19.00, 31.00] 23.20 [18.80, 31.00]

Total bilirubin, mg/dL 0.69 [0.51, 1.00] 0.69 [0.51, 1.00] 0.69 [0.51, 0.99]

Direct bilirubin, mg/dL 0.26 [0.17, 0.38] 0.26 [0.17, 0.38] 0.26 [0.17, 0.38]

Alkaline phosphatase, U/L 84.00 [71.20, 104.20] 84.00 [71.20, 104.00] 84.00 [71.00, 104.20]

Gamma-glutamyl transferase, U/L 43.00 [28.80, 73.60] 43.00 [28.80, 73.80] 43.40 [28.80, 73.40]

HbA1c, % 7.70 [6.90, 9.42] 7.70 [6.90, 9.43] 7.70 [6.88, 9.40]

Glucose, mg/dL 142.00 [117.00, 186.00] 142.00 [117.00, 186.00] 142.00 [117.00, 186.00]

INR 1.02 [0.99, 1.10] 1.02 [0.99, 1.10] 1.02 [0.99, 1.10]
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Table 2  (continued)

Full cohort Training set Testing set
(n = 53,477) (n = 37,433) (n = 16,044)

aPTT, seconds 57.56 [48.96, 85.10] 57.56 [48.96, 85.10] 57.37 [48.96, 85.10]

Hs-CRP, mg/dL 1.08 [0.32, 1.52] 1.08 [0.32, 1.53] 1.08 [0.32, 1.43]

Iron, μg/dL 64.60 [54.00, 77.20] 64.60 [54.00, 77.00] 64.40 [53.80, 77.20]

TSH, uIU/mL 1.77 [1.22, 2.31] 1.76 [1.22, 2.31] 1.78 [1.22, 2.31]

Free T4, ng/dL 1.08 [1.01, 1.17] 1.08 [1.01, 1.17] 1.08 [1.01, 1.17]

Spot urine protein-creatinine ratio, 
g/g

2.28 [0.50, 3.43] 2.32 [0.51, 3.43] 2.19 [0.49, 3.41]

Concomitant medications
  RAAS inhibitors,n(%) 30,111 (56.3) 21,093 (56.3) 9018 (56.2)

  Alpha, blocker,n(%) 14,189 (26.5) 9927 (26.5) 4262 (26.6)

  Beta blocker,n(%) 21,922 (41.0) 15,333 (41.0) 6589 (41.1)

  CCB,n(%) 27,749 (51.9) 19,465 (52.0) 8284 (51.6)

  Warfarin,n(%) 1761 (3.3) 1234 (3.3) 527 (3.3)

  DOAC,n(%) 138 (0.3) 94 (0.3) 44 (0.3)

  Aspirin,n(%) 16,713 (31.3) 11,766 (31.4) 4947 (30.8)

  Clopidogrel, n(%) 6709 (12.5) 4770 (12.7) 1939 (12.1)

  Nitrate,n(%) 12,810 (24.0) 8960 (23.9) 3850 (24.0)

  Statin,n(%) 22,656 (42.4) 15,843 (42.3) 6813 (42.5)

  Diuretic,n(%) 18,660 (34.9) 13,073 (34.9) 5587 (34.8)

  Spironolactone,n(%) 5066 (9.5) 3568 (9.5) 1498 (9.3)

  Metformin,n(%) 37,396 (69.9) 26,158 (69.9) 11,238 (70.0)

  Sulfonylurea,n(%) 25,202 (47.1) 17,631 (47.1) 7571 (47.2)

  Meglitinide,n(%) 8625 (16.1) 6024 (16.1) 2601 (16.2)

  SGLT2 inhibitor,n(%) 505 (0.9) 358 (1.0) 147 (0.9)

  GLP1 receptor agonist,n(%) 78 (0.1) 60 (0.2) 18 (0.1)

  Dipeptidyl peptidase-4 
inhibitor,n(%)

16,164 (30.2) 11,299 (30.2) 4865 (30.3)

  Thiazolidinedione,n(%) 4847 (9.1) 3408 (9.1) 1439 (9.0)

