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Abstract 

In recent years, convolutional neural networks (CNNs) have made great achievements in 
the field of medical image segmentation, especially full convolutional neural networks 
based on U-shaped structures and skip connections. However, limited by the inherent limi-
tations of convolution, CNNs-based methods usually exhibit limitations in modeling long-
range dependencies and are unable to extract large amounts of global contextual informa-
tion, which deprives neural networks of the ability to adapt to different visual modalities. In 
this paper, we propose our own model, which is called iU-Net bacause its structure closely 
resembles the combination of i and U. iU-Net is a multiple encoder-decoder structure 
combining Swin Transformer and CNN. We use a hierarchical Swin Transformer structure 
with shifted windows as the primary encoder and convolution as the secondary encoder to 
complement the context information extracted by the primary encoder. To sufficiently fuse 
the feature information extracted from multiple encoders, we design a feature fusion mod-
ule (W-FFM) based on wave function representation. Besides, a three branch up sampling 
method(Tri-Upsample) has developed to replace the patch expand in the Swin Transformer, 
which can effectively avoid the Checkerboard Artifacts caused by the patch expand. 

On the skin lesion region segmentation task, the segmentation performance of iU-Net 
is optimal, with Dice and Iou reaching 90.12% and 83.06%, respectively. To verify the 
generalization of iU-Net, we used the model trained on ISIC2018 dataset to test on PH2 
dataset, and achieved 93.80% Dice and 88.74% IoU. On the lung feild segmentation 
task, the iU-Net achieved optimal results on IoU and Precision, reaching 98.54% and 
94.35% respectively. Extensive experiments demonstrate the segmentation perfor-
mance and generalization ability of iU-Net.
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Introduction
Benefiting from the rapid development of deep learning, convolutional neural networks 
(CNNs) have dominated the field of medical image segmentation. Medical image seg-
mentation is a key step in medical computer-aided diagnosis systems. The vast majority 
of existing medical image segmentation methods are based on the U-shaped network 
UNet [1], which consists of a symmetric encoder, decoder, and skip connections. The 
encoder is used as a feature extractor to extract feature information from the image, and 
the decoder uses the feature information extracted by the encoder to recover the target 
region in the image. Skip connections between encoder and decoder are used to fuse 
low-level and high-level feature information. Owing to the clean network structure and 
excellent performance of UNet, many variants have been derived based on UNet, such 
as UNet++ [2], Attention_UNet [3], CE-Net [4], CA-Net [5], ResUNet [6] and Dou-
ble-UNet [7]. The 3D UNet [8] and V-Net [9] with similar structures were proposed for 
3D medical image segmentation. Although these networks have been achieved success-
fully in several medical image segmentation areas, including lung lesion segmentation, 
dermoscopic image segmentation, and polyp segmentation, CNNs-based approaches 
typically exhibit limitations in modeling long-distance dependencies due to the limita-
tions of convolutional receptive fields [10], depriving the networks of the ability to adapt 
to different visual modalities. As a result, network structures based on CNNs typically 
exhibit weaker performance in the face of target structures which exhibit large inter-
patient variation in texture, shape, and size. Pooling layers are often used in CNNs to 
expand the receptive field. But at the same time, some feature information is lost. In 
addition, many studies have tried to address this shortcoming by dilated convolution 
[11], self-attentive mechanisms [12], and pyramid structures [13], but these methods are 
still inadequate in modeling long-range dependencies.

Up to the proposal of Transformer [14], which was originally used in the field of natu-
ral language processing (NLP), Transformer is commonly used for sequence-to-sequence 
prediction tasks and machine translation. Inspired by the success of Transformer in the 
field of NLP, researchers have tried to introduce Transformer to the field of computer 
vision (CV) [15]. Carion et  al. [15] proposed an end-to-end transformer structure for 
object detection, which is the first attempt to introduce the transformer into the CV field. 
The subsequent proposal of ViT [16] led the peak of Transformer applications in CV. 
ViT divides images into patches and embeds position encoding, and then makes model 
pre-training on the large-scale dataset ImageNet, achieving comparable performance to 
CNN-based methods on image recognition tasks. Liu et  al. [17] proposes a hierarchi-
cal general framework called Swin Transformer to achieve state-of-the-art performance 
on image classification, target detection and semantic segmentation tasks. Swin Trans-
former is built based on Window based MSA (W-MSA) and Shift Window based MSA 
(SW-MSA). Patch Merging is similar to the pooling layer in CNN, which performs a 2x 
down-sampling on the feature map to expand the receptive field and increase the number 
of feature channels, and Patch Expand performs an up-sampling on the feature map to 
reshape the high resolution image and reduce the number of channels.

