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Abstract

Background: Identifying molecular subtypes of ovarian cancer is important. Compared
to identify subtypes using single omics data, the multi-omics data analysis can utilize
more information. Autoencoder has been widely used to construct lower dimensional
representation for multi-omics feature integration. However, learning in the deep
architectures in Autoencoder is difficult for achieving satisfied generalization performance.
To solve this problem, we proposed a novel deep learning-based framework to robustly
identify ovarian cancer subtypes by using denoising Autoencoder.

Results: In proposed method, the composite features of multi-omics data in the Cancer
Genome Atlas were produced by denoising Autoencoder, and then the generated low-
dimensional features were input into k-means for clustering. At last based on the
clustering results, we built the light-weighted classification model with L1-penalized
logistic regression method. Furthermore, we applied the differential expression analysis
and WGCNA analysis to select target genes related to molecular subtypes. We identified
34 biomarkers and 19 KEGG pathways associated with ovarian cancer.

Conclusions: The independent test results in three GEO datasets proved the robustness
of our model. The literature reviewing show 19 (56%) biomarkers and 8(42.1%) KEGG
pathways identified based on the classification subtypes have been proved to be
associated with ovarian cancer. The outcomes indicate that our proposed method is
feasible and can provide reliable results.
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Background
Ovarian cancer is one of the most common gynecologic cancers in the world that rank

third after cervical and uterine cancer, and its mortality rate is high. Therefore, it is

very important to know more about the ovarian cancer heterogeneity for choosing dif-

ferent treatment responses and predicting patients’ clinical outcomes. One way to re-

search the heterogeneity is identifying different molecular subtypes in ovarian cancer,

and many machine learning methods have been proposed for solving this problem [1,

2]. With the development of biological sequencing technology, different kinds of
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genomic data were utilized for ovarian cancer research: Liu et al. used hierarchical clus-

tering to identify poor prognostic ovarian cancer with mRNA data [3]. Penyige et al.

used miRNA expression data for differential expression analysis to find ovarian cancer-

associated biomarkers [4]. Bodelon et al. identify ovarian cancer subtypes using DNA

methylation profiling with nonnegative matrix factorization (NMF) clustering algorithm

[5], Macintyre et al. proved the copy number is related to the ovarian cancer survival

and the probability of platinum-resistant relapse by using NMF mixture modeling [6].

Although these data provide different sight on ovarian cancer research, the results is

easy to be affected by the noise and missing data in one type of omics data, and the sin-

gle omics-data can only provide limited information for ovarian cancer research.

In recently years, the Cancer Genome Atlas (TCGA) shared multiple omics data

from tens of thousands of samples from 38 cancer types, making it possible to use

multi-omics data for cancer subtype identification. Considering the high dimen-

sional features in multi-omics data integration, the traditional methods such as k-

means cannot achieve satisfied performance for clustering. Therefore, many differ-

ent unsupervised learning methods were designed to deal with high dimensional

features. Witten and Tibshirani proposed a Sparse K-means (SparseK) for cancer

subtype identification by using an adaptively chosen subset of the features [7]; Xie

et al. used iCluster to identify novel molecular subtypes of high-grade serous ovar-

ian cancer by the integration of gene expression and proteomics data [8]. Another

way to improve the clustering performance is to reduce the dimensionality of fea-

tures before using clustering method. Principal component analysis (PCA) is one of

the most widely used method for dimensionality reduction. In Aelex’s study, PCA

was applied to reconstruct the gene features and the clustering method k-means

was used for distinguishing subtypes of breast cancer using the reconstructed fea-

tures [9]. Nevertheless, PCA is one of the linear dimensionality reduction method,

which means the function mapping from high-dimensional space to low-

dimensional space is linear. However, in many cases, linear mapping may not get

the desired results. The kernel PCA (KPCA) was proposed for solving this problem

that can be seen as an extension of PCA using additional kernel function. Com-

pared to PCA, the performance of processing nonlinear data in KPCA was im-

proved. Ha et al. used the logistic regression method with the features

reconstructed by KPCA for cancer classification [10]. With the development of

deep learning technology, Autoencoder (AE) was designed to construct lower di-

mensional representation for integrating the multi-omics data. Chaudhary et al.

employed AE to reconstruct low dimensional representation from three types of

omics data (mRNA, miRNA and DNA methylation), and input them into k-means

to identify different molecular subtypes of the liver hepatocellular carcinoma [11].

