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Abstract 

Objectives:  In this study, we aimed to identify tissue-specific genes for various human 
tissues/organs more robustly and rigorously by extending the tau score algorithm.

Introduction:  Tissue-specific genes are a class of genes whose functions and expres-
sions are preferred in one or several tissues restrictedly. Identification of tissue-specific 
genes is essential for discovering multi-cellular biological processes such as tissue-
specific molecular regulations, tissue development, physiology, and the pathogenesis 
of tissue-associated diseases.

Materials and Methods:  Gene expression data derived from five large RNA sequenc-
ing (RNA-seq) projects, spanning 96 different human tissues, were retrieved from Array-
Express and ExpressionAtlas. The first step is categorizing genes using significant filters 
and tau score as a specificity index. After calculating tau for each gene in all datasets 
separately, statistical distance from the maximum expression level was estimated using 
a new meaningful procedure. Specific expression of a gene in one or several tissues 
was calculated after the integration of tau and statistical distance estimation, which 
is called as extended tau approach. Obtained tissue-specific genes for 96 different 
human tissues were functionally annotated, and some comparisons were carried out to 
show the effectiveness of the extended tau method.

Results and Discussion:  Categorization of genes based on expression level and iden-
tification of tissue-specific genes for a large number of tissues/organs were executed. 
Genes were successfully assigned to multiple tissues by generating the extended tau 
approach as opposed to the original tau score, which can assign tissue specificity to 
single tissue only.
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Introduction
Protein-coding genes in the human genome demonstrate dramatic diversity in terms of 
expression levels and patterns [1]. Different transcripts are expressed in diverse organs, 
tissues, or cell types and in different developmental stages. An interesting subset of 
genes are observed which are strictly expressed in one, or several tissues/organs hence 
called tissue-specific genes [2, 3]. Identification and analysis of tissue specificity as a 
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dynamic and complex phenomenon, in combination with other biomedical data, provide 
crucial insights into molecular mechanisms, developmental processes [3, 4], expression-
quantitative trait loci [5] and evolution of tissues/organs [6]. Moreover, tissue-specific 
genes are associated with prognosis, etiology of diseases, and discovery of novel specific 
drug targets as significant biomarkers for many complex diseases such as solid tumors, 
neurodegenerative and cardiovascular diseases [7–12]. There have been many studies 
that examine and determine restricted expression of genes in particular tissues and their 
relationships with diseases [8, 13–16].

Su et  al. [17] and Liang et  al. [18] independently generated tissue-specific mRNA 
expression profiles using a large number of healthy tissue types through microarray. 
VeryGene tool, which shows relationship between tissue-specific genes with diseases 
and drugs, was enhanced by Yang et al. [15]. Even though tissue specificity is often used 
in various researches [19], there is no gold standard method to identify it. Several data-
bases were developed to establish a knowledge base of tissue-specific gene expression in 
a variety of human tissues. However, consensus among databases is weak due to diverse 
assumptions, methods, experimental procedures and data types used by those databases 
[19].

Calculation methods can be divided into two major groups [19] based on their out-
puts. The first group, including Tau specificity index [20], Gini [19], Tissue Similarity 
Index (TSI) [21], and Shannon entropy (Hg) [22], produce a single specificity score per 
gene indicating whether a gene has specific or wide-spread expression. Since genes can 
be specifically expressed in more than one tissue, producing a single score and point-
ing out only one tissue is a crucial deficiency of these methods. The second group of 
specificity calculation methods, which includes Z-score [23], Specificity Measure (SPM) 
[2], Expression Enrichment (EE) [1], and Preferential Expression Measure (PEM) [24], 
produce scores as many as the number of tissues for each particular gene and tissue 
specificity of a gene have to be decided according to threshold values. However, varying 
thresholds can cause incorrect and inconsistent results.