To enjoy the benefits of both CNN and Transformer, many studies have tried to com-
bine CNN with Transformer, such as TransUNet [10], TransFuse [18] and MT-UNet 
[19]. X-Net [20] proposes a hybrid network with dual encoder-decoder for X-shape. Xu 
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et al. [21] propose a multi-dimensional statistical feature network based on the hybrid 
structure of CNN and Transformer. These networks use a hybrid CNN-Transformer 
architecture which exploits both the powerful information representation capability of 
CNN and the encoding ability of Transformer for global contextual information. How-
ever, these networks usually have enormous number of parameters and high computa-
tional complexity. In the paper, we combine CNN with Swin Transformer, and propose 
a new network structure, called iU-Net. iU-Net adopts a hybrid architecture of CNN 
and Swin Transformer, which has the advantages of CNN and Transformer. On the one 
hand, the addition of Transformer enhances the ability of iU-Net in modeling the con-
tours and boundaries of the lesion region. On the other hand, the local detailed features 
of the lesion region extracted by CNN compensate for the shortcomings of Transformer 
in modeling the weak local information, and the two complement each other. Influenced 
by U-shaped networks [1] and multi-encoder networks [22], iU-Net uses a U-shape 
network structure with multiple encoders-single decoders. The encoder part includes 
the primary encoder and secondary encoder, the primary encoder base block is Swin 
Transformer, the secondary encoder base block is Convolution. The feature information 
extracted from the primary and secondary encoders, respectively, is fully fused with the 
features through a wave function-based feature fusion module(W-FFM). The base block 
of the decoder part is Swin Transformer, and we replace the Patch Expand upsampling 
method in the decoding stage of Swin Transformer with the proposed Tri-Upsample. 
We evaluate the performance of iU-Net by 2 typical medical image segmentation tasks, 
including Skin lesion segmentation on dermoscopic images, Lung segmentation on 
chest X-rays. Our main contributions are as follows:

(1)	 We propose a multi-encoder U-shape network structure iU-Net with a mixture of 
CNN and Swin Transformer, including a primary encoder with Swin Transformer 
as the base building unit and a secondary encoder built with Convolution.

(2)	 We develop a feature fusion module based on wave function representation, which 
is able to transform feature information from different feature spaces to the same 
space and then fuse them efficiently.

(3)	 We develop a three branch up-sampling module(Tri-Upsample) to alleviates 
Checkerboard Artifacts of patch expanding.

(4)	 On the ISIC2018 dataset, the proposed model achieves state-of-the-art performance. 
At the same time, we do a lot of experiments on the PH2 dataset and lung segmenta-
tion dataset to verify the generalization performance of the proposed model.

Related Works
CNN‑based methods

Most of the traditional medical image segmentation methods are based on boundary 
detection [23], threshold-based segmentation [24] and machine learning-based algo-
rithms. Although these methods achieved notable segmentation performance, they 
rely excessively on manual feature selection and the introduction of a priori infor-
mation [25]. Benefiting from the rapid development of deep learning, CNN-based 
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segmentation methods have dominated the field of medical image segmentation. 
Especially in 2015, UNet was proposed. A great number of variants have been derived 
subsequently, such as ResUNet [6], Double-UNet [7]. The 3D UNet [8] and V-Net [9] 
with similar structures were proposed for 3D medical image segmentation.