The result in [11] demonstrates the advanced performance of deep learning on

high-dimensional feature clustering. Nevertheless, the generated lower dimensional

representation was easy to be affected by the noise in the input data because the

input and output are equal in AE framework. Due to the lack of robustness of AE,

it is difficult to extract the most informative features from high-dimensional multi-

omics data in practical applications.

Trying to solve this problem, we proposed a novel deep learning framework for inte-

grating multi-omics data with denoising autoencoder (DAE), and then the generated
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features were input into k-means for clustering (DAE-kmeans). Compared to AE, DAE

proposed by Vincent [12] can make the features learned by the model more robust by

superimposing noise on the input. As we know, there are many variants of autoenco-

der, including denoising autoencoder, sparse autoencoder, convolutional Autoencoder

and variational autoencoder (VAE). For sparse autoencoder, there are more nodes in

the hidden layer than in the input layer, which increases the difficulty of calculation

and are not used for dimension reduction. The convolutional autoencoder are more

used to process images. Comparing with the DAE and VAE, they both have encoder

and decoder blocks, but their purpose is different. DAE trained the input features in

which some noise is added, for ensuring the network will not learn an identity mapping

which are pointless. VAE belongs to one of the explicit distributed modeling technolo-

gies. If we want to model the input features into some distribution and want to know

the parameters of the distribution, then VAE is a better choice. Hence DAE is used for

to learn a more robust latent representation for features, and VAE is used where if

want to learn the probability distribution of the input.

By using DAE, our proposed deep learning framework can obtain the most inform-

ative features which represent the multi-omics data, and then utilized the reconstructed

features to identify the molecular subtypes by k-means. The results proved that com-

pared with AE, our method achieved 6.2% higher silhouette score in clustering and

could separate the ovarian cancer patients into different subtypes with more significant

differences (p-value< 0.05). For reducing the number of features used in ovarian cancer

subtype identification, we further build a light-weighted logistic regression classification

model with mRNA features. And the results in three independent datasets (GSE26712,

GSE53963 and GSE63885) proved the robustness of our classification model (all p-

values between the classified subtypes< 0.05).

Methods
Datasets

In this study we utilized the multi-omics ovarian data for training and three datasets in

GEO were used as the independent tests. The details about these four datasets were in-

troduced in following:

TCGA dataset

We downloaded the multi-omics ovarian cancer data from TCGA public data-

sets((https://portal.gdc.cancer.gov). The R package TCGA-assemble2 [13] was used for

data collection and we obtained 298 samples concluded three types of omics data:

mRNA-seq data (UNC Illumina HiSeq_RNASeq V2), miRNA-seq data (BCGSC Illu-

mina HiSeq) and copy number variation (CNV) data (BROAD-MIT Genome wide

SNP_6). All these data were obtained from the TCGA level 3 data. And the CNV fea-

ture was extracted by averaging the copy numbers of all CNV variations on one gene.

After that the features and samples which missing more than 20% would be excluded.

For the remaining data, the missing values were imputed based on the median values

by using R package “imputeMissings” [14].
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Test datasets

In GSE26712 we downloaded the RNA-seq and the clinical information of 185 ovarian

cancer patients shared from Surgical Oncology Research Lab of Boston, and in

GSE32062 we got 260 ovarian cancer case samples offered by Obstetrics and

Gynecology, Niigata University. GSE53963 contains mRNA information of 174 samples

from UCLA School of Medicine. All of these test datasets can be downloaded in Gene

Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov)

The architecture of proposed deep learning framework

In Fig. 1 we show the architecture of proposed deep learning framework, firstly the

multi-omics ovarian cancer features x (mRNA, miRNA and CNV) are inputted into the

DAE for generating the low dimensional representation z. And then the reconstructed

features z are used to cluster the patients using the k-means. Based on the clustered

subtypes from k-means, we further built the light-weighted logistic regression classifica-

tion model with mRNA expression data to reducing the features required for patients’

classification. The available code of this deep learning framework was shared in https://

github.com/Hua0113/DAE_km.

Denoising autoencoder for dimensionality reduction

The Autoencoder (AE) is one of the deep neural network that used to copy its input to

its output, and supposing the bottleneck layer z can be seen as the represent of the in-

put features. AE consists of two parts: the encoder part z = fe(x) and the decoder part

x′ = fd(z), and the loss function of AE can be expressed as:

lAE ¼ x − x
0�� ��2

2 ¼ x − f d f e xð Þð Þk k22 ð1Þ

Different as traditional AE, DAE constructs partially damaged data by adding noise to

the input data, and restores it to the original input data by encoding and decoding,

which make the deep neural network has the ability to identify useful features, the new

generated input ~x can be expressed as:

Fig. 1 The architecture of proposed deep learning framework for identifying ovarian cancer subtypes
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~x ¼ qD ~xjxð Þ ð2Þ

Where qD represents the stochastic mapping. And then the corrupted input ~x is in-

putted to a deep neural network for encoding and decoding with the same process of

the standard autoencoder. The loss of the DAE is written as:

lAE ¼ x − x
0�� ��2

2 ¼ x − f d f e ~xð Þð Þk k22 ð3Þ

In our study, the DAE is a 7 layers deep neural network (input, output, and 5 hidden

layers), the nodes of the 5 hidden layers were set 200, 50, 2, 50 and 200 respectively. In

each layer, we used tanh as the nonlinear activation function and the DAE was trained

by back-propagation via the Adam optimizer. The learning rate of our model was set

0.001, the batch size was set 256 and the epoch was set 100. These parameters were se-

lected for maximizing the silhouette score in OV.

K-means clustering using reconstructed features

The DAE was used to construct the low dimensional features of the multi-omics data

from the bottleneck layer. After obtaining the reconstructed features, K-means method

was used for ovarian cancer subtypes clustering. We determined the optimal number of

clusters with silhouette score [15]. We test the k from [2, 8] and set k = 2 because of

the highest silhouette score.

Logistic regression method for subtypes classification

After obtaining the labels clustered by k-means, we built a light-weighted mRNA model

for reducing the number of genes needed to identify cancer subtypes by using logistic

regression algorithm. Here we used the mRNA omics data as the features X and the

subtypes clustered based on our DAE-kmeans framework as the label Y. Defining xmrna
i

∈X represent the mRNA features of patient i, yi ∈ Y is the subtypes of the patient i

(Low = 0, High =1), β is the coefficient vector, the logistic regression can be expressed

as

p yi ¼ 1ð Þ ¼ exp β0 þ βxmrna
i

� �
1þ exp β0 þ βxmrna

i

� � ð4Þ

Where p(yi = 1) represent the probability that the patient i belongs to the high-risk

group. The log-likelihood function of logistic model is written as:

l βð Þ ¼
Xn
i¼1

yi ln pið Þ þ 1 − yið Þ ln 1 − pið Þf g ð5Þ

Many different regularizations are used to improve the generalization ability of the

model [16, 17]. Considering to reduce the number of features in constructing the classi-

fication model, the L1 regularization is combined with logistic regression method:

β ¼ agr max
Xn
i¼1

yi ln pið Þ þ 1 − yið Þ ln 1 − pið Þf g − λg βð Þ
" #

ð6Þ

Here all the samples in TCGA were used as training data, and the classification

model obtained with logistical regression method was evaluated in three ovarian cancer

mRNA datasets from GEO as the independent test.
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Evaluations of ovarian cancer subtypes identification

We implemented different methods for comparing the performances of different cluster

methods: k-means, hierarchical clustering, k-means using the reconstructed features by

PCA (PCA-kmeans), SparseK, iCluster, k-means using the reconstructed features by

KPCA (KPCA- kmeans), k-means using the reconstructed features by AE (AE-kmeans)

and DAE-kmeans. The silhouette score is used to measure the cluster performance and

the log rank p-value to measure the differences of the different subtypes of cancers.

The higher silhouette score means the method achieved better performance for cluster-

ing, and the lower log-rank p-value means the greater differences in cancer subtypes.

Functional analysis

Based on the identified subtypes of ovarian cancer, differentially expressed gene (DEG)

analysis was applied by using R package DESeq2 [18], which the genes with corrected

p-values < 0.05 and |log2 fold change| ≥ 1 were seen as the DEGs. And we also applied

WGCNA analysis by the R package WGCNA [19], for identifying function modules and

genes related to ovarian cancer subtypes. In WGCNA analysis, we selected the un-

signed network, the least genes in each module was set 30, and height cut-off param-

eter used to merge similar modules was set 0.25. The genes in each module which have

a higher relevance score (> 0.5) were defined as the hub genes (HGs). At last the genes

which both belong to DEGs and HGs are seen as candidate genes which highly related

to ovarian cancer. And the enriched pathways were obtained by these genes based on

the KOBAS online tool [20].

Results
In Table 1 we show the clustering performances obtained from different methods by

using ovarian cancer multi-omics data which contained mRNA, miRNA and CNV. We

used the silhouette scores and Davies Bouldin scores (DBI) to evaluate the clustering

performances of the methods. It is obviously that without any dimensionality reduction

method, K-means achieved lowest silhouette score and highest DBI among these

methods. And the methods based on traditional dimensionality reduction methods

(PCA, KPCA) performed only better than k-means and hierarchical clustering, but

worse than SparseK, iCluster and two deep learning-based methods. The results in

Table 1 prove the power of deep learning, and DAE-kmeans perform best than any

other methods indicated the superiority of our method.