Previous research has attempted to identify tissue-specific genes with various 
approaches. Shannon entropy, [22] similar to TSI [19] was used in ROKU, [25] a tool 
for selection of tissue-specific patterns from microarray data. Tau specificity index was 
defined as a gene characterization score, and it is a quantitative, graded scalar measure-
ment of specificity of gene expression [20]. Gene Expression and Regulation (TiGER) 
database [26] was established based on EE score [1], but using obsolete data type and 
containing data for the low number of tissues renders the database insufficient for exten-
sive research. Z-score [23] approach considers absolute distance from the mean, thus 
favoring mostly over-expressed genes and occasionally under-expressed genes as tissue-
specific genes [19, 27]. In other words, a gene showing housekeeping gene expression 
with high expression in a tissue would be considered a tissue-specific expression by 
Z-score calculation. Genotype-Tissue Expression (GTEx) [28] identified tissue-specific 
genes via Z-score for 53 different tissue types. Both TiSGeD [2] and A Pattern Gene 
Database (PaGenBase) [29] use SPM to calculate tissue specificity. However, they have 
a weak correlation in specificity results. PEM calculation proposed by Huminiecki et al. 
using EST and microarray data from SAGEmap [30], Gene Expression Atlas [31], and 
TissueInfo [32] databases is a simple form of the EE score [24]. SPM, PEM, and EE are 
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normalized by either maximum expression of a gene or by the sum of gene expressions. 
Hence they are not sensitive to absolute expression level [19]. Besides,there are some 
marker gene detection approaches such as CellMapper [33] and Marker Gene Finder 
in Microarray (MGFM) [34]. However, they are limited to several tissues and/or micro-
array and EST data omitting RNA-Seq data. Despite presence of multiple methods for 
calculating tissue-specific expression of a gene, these methods suffer from serious short-
comings. Thus, developing a more robust and rigorous method using more datasets is an 
important requirement for identifying tissue-specific genes.

Tau is shown to be a more effective method for providing accurate and consistent 
results in different datasets [19]. It is calculated to determine tissue specificity or sharing 
of genes across each tissue [35]. However, the tau index is limited to identifying only one 
tissue in terms of specificity of a gene. In other words, tau can assign a gene to a single 
tissue, not multiple tissues. Since the definition of tissue-specific genes is considered to 
be “specifically expressed in one or several tissues”, tau method needs to be improved by 
additional statistical procedures to assign genes to multiple tissues for specific expres-
sion. In this study, estimation of statistically significant interval from maximum expres-
sion was calculated to assign a gene to second and/or more tissues for the genes having 
high tau scores. Therefore, this study makes a major contribution to research on deter-
mining tissue-specificity by extending the already effective tau method allowing one-to-
many mappings between genes and tissues. Throughout this paper, the term extended 
tau will refer to our novel and rigorous approach for assigning genes to multiple tissues 
for specific expression. More detailed and accurate tissue specificity of gene expression 
will enhance understanding evolution of tissues [36–39], relationship between expres-
sions and main functions of genes [20, 40]; and others [41] in various organisms such as 
mouse [42], Drosophila [40] and Arabidopsis thaliana [43].

Methods
Data retrieval

RNA-seq data for gene expression profiles of 27 human tissues from Fagerberg et. al 
(EMTAB-1733) [44], 32 human tissues from Uhlen Lab (EMTAB-2836) [45], 53 human 
tissues from GTEx Project (EMTAB-5214) [28], 56 human tissues from FANTOM5 Pro-
ject (EMTAB-3358) [46] and 13 human tissues from ENCODE Project (EMTAB-4344) 
[47, 48] were downloaded via Expression Atlas [49] and ArrayExpress [50]. Detailed 
information about the raw expression data, number of genes, and tissues are explained 
in Supplementary Tables  1 and 2, respectively. All calculations were performed using 
protein-coding genes and tissue types not cell types from the datasets. All tissue types 
were investigated and grouped according to localization determined via Brenda Tissue 
Ontology (BTO) [51].