Transformer‑based methods

Transformer was first applied to NLP and is usually used for machine translation tasks. 
Carion et  al. [15] first introduced Transformer to the field of cv. In 2021, the Google 
team proposed the ViT [16] model and achieved comparable performance to CNN in 
image recognition tasks. Compared with CNN-based methods, the disadvantages of 
Transformer are the excessive amount of parameters and high computational com-
plexity. However, Swin Transformer [17] solved the problem of excessive amount of 
parameters by W-MSA and SW-MSA strategies, and achieved hierarchical feature rep-
resentation by Patch Merging and Patch Expanding. Based on Swin Transformer, many 
researchers have tried to embed Swin Transformer blocks to U-shaped networks, such 
as Swin-unet [26], DS-TransUNet [22], and have achieved state-of-the-art performance 
on several vision tasks, including image classification, target detection, and semantic 
segmentation.

CNN‑Transformer methods

To enjoy the advantages of CNN and Transformer simultaneously, many works try to 
combine CNN with Transformer and propose a hybrid network structure of CNN-
Transformer, such as TransUNet [10], TransFuse [18], MT-UNet [19], Transformer-
Unet [27]. In this work, we try to combine CNN with Swin Transformer and propose a 
hybrid multi-encoder network structure iU-Net. Unlike TransUNet [10], iU-Net adopts 
Swin Transformer as one of the base building units of the model, and the computation 
complexity is well solved.

Methods
Architecture overview

As the network structure is similar to the combination of i and U, the network is called 
iU-Net. The proposed iU-Net network structure is shown in Fig. 1. The iU-Net consists 
of 2 encoders, decoder, bottleneck, skip connection and feature fusion module. The 
encoders are divided into primary and secondary encoders. The base unit of the primary 
encoder is the Swin Transformer block, and the base unit of the secondary encoder is the 
Convolution. Firstly, the image passes through the Patch Partition layer, which divides 
the image into a number of patches. Then maps the number of feature dimensions to an 
arbitrary dimension (denoted as C) through the Linear Embedding layer. Finally patches 
are input to the primary encoder and go through a series of Swin Transformer blocks 
with the patch merging. After the patch merging, the feature map is subjected to a 2x 
down-sampling operation and the number of dimensions of the channels is increased 
to produce a hierarchical feature map. The secondary encoder uses successive convolu-
tion to extract feature information, and a pooling layer is used after each convolution to 
reduce the number of parameters. The hierarchical features generated by the primary 
encoder and the features generated by the secondary encoder in the corresponding 
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stage pass through the feature fusion module W-FFM. Then, the fused feature informa-
tion is input to the decoder part of the corresponding stage through the skip connec-
tion to recover the detail information of the image. The decoder consists of successive 
Swin Transformer blocks and Tri-upsample layers. After the Tri-upsample layer, the pix-
els of feature information is upsampled by 2x and the number of channels is reduced at 
the same time. Finally, the feature dimensions are mapped to classes through the linear 
projection.

Swin Transformer block

In contrast to the traditional multi-headed self-attention (MSA), which performs self-
attention calculation globally, the Swin Transformer introduces Window in MSA, per-
forms local self-attention calculation in Window, and uses the Shifted window technique 
to enhance the information interaction between windows. Each Swin Transformer block 
consists of 1 multi-headed attention module, a 2-layer MLP with GELU nonlineariza-
tion, 2 LayerNorm (LN) layers and 1 residual connection. The MSA used in the 2 suc-
cessive Swin Transformer blocks are slightly different: Window-based multi-headed 
attention module (W-MSA) and shifted window-based multi-headed attention module 
(SW-MSA). The Fig. 2 shows 2 successive Swin Transformer blocks. The flow of the Swin 
Transformer block can be expressed as Eqs. (1)-(5).

(1)ẑ = W −MSA(LN (zl−1))+ zl−1

(2)zl = MLP(LN (ẑl))+ ẑl

Fig. 1  iU-Net network structure



Page 6 of 18Jiang et al. BioData Mining            (2023) 16:5 

Q, K, V mean query, key and value metrices respectively. d means the dimension of 
query/key. B represents the embedded position code. W −MSA indicates the window 
self-attention calculation operation. MLP represents the basic block multilayer percep-
tron of Swin Transformer. SW −MSA indicates shifted window-based multi-headed 
attention module operation. Softmax represents softmax function.