  Alpha-glucosidase inhibitor,n(%) 8530 (16.0) 5956 (15.9) 2574 (16.0)

  Insulin,n(%) 26,752 (50.0) 18,790 (50.2) 7962 (49.6)

  NSAID,n(%) 26,349 (49.3) 18,450 (49.3) 7899 (49.2)

  COX-2 inhibitor,n(%) 7230 (13.5) 5037 (13.5) 2193 (13.7)

  Proton pump inhibitor,n(%) 14,700 (27.5) 10,267 (27.4) 4433 (27.6)

  Steroid,n(%) 8747 (16.4) 6100 (16.3) 2647 (16.5)

  Allopurinol,n(%) 2466 (4.6) 1711 (4.6) 755 (4.7)

  Febuxostat,n(%) 1065 (2.0) 734 (2.0) 331 (2.1)

  Benzbromarone,n(%) 4388 (8.2) 3078 (8.2) 1310 (8.2)

Abbreviations: T2DM type 2 diabetes mellitus, CHF congestive heart failure, COPD chronic obstructive pulmonary disease, 
PAOD peripheral arterial occlusive disease, LDL-C low-density lipoprotein cholesterol, HDL-C high density lipoprotein-
cholesterol, HbA1c glycated hemoglobin, INR international normalized ratio, aPTT activated partial thromboplastin time, 
Hs-CRP high-sensitivity C-reactive protein, TSH thyroid stimulating hormone, T4 thyroxine, RAAS renin-angiotensin system, 
CCB calcium channel blocker, DOAC direct oral anticoagulant, SGLT2 sodium-glucose cotransporter 2, GLP1 glucagon-like 
peptide-1, NSAID nonsteroidal anti-inflammatory drug, COX-2 cyclooxygenase-2
a  The mean serum creatinine value assessed within 1 year before the diagnosis of T2DM
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Ranks of feature importance and SHAP values in the XGBoost model

We performed feature importance plots of the XGBoost model based on the SHAP 
values and listed the top important features sorted by the impacts in descending order 
(Fig. 2A). The top five important features were baseline serum creatinine, mean serum 
creatinine within 1 year before the diagnosis of T2DM, high-sensitivity C-reactive pro-
tein, UPCR and female gender. The impacts of feature importance on model output were 

Fig. 1  A Receiver operating characteristic curves and B precision–recall curves of machine learning models 
on the testing dataset. C XGBoost yielded the highest area under the ROC curve for prediction of end-stage 
renal disease followed by extra trees classifier and GBDT on the testing dataset. Abbreviations: ROC, receiver 
operating characteristic; PR, precision–recall; AUC, area under curve of receiver operating characteristic curve; 
A.precision, average precision; AUC PRC, area under curve of precision-recall curve; GBDT, gradient boosting 
decision tree; XGBoost, extreme gradient boosting; LGBM, light gradient boosting machine

Fig. 2  A The feature importance plot and B SHAP summary plot showed the top clinical important features 
for predicting risks of developing end-stage renal disease in the XGBoost model. Abbreviations: XGBoost, 
extreme gradient boosting; HSCRP, high-sensitivity C-reactive protein; UPCR, spot urine protein-to-creatinine 
ratio; ALT, alanine transaminase; DPP4i, dipeptidyl peptidase 4 inhibitors; HGB, hemoglobin; HbA1c, glycated 
hemoglobin; ALB, albumin; NSAID, nonsteroidal anti-inflammatory drug; HTN, hypertension; INR, international 
normalized ratio; PI, phosphate
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also illustrated in the SHAP summary plot (Fig. 2B). Higher SHAP values of important 
features indicate a higher probability of impacts of the prediction in the XGBoost model. 
SHAP values in red dots indicate an increase in prediction, while those in blue dots indi-
cate a decrease in prediction. Baseline serum creatinine, mean serum creatinine within 
1 year before the diagnosis of T2DM, high-sensitivity C-reactive protein, and UPCR 
showed positive impacts on the prediction of developing ESRD risk, while the female 
gender showed a negative impact.