Categorization of genes based on expression level

Genes were categorized according to their expression level patterns and tau scores. 
Genes expressed ≤ 1.0 FPKM or TPM in all tissues were designated as “Null expres-
sion” and were excluded from subsequent analysis. Then, expression levels were 
transformed based on log(2), and the tau score, ranging from 0 to 1, was calculated 
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for each gene [19] using the formula below where xi is expression of a gene in tissue i 
and n is number of tissues.

If tau score is (τ ) ≥ 0.85 for a given gene, that gene is marked to have Specific expression. 
The genes having τ < 0.85 were classified as Wide-spread expression. Genes which have 
expression values < 10 in all tissues was denoted as Weak expression [8]. Tau score was 
calculated for weakly expressed genes but their scores were ignored during tissue speci-
ficity assessment. Log transformation was used only during tau calculation; after that, all 
other calculations were performed using raw expression values. Rigorous tissue-specific-
ity classification was proceeded with the genes with τ ≥ 0.85 and expression value > 10 
in all tissues.

Estimation of statistically significant interval

F-test [52] was used to verify the equality of variance between datasets. Statistically 
significant distance from the maximum expression value was calculated in order to 
assign genes to multiple tissues in the context of specificity. For this purpose, the 
lower and upper bounds of raw expression data were calculated via Fuzzy c-means 
clustering [53]. Ratio of upper cluster was calculated for each tissue with the follow-
ing formula where nup is the number of elements in upper cluster and ntotal is the 
number of total non-zero elements.

Regression analysis [54] was used to calculate an optimized threshold value of ratio and 
then converted it to Z-value using the inverse function of normal distribution for each 
dataset. Assessment of normality of datasets was performed by Kolmogorov-Smirnov 
(K-S) test [55] and Q-Q plots. The equation below was used to calculate statistically sig-
nificant distance (distss) where xmax is the maximum expression value of a gene among 
all tissues, σ is the standard deviation of non-zero expression of a gene among all tissues 
and zval is optimized threshold as Z-value.

All calculations were performed for all datasets separately, and threshold ratios are avail-
able in Supplementary Table 3. Integration of tau score with the statistically significant 
interval from maximum expression was described as extended tau for robust and rigor-
ous identification of tissue-specific genes via assignment of genes to possible multiple 
tissues. Extended tau approach is illustrated in Fig. 1.

τ =

n
i=1

1− x̂i

n− 1

x̂i =
xi

max1≤i≤n xi

ratio =
nup

ntotal

distss = xmax − σ × zval
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Functional annotation of tissue‑specific genes

Database for Annotation, Visualization and Integrated Discovery (DAVID) [56] was 
used to identify the roles of specific genes in biological processes, potential functions, 
related tissues, and diseases. Results were compared to GeneCards [57] which already 
integrated expression data from GTEx [28], Illumina Body Map [58], BioGPS [59], and 
CGAP SAGE [60]. Moreover, The Human Protein Atlas [45] was also used to compare 
transcript levels of tissue-specific genes with their protein levels.

Results and Discussion
Tau score is a robust method to identify tissue-specific genes [19] but is limited in its 
capacity to match genes with multiple tissues. To overcome this, we developed a new 
extensive procedure where the specific expression of a gene in one or several tissues was 
calculated by integrating tau score with statistical distance as a new rigorous approach 
described as extended tau calculation.

RNA-Seq data from five studies aimed to determine gene expression in multiple tis-
sues were retrieved from publicly available databases. When all datasets are combined, 
expressions from the total of 96 different tissues are represented. The tissues had par-
ent-child relationships with various depths in the hierarchy. After assigning parent-child 
mappings using Brenda Tissue Ontology (BTO), 96 different tissue types, referred to as 
child tissue, were mapped to 36 top-level tissues, referred to as parent tissue. All tissue 
types and their BTO accession IDs are listed in Supplementary Table 4.