Encoder

Inspired by [10, 22], we use a dual-encoder U-shape network structure to extract feature 
information in dermoscopic images. The powerful representation capability of CNN 
makes it dominant in the field of medical image segmentation, so we choose Convolu-
tion operation as the basic unit for building the secondary encoder. The inherent limi-
tations of convolution make CNNs usually exhibit limitations in modeling long-range 
dependencies. To overcome this shortcoming, we use the Swin Transformer block as 
the basic unit for building the primary encoder to enhance the ability of modeling long-
range dependencies. Given input as XH×W×C , a sequence of Swin Transformer and 
patch merging in the primary encoder produces the hierarchical feature map. In the sec-
ondary encoder, the input is processed through successive convolution and pooling lay-
ers to produce feature information of the same size as the primary encoder. In the same 
stage, the hierarchical feature representations generated by the primary and secondary 
encoders are passed through the W-FFM, which fuses features from different spaces. 
The fused features are input to the decoder section via skip connections.

Decoder

The decoder symmetric with the primary encoder is built based on the Swin Trans-
former block. The feature information from the bottleneck is processed by several Swin 
Transformer blocks in turn, while the fused features are input to the Swin Transformer 

(3)ẑl+1 = SW −MSA(LN (zl))+ zl

(4)zl+1 = MLP(LN (ẑl+1))+ ẑl+1

(5)Attention(Q,K ,V ) = SoftMax(
QKT

√
d

+ B)V

Fig. 2  Swin Transformer block
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block of the corresponding stage of the decoder through the skip connection. The origi-
nal SwinUnet recovered images using the patch expanding, which is similar to transpose 
convolution and is sensitive to Checkerboard Artifacts [28]. Checkerboard Artifacts is 
the result of deconvolution “Uneven overlap”, which makes one part of the image darker 
than other parts [29]. To avoid this phenomenon, we use a new upsampling method 
called Tri-Upsampe. The three branches of Tri-Upsampe use patch expanding, bilinear 
interpolation and PixelShuffle respectively. The detailed structure of Tri-Upsample is 
shown in Fig. 3.

A wave function based Feature Fusion Module

The iU-Net is a multi encoder-decoder network model. The decoder consists of a pri-
mary encoder and a secondary encoder. The basic block of the primary encoder is Swin 
Transformer block, and the basic block of the secondary encoder is Convolution. The 
advantage of multiple encoders is that feature information from different feature spaces 
can be obtained, but how to aggregate feature information from multiple feature spaces 
is the core problem of the multi-encoder structure. A direct way is to catenate the 2 dif-
ferent feature maps along the channel dimension and then perform the convolution. But 
this approach does not capture the global contextual relationship between the different 
dimensional feature maps and is obviously not the best solution. Given that the features 
extracted by CNN and Transformer belong to 2 different feature spaces, inspired by [30], 
we represent the feature information of different feature spaces as wave functions and 
map them uniformly to the complex domain, and then perform feature aggregation on 
them in the complex domain, as shown in Fig. 4. At a stage, the features extracted by the 

Fig. 3  Tri-Upsample module structure
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primary encoder are denoted as Mm×H×W
major

 , and that extracted by the secondary encoder are 
denoted as Nn×H×W

minor .The spliced features are denoted as XC×H×W ,C = m+ n , which 
we divide into non-overlapping tokens and input to W-FFM. Layer Norm is performed 
first, and then Tokens are represented as waves in terms of amplitude and phase by the 
dynamic amplitude generation module and phase generation module. As in Eqs. (6)-(8).

This is expanded using Euler’s formula, expressed in terms of the real and imaginary 
parts. The output õj is the complex-value representation of the aggregated feature. After 
obtaining the aggregated feature information, following the common quantum meas-
urement approach [31], the complex-valued representation of the quantum state is 
projected into the real-valued observable measurement, and we obtain the real-valued 
output oj by summing the real and imaginary parts of õj with the weights [30]. As in Eqs. 
(9)-(11):

Results
Implementation Details

In this paper, all methods are implemented using the PyTorch framework. The train-
ing process was done on a Quadro RTX 6000 GPU (24GB). The loss functions are 