Table 1 The clustering performances obtained by different methods in ovarian cancer

silhouette scores DBI

K-means 0.165 1.859

Hierarchical clustering 0.310 1.594

PCA- kmeans 0.378 1.502

KPCA-kmeans 0.475 0.702

SparseK 0.513 0.681

iCluster 0.528 0.657

AE-kmeans 0.549 0.621

DAE-kmeans 0.583 0.562
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In Table 2 we give the clustering performance comparison using different type of

omics data. The results indicated that when using single type of omics data, the mRNA

performed best with the silhouette score 0.550, and the CNV achieved worst perform-

ance with silhouette score value of 0.509. The miRNA performed better than CNV but

worse than mRNA. It is obviously that clustering using multi-omics in our deep learn-

ing framework achieved 6% higher silhouette score and 7.41% lower DBI, compared

with which obtained by using mRNA data.

Based on the labels clustered by DAE-kmeans, we built an L1-normalized logistic re-

gression model to identify cancer subtypes with less features. Based on the final classifi-

cation model, 134 mRNA features were selected and three GEO datasets were used as

the independent tests to prove the robustness of the built classifier. The KM survival

curves drawn based on the clustered result in OV dataset and the predicted results in

three GEO datasets are given in Fig. 2. The result in Table 3 show that all the p-values

are less than 0.05, which indicated that the differences between the different subgroups

in every dataset are very significant.

After obtaining the identified ovarian cancer subtypes in TCGA, we used the R pack-

age “DESeq2” to select the DEGs which p-value < 0.05 and |log2 fold change| ≥ 1, and

177 genes were selected as the candidate genes associated with ovarian cancer subtypes.

And the R package “WGCNA” was applied to select the hub genes in the different func-

tion modules in ovarian cancer. The produced results were shown in Fig. 3. In

WGCNA the genes with similar expression patterns were put into the same modules

by average linkage clustering, and 5 different modules were clustered based on the

histological grade of ovarian cancer dataset Fig. 3(a). The different clustered modules

from WGCNA are represented by different colors. According to the features in each

module, we computed the correlation between these modules and each phenotype Fig.

3(b), and the correlation between the genes and subtypes in these modules were used

to measure the degree of correlation between the genes and ovarian subtypes (GS). The

larger value represents the more significant affect to the function modules. The average

GS in each module was shown in Fig. 3(c). At last 185 genes which GS > 0.5 were se-

lected as the hub genes in ovarian cancer.

At last the genes which belong to both DEGs and hub genes are seen as the target

genes which highly related to ovarian cancer, and finally 34 genes were selected

(ADH1B, BARX1, C7, CADPS, CCL21, CFAP100, CFAP65, COL11A1, COL1A1,

COL2A1, COL5A1, COL8A1, COMP, CXCL14, ECEL1, EFCAB1, FMO2, FNDC1,

INHBA, LRRC15, NKAIN4, OMD, PLCB1, PLCXD3, SERPINE1, SFRP2, SFRP4,

SNTN, SORCS2, SVEP1, THBS2, THBS4, TUBA4B, VCAN). Among these 34 genes,

the literature reviewing shows that 19 genes (in bold) have been proved to be associated

with the ovarian cancer. For example, the protein encoded by ADH1B is a member of

the alcohol dehydrogenase family, and it has been proved to promote the mesothelial

Table 2 The clustering performance comparison using different type of omics data

Features silhouette score DBI

mRNA 20,502 0.550 0.607

miRNA 1870 0.536 0.644

CNV 23,606 0.509 0.713

Multi-omics 45,978 0.583 0.562
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clearance and ovarian cancer infiltration [21]; COL11A1 encodes one of the alpha

chains of type XI collagen, and it promotes tumor progression and relates to ovarian

cancer survival [22]; The overexpression of FNDC1 was associated with cancer poor

prognosis, and was identified as a potential biomarker in ovarian cancer treatment [23].