A summary of the workflow for categorizing protein-coding genes and calculating 
tissue-specific genes using extended tau is presented in Fig. 2, and a detailed work-
flow is shown in Supplementary Fig. 1. F-test was used to demonstrate whether there 
was a significant difference among datasets. According to F-test results, expression 
values in datasets were found to have equal variances (Supplementary Table 5). The 
higher F-score value for the dataset EMTAB-3358 is due to the fact that the dataset 
has units of TPM compared to FPKM in other datasets. Therefore, EMTAB-3358 is 
distinct from other datasets; still, there is no significant difference among the data-
sets. Boxplots and violin plots showing the distribution of expression levels for each 

Fig. 1  Illustration of extended tau approach. Gene can specifically expressed one or more different tissues. 
Here, gene A is specifically expressed in tissue 2 and tissue 3. Extended tau can determine both of two 
compared to only tau calculation



Page 6 of 14Lüleci and Yılmaz ﻿BioData Mining           (2022) 15:31 

dataset are shown in Supplementary Fig.  2. Kolmogorov-Smirnov test shows that 
datasets have a normal distribution, and Q-Q plots for each dataset are presented in 
Supplementary Fig. 3.

According to criteria described in Fig. 2, the genes were categorized based on their 
expression level profiles and tau scores. Table  1 summarizes number of genes in 
each category for each dataset. Please note that total number of genes in the Table 1 
matches the number of filtered genes in Supplementary Table 2.

According to Table 1, number of genes showing specific expression is comparable 
among all samples. After this categorization, statistically significant interval from 
maximum expression was applied to genes showing specific expression to assign them 
to multiple tissues. As expected, the extended tau approach reveals more gene-tissue 
pairs when compared to original the tau calculation as listed in Table 2.

Fig. 2  Workflow for the identification of tissue-specific genes. Firstly, genes were categorized based on some 
significant filters and tau calculation. After that, statistical distance estimation was used to determine specific 
genes in a rigorous manner

Table 1  Number of genes in each category for all datasets

Gene profile Fagerberg Study Uhlen Lab GTEx Project FANTOM5 Project ENCODE Project

Null expression 1,260 2,427 2,672 1,808 3,394

Weak expression 1,808 2,533 2,788 3,869 2,976

Wide-spread expres-
sion

13,126 11,733 11,434 8,698 11,013

Specific expression 2,669 2,983 2,782 2,063 2,293

Total number of genes 18,863 19,676 19,676 16,438 19,676
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Although the tau scores of genes and the number of tissue-specific genes are same 
between two approaches, the extended tau approach provides more gene-tissue map-
pings for specific expression. The extended tau approach has ability to list gene-tissue 
mappings for genes specific to one or several tissues [2, 3]. The number of specific genes 
per tissue is provided in Supplementary Table 6, and Fig. 3 summarizes number of tis-
sue-specific genes distributed by number of gene-tissue mappings for both parent and 

Table 2  Number of specific gene-tissue pairs based on tau and extended tau calculations

Datasets Tau Extended Tau

Fagerberg Study 2,669 3,370

Uhlen Lab 2,983 4,257

GTEx Project 2,782 4,680

FANTOM5 Project 2,063 3,982

ENCODE Project 2,293 3,097

Fig. 3  Distribution of tissue-specific genes. Extensive graph shows how many genes are specific in how 
many tissues per dataset for all child (A) and parent tissues (B). In each plot, the leftmost bar represents 
number of tissue-specific genes that are specific to single tissue. Remaining bars show number of genes that 
are specific to multiple tissues which was calculated by multiple assignment of genes to tissues based on 
extensive tau
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child tissues in each dataset. Majority of genes were expressed specifically to only one 
single tissue and some genes are specifically expressed in two or more different tissues 
regardless of tissue hierarchy, parent or child.