(6)|zj| = Amplitude(Wc
, zj), j = 1, 2, ...n

(7)θj = �(W θ
, zj), j = 1, 2, ...n

(8)z̃j = |zj| · eiθj , j = 1, 2...n

(9)z̃j = |zj| · cosθj + i|zj| · sinθj

(10)õj = W − FFM(Z̃,Wt)j , j = 1, 2, ...n

(11)oj = Wt
jkzk⊙cosθk +Wi

jkzk ⊙ sinθk , j = 1, 2, · · · , n

Fig. 4  Wave function feature fusion module
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the weighted Dice loss function LDice and the Cross-Entropy loss function LBCE , as in 
Eq. (12).

We train the model using SGD optimizer with momentum 0.9, initial learning rate is 
0.01, weight decay is 10e-8, batch size is 12, epochs is 300, α is 0.5. The weight param-
eters pre-trained on ImageNet are used to initialize the model parameters. The size of 
the input image is set to 224 × 224 , the patch size is 4, and the window size is set to 7.

Evaluation Metrics

We quantitatively evaluate the segmentation performance of the iU-Net proposed in 
the paper using Precision, Recall, Dice coefficient, and IoU, as in Eqs. (13)-(16). Preci-
sion and Recall are common statistical measures used to evaluate the performance of a 
binary classification problem. Dice and IoU are used to evaluate the similarity between 
segmentation results and ground truth. Through Dice and IoU, we can judge the simi-
larity between the prediction and the Ground Truth. The larger the Dice and IoU val-
ues, the closer the prediction is to the Ground Truth. Precision indicates the proportion 
of true diseased pixels in the predicted diseased pixels. Recall indicates how many real 
diseased pixels are correctly predicted. TP represents the correct segmentation of skin 
lesion pixels, and FN is the wrong segmentation of skin lesion pixels. If the segmentation 
of non-lesion pixels is correctly classified as non-lesion, it is regarded as TN. Otherwise, 
they are FP.

Datasets

ISIC2018

The ISIC2018 dataset [32, 33] includes 2596 RGB images and the corresponding Ground 
Truth. We randomly divide the images into 2076 for training and 520 for testing. The 
data augmentation methods include random cropping (224,  224), random rotation 
(−π

6
,
π
6
) , horizontal and vertical flipping.

(12)Loss = αLDice + (1− α)LBCE

(13)Dice = 2× TP

2× TP + FN + FP

(14)IoU = TP

TP + FP + FN

(15)Precision = TP

TP + FP

(16)Recall = TP

TP + FN
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PH2

The PH2 dataset [34] is a small dataset consisting of 200 skin lesion images and the cor-
responding Ground Truth with a resolution of 768× 560 , which is commonly used to 
validate the generalization performance of the model. During the training period, the 
image is resized to 224 × 224.

Montgomery, JSRT & NIH

The JSRT [35] dataset includes 247 chest x-rays of which 154 images are abnormal pul-
monary nodule and 93 images are normal. The Montgomery [36] dataset includes 138 
chest x-rays, 80 images of normal patients and 58 patients with manifested tuberculosis. 
The NIH [37] dataset contains 100 chest X-ray images, which include lung diseases with 
different degrees of prevalence.

We randomly divide 485 images into 385 for training and 100 for testing. With the 
data augmentation method proposed in [37], 2400 new images were added, for a total 
of 2785 training images and 100 test images, as shown in the Fig. 5. During the training 
period, the image is resized to 224 × 224.

Comparison with State‑of‑the‑art Methods

Evaluation on Skin Lesion Segmentation

A comparison of the proposed iU-Net with the state-of-the-art models on the skin lesion 
ISIC2018 dataset is shown in Table 1. On the ISIC2018 dataset, we reimplemented the mod-
els in Table 1 based on the source code, including CNN-based segmentation methods (E.g. 
UNet, CA-Net), Transformer-based segmentation methods (E.g. TransUNet, SwinUnet) 
segmentation methods and MLP-based segmentation methods (UNeXt). We implemented 
TransUNet in the case of using different pre-training models, which include ViT-B_16 and 
R50-ViT-B_16. Compared with other state-of-the-art models, our proposed model iU-Net 
achieves the best in 2 evaluation metrics, Dice and IoU, and Precision is second only to Swi-
nUnet and Recall is second only to TransUNet (R50-ViT-B_16). The segmentation results of 