The dependent plots of interactions between serum creatinine, high‑sensitivity C‑reactive 

protein, UPCR and female gender

As shown in Fig.  3, the dependent plots illustrated the SHAP values and the interac-
tions between serum creatinine, high-sensitivity C-reactive protein, UPCR and female 
gender in the XGBoost model. The risks of developing ESRD increased as baseline or 
mean serum creatinine increased and then reached a plateau when creatinine > 5 mg/dL 
(Fig. 3A–B). Figure 3C–F illustrates the interaction between the SHAP values of baseline 
serum creatinine, mean serum creatinine, high-sensitivity C-reactive protein, UPCR and 
female gender. The values on the y-axis indicate the interaction SHAP values between 
baseline serum creatinine and other important features, and values on the x-axis are the 
levels of baseline serum creatinine. Mean serum creatinine, high-sensitivity C-reactive 
protein, UPCR and female gender were positively correlated with the predictive value of 
baseline serum creatinine.

Discussion
In the current study, we developed machine learning models to predict the develop-
ment of ESRD among T2DM patients based on electronic medical records. We used the 
machine learning system to conduct feature selection and compare the AUCs among the 
different machine learning models. We found that the XGBoost model had the highest 

Fig. 3  The plots of SHAP value of (A) baseline serum creatinine and (B) mean serum creatinine within 1 
year before diagnosis showed increased creatinine levels were associated with increased SHAP values. SHAP 
interaction plots showed the interaction impacts between baseline serum creatinine and (C) mean serum 
creatinine (D) HSCRP, (E) UPCR, and (F) female gender on the prediction model’s output. Abbreviations: SHAP, 
SHapley Additive exPlanations; HSCRP, high-sensitivity C-reactive protein; UPCR, spot urine protein-creatinine 
ratio
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predictive performance with the highest AUC of 0.953 on the testing dataset compared 
to other machine learning algorithms. The top five important features were baseline 
serum creatinine, mean serum creatinine within 1 year before the diagnosis of T2DM, 
high-sensitivity C-reactive protein, UPCR and female gender.

Previous studies in nondiabetic populations have attempted to find useful markers 
to predict ESRD. A Norwegian large-scale general health study including 65,589 adults 
aged > 20 years from 1995 through 1997 established a clinical predictive model (incor-
porating age, gender, physical activity, diabetes, systolic blood pressure, antihyperten-
sive medication, and high-density lipoprotein) for the future risk of ESRD, and the AUC 
reached 0.864 [33]. After adding albuminuria and eGFR, the AUC of the model was 
increased to 0.936. Ishani et al [34]. studied 12,866 men who were at high risk for heart 
disease and found that dipstick proteinuria, eGFR < 60 ml/min/1.73 m2, and hematocrit 
were related to the development of ESRD. Because the study populations were limited 
to nondiabetic populations, the findings of these studies may not be generalizable to 
T2DM groups. For diabetic patients, proteinuria [35, 36], diabetic retinopathy [37, 38], 
increased glycated hemoglobin levels [39], hypertension [40], and cardiovascular dis-
eases [41, 42] may precede kidney function decline and have been demonstrated to be 
associated with renal function progression.

A customized software program for CKD risk identification in Australia (the Elec-
tronic Diagnosis and Management Assistance to Primary Care in Chronic Kidney Dis-
ease (eMAP:CKD) program) was developed to integrate primary care electronic health 
records from more than 150,000 patients [43]. After the initiation of the program, there 
was a significant improvement in CKD documentation from 0.48 to 1.55%. In addition, 
the proportions of at-risk patients diagnosed with CKD at 15 months were found to be 
significantly increased from 7.8 to 24.40%. Furthermore, recent studies have applied AI 
to predict the risks of CKD. Kanda et al. [44] conducted a study including 7465 subjects 
and found that AI models with support vector machine (SVM) models can help predict 
CKD progression in both high-risk and low-risk subjects. After the 3-year follow-up, the 
accuracy of the SVM models was increased. Chen et al. [45] used three different models, 
i.e., K-nearest neighbor (KNN), SVM, and soft independent modeling of class analogy 
(SIMCA), to analyze data from 386 patients with or without CKD for clinical risk assess-
ment and achieved accuracies over 93%. In their study, KNN and SVM achieved better 
performance than SIMCA. Almansour et al. [46] studied data from 400 patients with the 
goal of diagnosing CKD at an early stage and found that artificial neural networks (accu-
racy: 99.75%) performed better than SVMs (accuracy: 97.75%).