We used DAVID and other resources to show coherences between our results and the 
functions of several genes. Alpha fetoprotein (AFP) is a liver-specific gene [61]; however, 
it is defined not only liver-specific but also kidney-specific gene based on extended tau. 
One of its related pathways is the glucocorticoid receptor regulatory network, and the 
level of AFP in amniotic fluid is used to measure renal loss of protein. Intestinal Alka-
line Phosphatase (ALPI), which encodes a digestive brush-border enzyme, has a specific 
expression in the small intestine based on the tau calculation, although extended tau 
demonstrates that ALPI is specifically expressed in both small intestine and duodenum. 
Another example is MAP7 Domain Containing 2 (MAP7D2) which contributes to the 
structural integrity of a complex is specifically expressed in the brain based on tau, even 
though it is also specifically expressed in the testis. D-amino acid oxidase (DAO) has 
specific expression in kidney according to tau score. On the other hand, it was noticed 
that DAO is specific to brain and liver after calculation of extended tau. DAO may act 
as a detoxifying agent which removes D-amino acids that accumulate during aging. It is 
generally related to some neurological diseases. Shortly, extended tau is a more compre-
hensive approach to find several tissues for one specific gene.

The brain is a complex organ characterized by a high level of gene expression; at least 
30-50% of approximately all protein-coding genes are expressed across all parts of the 
brain and it has a significant variety of functions [62, 63]. Significant differences in cell 
composition of the various anatomical brain regions result in cell-specific differences in 
gene expression. There are many specific genes all over the brain as parent tissue [64]. 
Comparison in terms of tissue-specific genes in child tissues of brain was not performed 
because, there are many different brain parts coming from different datasets. It can be 
stated that brain-specific genes are more often selectively expressed in either neurons 
or glial cells and vascular cells from the cerebral cortex [65]. The cerebral cortex has a 
higher number of specific genes shown in Supplementary Fig. 4 as child tissue.

The datasets used in this study did not examine the same set of tissues. Therefore, a 
gene is not necessarily specific in a particular tissue, according to five datasets. If five 
datasets have a certain consensus presented in Supplementary Fig.  5 for the specific-
ity of a particular gene, we can be sure that it is absolutely specific to related tissue. For 
instance, 252 genes are specific to the testis according to all five datasets, and 262 genes 
are specific to the testis supported by 4 datasets shown in Supplementary Fig. 5. Agree-
ment of datasets is important for accuracy. On the other hand, if tissues are included in 
only one single dataset, genes specific to that tissue will be supported by only one data-
set, naturally. Gene expression in whole blood, tongue, epididymis, seminal vesicle, tibial 
nerve, Vas deferens, and spinal cord are examined in only one dataset. Therefore, genes 
specific to these tissues are supported by one dataset.

Figure 4 summarizes the comparison of tissue-specific gene lists across different data-
sets. Four hundred eighty-four genes were found to be tissue-specific according to all 
datasets. Although some genes are found to be specifically expressed in only one dataset, 
this result suggested that our approach is suitable and effective for determining tissue-
specific genes. Comparison is very important for the correctness and reliability of the 
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results. Naturally, there are differences in the results as they are created with different 
experimental and laboratory conditions, samples, and also different normalization meth-
ods during obtaining RNA-seq data. If we examine Fig. 4, 692 genes are determined to 
be tissue-specific by only EMTAB-3358 (FANTOM5 Project) because expression values 
were normalized using a different method, despite the same experimental procedure.

The correlation of raw expressions of datasets is demonstrated in Supplementary 
Fig. 6, and similarity is defined as a dark color; the size of nodes shows the number of 
genes common between two datasets. It can be shown that the similarity of EMTAB-
5214 (GTEx Project) and EMTAB-2836 (Uhlen Lab) is higher than any other dataset 
pairs, according to Supplementary Fig.  6. EMTAB-3358 (FANTOM5 Project) is quite 
different from all other datasets, as observed in the previous results. After examining the 
datasets for similarity of raw gene expression, the datasets were compared to each other 
to understand the correlation, reliability, and effectiveness of the extended tau method. 
Genes have a tau score greater than 0.85, and an accompanying correlation plot has 
been drawn in Supplementary Fig.  7. It was shown that EMTAB-4344, EMTAB-1733, 
and EMTAB-2836 give similar results after determining tissue specificity. As before, 
EMTAB-3358 is also far from the other datasets. Two data that provide the closer results 
are EMTAB-1733 and EMTAB-2836. On the other hand, the two data that give the most 
distant results are EMTAB-3358 and EMTAB-4344, according to Supplementary Fig. 7.