Fig. 5  a) shows the original image, (b) and (c) show cases of the data augmentation images
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different models on the skin lesion ISIC2018 dataset are shown in Fig. 6. Based on Fig. 6, the 
Transformer-based network outperformed the CNNs-based network in segmenting the skin 
lesion region in close proximity to the healthy skin. Most CNN-based segmentation methods 
suffer from over-segmentation, which is due to the fact that the information extracted by the 
convolution operation is local and lacks global contextual information [26].

Cross‑validation on PH2

To further verify the generalization ability of iU-Net to different data distributions, we 
conducted cross-validation experiments on PH2. The segmentation performance of dif-
ferent models on the PH2 dataset is shown in Table 2. “ISIC2018→PH2” indicates the 
segmentation performance of the model obtained from the ISIC2018 dataset training on 
the complete PH2 dataset. The results show that the proposed model iU-Net achieves 
optimal results in 2 metrics, Dice and IoU, with 93.80% and 88.74%, respectively. Preci-
sion is second only to SwinUnet and Recall is second only to TransUNet (ViT-B_16). 
This indicates the excellent generalization performance of iU-Net. The segmentation 
results of different models on the PH2 dataset are shown in Fig. 7.

Evaluation on Lung Field Segmentation

We evaluate the generalization ability of iU-Net on the lung region segmentation task. 
The segmentation results of iU-Net with the state-of-the-art models are shown in 
Table 3. The iU-Net achieved best results in IoU and Precision metrics, which proves 
the effectiveness of iU-Net for lung image segmentation, with Dice second only to 
the XLSor [35] model dedicated to lung region segmentation and Recall second only 
to TransUNet (R50-ViT-B_16). The segmentation results of the different models on 

Table 1  Experiment results of skin segmentation for the ISIC2018 dataset

Model results with “*” are reproduced from the published source code. Those with “-” indicate that the corresponding metric 
results are not provided

Family Methods Year Dice(%) IoU(%) Precision(%) Recall(%)

CNN UNet [1]∗   2015 79.89±5.09 71.02±6.69 84.04±4.38 82.01±4.42

Atten_UNet [3]∗   2018 88.15±8.96 81.21±7.23 85.25±5.85 84.98±5.53

Channel_Unet [38] 2019 84.82 75.92 94.01 81.04

ResUNet [6]∗   2019 79.15 70.15 82.43 84.77

CENet [4]∗   2019 89.53±2.81 82.60±4.53 92.81±4.08 86.76±4.95

CA-Net [5]∗   2020 90.05±2.43 - - -

PraNet [39] 2021 87.46 80.23 91.28 87.59

AS-Net [40] 2022 89.55 83.09 - 93.06

Ms RED [41]∗   2022 87.69±0.53 82.37±0.62 91.87±0.32 88.16±0.58

MLP UNeXt [42]∗   2022 89.21±0.79 82.1±1.26 - -

Transformer SwinUnet [26]∗   2021 88.87 81.67 94.70 86.07

MedT [43] 2021 87.35±0.18 79.54±0.26 - -

ViT-B_16 [16]∗   2021 87.54 80.73 94.20 87.21

TransUNet(ViT) [10]∗   2021 88.91 81.67 93.05 87.74

TransUNet(R50) [10]∗   2021 89.71 82.79 94.19 88.21

FAT-Net [44] 2022 88.9 81.6 - -

iU-Net(Ours) 2022 90.12 83.06 94.37 88.07
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the lung dataset are shown in Fig. 8. The segmentation result of iU-Net is closer to 
Ground Truth than other models. Compared with Baseline (SwinUnet), Dice and IoU 
are improved by 1.63% and 1.04%, respectively, which indicates that the introduction 
of the subencoder and W-FFM enables the model to learn more detailed information, 
and W-FFM can fully integrate detailed information and global contextual informa-
tion on the same space, which improves the segmentation performance of the model.