After gene selection, we check distribution of these 34 genes in different modules,

and the genes in different modules were enriched for KEGG (Kyoto Encyclopedia of

Genes and Genomes) pathway analysis by using the online tool KOBAS (Table 4). 16

pathways which the corrected p-values < 0.05 and gene numbers > = 2 were identified

to be related to the ovarian cancer subtypes (Fig. 4). Among these pathways, ECM-re-

ceptor interaction, Human papillomavirus infection and PI3K-Akt signaling pathway

were both enriched in the blue and yellow function modules. We identified many ovar-

ian cancer-related pathways including PI3K-Akt signaling pathway, human papillomavi-

rus infection pathway. PI3K-Akt signaling pathway regulates the proliferation and

survival of tumor cells, and its abnormal activity can not only lead to malignant trans-

formation of cells, but also related to the migration of tumor cells [24]. In addition, the

identified pathway about the human papillomavirus infection have been proved to be

highly associated with ovarian cancer [25]. Moreover, we find some other cancer-

related pathways including ECM-receptor interaction, cytokine-cytokine receptor inter-

action, and Drug metabolism - cytochrome P450.

Fig. 2 The survival curves drawn based on the identified subtypes in four ovarian cancer datasets. The
green lines represent the patients have the high survival probability and the red lines mean the survival
probability of the patients in this group is lower

Table 3 The performance of subtypes identification for the four ovarian cancer datasets

Censored Uncensored Low Risk High Risk P-values

OV 122 176 111 187 0.013

GSE26712 56 129 82 103 3.2E-3

GSE32062 139 121 152 108 0.047

GSE53963 21 153 94 80 0.033

Guo et al. BioData Mining           (2020) 13:10 Page 8 of 12



Discussion
Though many studies for subtype identification of the OV patients by using different

methods have been proposed, most reported OV subtype models have either no or very

few independent tests as external validation. In this study we designed a novel deep

learning-based framework for ovarian cancer subtype identification, and a logistic regres-

sion method was used to build the light-weighted classification model. Two ovarian can-

cer subtypes were founded by using multi-omics data in TCGA, and the result proved

that these 2 different subtypes specific model proposed by our method is of direct clinical

importance, and may be used for improving ovarian patients’ survival. Our research also

extended the underlying prognosis related biological biomarkers based on these two risk

groups. The results have proved the robustness and reliability of our model.

However, some caveats about our method are still worth discussion below: Firstly,

TCGA samples have been reported are impure in a previous study [26]. The purity

issue, along with the heterogeneous nature of ovarian cancer due to various risk factor,

may influence the accuracy of our method. To further analysis the effects of risk factors

on the ovarian cancer, in future work we will try to identify ovarian cancer subtypes

with more clinical factors including the age and race of the cancer patients. Secondly,

sample size is one of the biggest challenges in limiting bioinformatics methods for can-

cer subtype clustering, which calls for better strategies. Trying to solve this problem,

transfer learning mechanism is considered in our framework. Thirdly, as we know, can-

cer images can reflect information about the impact of molecular changes on cancer

Fig. 3 The results obtained by WGCNA in ovarian cancer dataset from TCGA: a. The gene dendrogram and
identified modules in OV data; b. The correlation between the clustered modules and molecular subtypes;
c. The average GS in each module in OV data

Table 4 The distribution of selected genes and pathways in different modules

Module Candidate Gene number Enriched KEGG pathways

Blue 22 15

Green 0 0

Brown 5 0

Turquoise 1 0

Yellow 6 4
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cells and the aggressiveness of the disease, in next step we will integrate the multi-

omics expression data and the information from the cancer image, and improve the

model over time.

Conclusions
It is important to know more about the ovarian cancer heterogeneity between different

patients for choosing different treatment programs and predicting clinical outcomes. In

this study we proposed a novel deep learning framework for integrating multi-omics

data with denoising autoencoder for identifying the ovarian cancer subtypes. Two sub-

types from the molecular level were identified in ovarian cancer, and the results show

our proposed method is competitive and reliable. The method comparison results indi-

cated our method out-performed than the traditional and deep learning-based

methods. More importantly, the classification model was proved by three independent

test datasets collected from GEO. All the p-values less than 0.05 show that the differ-

ences between the classified cancer subgroups are significant.

By combining the results in DEG and WGCNA analysis, we selected 34 target genes

related to ovarian cancer. And using these 34 identified genes, 19 KEGG pathways were

enriched including PI3K-Akt signaling pathway and human papillomavirus infection

pathway. The literature reviewing show 19 (56%) biomarkers and 8(42.1%) KEGG path-

ways identified based on the classification subtypes have been proved to be associated

with ovarian cancer. These results indicate that our proposed method is reliable and

advanced.

Fig. 4 KEGG pathway enrichment analysis for 34 identified genes, the x-axis shows the p-value of each
term and the y-axis shows the KEGG pathway terms. *(Y) means it is the pathways enriched in the yellow
function module
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