Fig. 4  Venn diagram of tissue-specific gene lists derived from five different datasets. Comparison of results 
depends on the number of tissue-specific genes was illustrated via Venn Diagram. Intersected genes among 
five datasets are absolutely specific to related tissues
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Tissue-specific expression profiles can be used for biomedical applications such as 
tissue-specific regulation [66] of genes, examining gene profiles for various disorders, 
enhancing the efficiency of therapies, discovering new biomarkers for diagnosis and also 
targeted treatment of diseases such as cancer [67] and malignancies [68]. Organogenesis 
is another important phenomenon related to biological processes [36, 37]. The progres-
sion of tissues, organs, and systems in living organisms can be understood by identifying 
tissue-specific genes and their roles. Besides, interpretation of relationship between tis-
sues in the context of specific genes is a very crucial approach to find out not only tissue 
progression but also the discovery of mechanisms of diseases. Common tissue-specific 
genes between different tissues might give clues to unravel relationships between vari-
ous tissues. Interestingly, the brain has connections to all of the tissues because brain 
expression may reflect developmental ontogeny, or developmental stages processes of 
the human body [62, 69].

Bone marrow, spleen, and lymph node are tightly connected in terms of specific genes 
and it is known that they are members of the lymph system [70]. A group of tissues is 
related to female reproductive system, including vagina, uterus, ovary, and oviduct [71] 
that express a list of common specific genes. Another case concerns human digestive 
system organs which are small intestine, colon, rectum, liver, and stomach which have 
some common tissue-specific genes. However, it has also been observed that some spe-
cific genes related to digestive system are associated with kidney. Different organs/tis-
sues can have similar subsequent processes such as ammonia-urea conversion [72, 73] 
and the single gene can be specific to several organs. In addition, epididymis, Vas defer-
ens, penis, and testis are tightly connected to each other as parts of male reproductive 
system. They have shared tissue-specific genes according to the extended tau results and 
our findings are consistent with both literature and Brenda Tissue Ontology (BTO).

Although all tissues carry out common processes in the human body, tissues can be 
distinguished by gene expression levels [74]. After filtering out transcripts with low-level 
and wide-spread expressions, protein-coding genes were assessed for specific expression 
in tissues using a robust and rigorous calculation, extended tau. Tissue-specific genes 
were successfully assigned to multiple tissues and identified with great care.

Conclusion
This study provides a large insight into tissue specificity. Tissue-specific genes for 96 dif-
ferent tissue samples from the human body via five RNA-seq datasets were calculated 
by the extended tau approach. Tau score is a more effective and accurate calculation 
method, and the statistical distance term is meaningful for assigning genes to several 
specific tissues. After the categorization of protein-coding genes and identification of tis-
sue-specific genes in a broad sense, their functional properties were investigated. It can 
be suggested that tissue specificity results will benefit further studies to reveal molecular 
mechanisms of healthy tissues and diseases.

The extended tau approach can be used in other regulatory elements like transcription 
factor (TF) [74]. TFs may have higher tissue specificity, because tissue-specific processes 
are ultimately controlled by gene regulatory networks [74, 75]. Therefore computa-
tional analysis of tissue-specific TFs and other regulatory networks will provide a critical 
perspective.
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RNA-Seq data of a single tissue can include genes which are specific to other tissues 
after calculation of tissue specificity. This condition may be related to change of expres-
sion level or migration of cells which are originated from other tissues/organs. When tis-
sue heterogeneity, cell migration, change of expression level or behaviors of genes would 
like to be examined, the tau score will be incomplete. In this situation, the extended tau 
approach can give more robust and rigorous results for various research.
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