Ablation study

To verify the effect of different factors on the expressiveness of the model, we per-
formed an ablation study based on the skin lesion segmentation task (ISIC2018), 

Fig. 6  Segmentation results of different models on the ISIC2018 dataset. Column (a) original image. 
(b) Ground Truth. (c) represents the segmentation result of UNet. (d) segmentation result of CANet. (e) 
segmentation result of CENet. (f) segmentation result of Atten_UNet. (g) segmentation result of TransUNet. 
(h) segmentation result of SwinUnet. (i) segmentation result of iU-Net

Table 2  Experiment results of skin segmentation for the PH2 dataset

Model results with “*” are reproduced from the published source code

Family Methods Year Dice(%) IoU(%) Precision(%) Recall(%)

CNN UNet [1]∗ 2015 88.68±7.95 81.85±8.50 83.73±5.94 95.15±5.75

UNet++ [2]∗ 2018 91.20 84.35 86.86 96.69

Atten_UNet [3]∗ 2018 90.37±8.96 82.21±9.23 85.25±5.85 95.98±5.53

CENet [4]∗ 2019 91.75±7.42 85.06±9.74 85.27±5.46 96.70±5.18

XlSor [37]∗ 2019 92.95±3.63 87.36±5.66 95.91±2.61 96.58±2.58

CA-Net [5]∗ 2020 90.45±8.67 - - -

Transformer SwinUnet [26]∗ 2021 92.88 87.16 91.58 95.33

TransUNet(ViT) [10]∗ 2021 90.85 83.97 86.64 97.14

TransUNet(R50) [10]∗ 2021 92.59 86.76 91.31 95.12

iU-Net(Ours) 2022 93.80 88.74 91.57 96.93
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including the number of encoders, the upsampling method, and the feature fusion 
module. Models 1-6 are described as follows.

Model 1: choose SwinUnet as a baseline.
Model 2: add sub-encoder based on Model 1.
Model 3: add Tri-upsampling module based on Model 1.
Model 4: add sub-encoder and Tri-upsampling module based on Model 1.
Model 5: add sub-encoder and W-FFM module based on Model 1.
Model 6: add sub-encoder, Tri-upsampling module and W-FFM module based on 
Model 1.

Fig. 7  Segmentation results of different models on the PH2 dataset. Column (a) original image. (b) Ground 
Truth. (c) represents the segmentation result of UNet. (d) segmentation result of CANet. (e) segmentation 
result of CENet. (f) segmentation result of Atten_UNet. (g) segmentation result of TransUNet. (h) 
segmentation result of SwinUnet. (i) segmentation result of iU-Net

Table 3  Experiment results of lung feild segmentation

Model results with “*” are reproduced from the published source code

Family Methods Year Dice(%) IoU(%) Precision(%) Recall(%)

CNN UNet [1]∗ 2015 95.10±1.33 90.72±2.37 96.38±2.18 90.66±3.18

UNet++ [2]∗ 2018 93.48±2.49 88.11±4.10 95.87±1.73 95.00±1.78

CENet [4]∗ 2019 96.53±2.81 92.60±4.53 96.76±2.08 94.81±1.95

Atten_UNet [3]∗ 2018 95.20±2.36 91.39±2.48 97.42±1.56 91.54±1.07

XlSor [37]∗ 2019 97.54 - 97.40 97.73

CA-Net [5]∗ 2020 95.95±1.50 - - -

Transformer SwinUnet [26]∗ 2021 95.58 93.31 96.93 94.34

TransUNet(ViT) [10]∗ 2021 96.89 93.98 98.19 95.63

TransUNet(R50) [10]∗ 2021 97.03 94.23 98.37 95.02

iU-Net(Ours) 2022 97.21 94.35 98.54 96.75
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The experiment results of models 1-6 are shown in Table 4. Compared with model 1, 
the metrics of Dice and IoU improved by 1.29% and 1.25%, respectively, after adding 
sub-encoder, which proves that the introduction of sub-encoder has a positive impact 
on the performance of the model. This is because sub-encoder learns local informa-
tion that complements the global contextual information extracted by encoder-1. 
Compared with Model 2, Model 4 uses Tri-upsample module instead of the tradi-
tional Patch Expanding, and the IoU is improved by 0.45%. Compared with model 4, 
the feature fusion method of model 6 is replaced by W-FFM from concatenating to 
obtain optimal results on Dice, IoU and Precision. The segmentation results of Mod-
els 1-6 are shown in Fig. 9.