Although several studies have developed machine-learning models to detect diabetes 
and diabetic complications, to date, only one machine learning model has been devel-
oped to detect renal function progression in diabetic patients. Makino et al. [13] con-
ducted a longitudinal data analysis with big data representing diabetes patients with 
stage 1 to 2 diabetic nephropathy and found that logistic regression models can predict 
DKD aggravation with 71% accuracy. A higher risk of hemodialysis was associated with 
DKD aggravation than with nonaggravation. However, the study was limited to the early 
stage of DKD and a single machine learning model with logistic regression. In our study, 
we found that the machine learning XGBoost model predicted the risk of developing 
ESRD, achieving an AUC value of 0.953 on the testing dataset.
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With a positive SHAP value, the machine learning models revealed that baseline 
serum creatinine showed the greatest impact on predicting the risk of developing ESRD. 
A previous study found that better baseline renal function was protective against renal 
function decline [47]. Our models also found that mean serum creatinine within 1 year 
before diagnosis of T2DM was an important predictor of developing ESRD. The possible 
explanation may be that mean serum creatinine is reflective of the usual renal status. 
According to the SHAP dependence plots, the interaction with high-sensitivity C-reac-
tive protein increases the prediction of risks of developing ESRD. Elevated high-sensitiv-
ity C-reactive protein was found to be independently associated with an increased risk 
of renal function decline in patients with diabetes and the general non-diabetic popula-
tion [48, 49]. Higher UPCR levels at the time of diagnosis of T2DM were also associated 
with higher risks of developing ESRD, which was similar to previous research that found 
a positive correlation between UPCR and ESRD [50]. In contrast, female gender was 
associated with lower SHAP values and decreased risks of developing ESRD. A previ-
ous study also found that renal function decline in women was slower compared to men 
among middle-aged and elderly individuals [51].

Our study has several strengths. We established a predictive model by inputting big 
EMR data into the machine learning algorithm. The novelty of this study is the use of a 
10-year longitudinal cohort to predict the risk of developing ESRD in newly diagnosed 
T2DM patients with baseline median creatinine of 0.94 mg/dL. The machine learning 
algorithm compared discriminative ability among different machine learning models 
and selected the best models. This approach offers not only improvement in AUCs but 
also selection of the best predicting model in cases where it is unclear what machine 
learning models are most suitable. In addition, the SHAP algorithm was used to inter-
pret the model predictions, and the impacts of important features on developing ESRD 
were explored. Using SHAP summary plots, we demonstrated the strength and direction 
of each feature (positive or negative effects).

Our study also has real and perceived limitations. First, as patient information, includ-
ing demographic data, underlying comorbidities and concomitant medications, was 
obtained from electronic health record systems and coding procedures, we could not 
identify mild diseases without coding in T2DM patients. Second, the inclusion of data 
on the duration and frequency of laboratory visits was not uniform but varied among 
patients. Finally, the training data and testing data were from the same dataset. Further 
validation in other cohorts is necessary.

Conclusion
Our machine learning models employing longitudinal data from electronic health records 
were effective in predicting the risks of developing ESRD in T2DM patients in real-world 
clinical scenarios over a 10-year study period of observation. In addition, we used the 
SHAP method to provide explanations for the selected features to interpret model predic-
tions. The developed model has the potential to predict the T2DM patients at increased 
risks for developing ESRD and thus, consequently initiating prevention or treatment 
plans for patients. In the future, external validation studies are necessary to convenient 
machine learning models to be developed for widespread use in clinical practice.
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