To visualize the differences of each model, we plotted the ROC curves and PR 
curves for models 1-6, respectively, as shown in Fig. 10. It can be seen that model 4 

Fig. 8  Segmentation results of different models on the PH2 dataset. Column (a) original image. (b) Ground 
Truth. (c) represents the segmentation result of UNet. (d) segmentation result of CANet. (e) segmentation 
result of CENet. (f) segmentation result of Atten_UNet. (g) segmentation result of TransUNet. (h) 
segmentation result of SwinUnet. (i) segmentation result of iU-Net

Table 4  Ablation studies of different models on the ISIC2018 dataset. “ � ” indicates that 
the corresponding module has been added to the current model and “-” indicates that the 
corresponding module has not been added to the current model

Model En-1 En-2 De T-Up W-FFM Dice(%) IoU(%) Precision(%) Recall(%)

1 � - � - - 87.87 80.67 94.70 86.07

2 � � � - - 89.16 81.92 94.37 86.78

3 � - � � - 86.81 80.57 94.42 86.23

4 � � � � - 89.11 82.37 94.31 87.62

5 � � � - � 87.24 80.04 94.13 87.19

6 � � � � � 90.12 83.06 94.52 88.07
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has the highest area of ROC and PR with 94.74% and 94.13%, respectively. The larger 
area indicates that the segmentation performance of the model is more excellent.

Visualizations of Decoder Stages

iU-Net has a stronger ability to capture local information than SwinUnet due to the 
introduction of sub-encoders. To further verify the semantic recognition capabil-
ity of iU-Net, we visualized the feature maps for each stage of the decoder part of 
UNet, SwinUnet and iU-Net, as shown in Fig.  11. Stage represents a stage of the 
decoder, for instance, Stage3 represents the feature map of the output of the first 
stage of decoding. Stage1 represents the feature map of the output of the third stage 
of decoding.

Fig. 9  Segmentation results of models 1-6 on the ISIC2018 dataset. (a) original image. (b) Ground Truth. (c) 
segmentation results of Model 1. (d) segmentation result of Model 2. (e) segmentation result of Model 3. (f) 
segmentation result of Model 4. (g) segmentation result of Model 5. (h) segmentation result of Model 6

Fig. 10  ROC curves and PR curves of the 6 models on the ISIC2018 dataset
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Based on the visualization results, we make the following observations. (1) UNet 
cannot fully utilize the global contextual information due to the limitation of convo-
lutional kernel, resulting in the features extracted by UNet exhibit localization. Due to 
the introduction of the Transformer structure, the ability of SwinUnet to model long-
range dependencies is significantly improved, so the features extracted by the encoder 
can provide more global semantic information. (2) Due to the multi-encoder structure 
of iU-Net, the local information extracted by the sub-encoder can complement the 
global semantic information extracted by the primary encoder, which makes iU-Net 
pay more attention to detailed local information when modeling long-range depend-
encies and makes iU-Net outperform UNet and SwinUnet in segmentation.

Conclusion
In this work, we combine Swin Transformer with convolutional neural networks to 
propose a hybrid network with multi-encoder structure for medical image segmen-
tation. In addition, to make full use of the local information features extracted by 
CNN and the global context information extracted by Transformer, we propose a fea-
ture fusion module based on Wave function representation, which can convert fea-
ture information from different feature spaces to the same space and fuse them. The 
iU-Net proposed in the paper is effective for segmentation of dermoscopic images, 
while the generalizability of iU-Net is verified on the lung feild segmentation task. 
The combination of Swin Transformer and CNN is effective, and the addition of 
CNN can improve the performance of Swin Transformer. In future, we will focus on 
the lightweight of the model. Compared with some models combined by CNN and 
Transformer, iU-Net is more lightweight, but compared with the parameters of pure 
convolution neural network and some models based on multilayer perceptron(MLP), 
iU-Net is not lightweight enough.
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