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Editorial
Finding the objective (i.e., goal or global optimum) in machine learning (ML) and related
domains, such as evolutionary algorithms (EAs), invariably involves the definition of an
objective function, which is the function we want to minimize or maximize [1]. Any
objective function implicitly defines an optimization landscape, which is often deceptive,
admitting many local optima. “The problem,” wrote Lehman and Stanley [2] a decade
ago, “is that the objective function does not necessarily reward the stepping stones in the
search space that ultimately lead to the objective.”

Consider the maze of Fig. 1a, wherein the challenge is to evolve a robotic controller
(i.e., a model that determines movement) such that the robot, when placed in the start
position, is able to make its way to the goal (the controller’s representation is not essential
to our argument).
It seems intuitive that the fitness f of a given robotic controller be defined as a func-

tion of the distance from the robot to the objective at the end of an evaluation, as done
by [2] (see Fig. 1b). However, reaching the objective may be difficult since the robot starts
with a relatively high fitness (because it is already close to the goal) and it will likely find
itself stuck in a local optimum. Reaching the global optimum implies the acceptance of
reduced fitness over the course of searching for an optimal controller. This is at odds
with a standard search algorithm (be it ML or EA), which in practice is driven to opti-
mize the objective function rather than find the best way to reach the objective. Another
way to frame this problem is that while an optimal solution may be representable by
the controller, it may not be learnable given this simple objective function [3]. For EAs,
learnability translates to evolvability [4].
A similar example of this problem—conflating the objective with the objective

function—from the computational genetics domain can be found in the application of
machine learning to the modeling of genetic variables for the prediction of phenotypic
outcome. The identification of underlying epistasis (i.e., gene-gene interactions) among
genetic variables that represent a global optimum might be similarly confounded by an
objective function that assumes that simpler univariate effects can serve as building-block
stepping stones for identifying a complex multivariate association. Another perspective
on this problem in this same domain is that while the chosen objective function may lead
to modeling the most predictive variables, these are often likely to be variables that are
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Fig. 1 a Simple maze (based on [2]), wherein a robot begins at the empty circle and must make its way to
the full circle (objective). b The maze’s fitness landscape, which emerges from a simple objective function:
the inverse linear distance from the objective

simply associated with disease as local optima, while the underlying causal variants are
being missed as the true global optimum of the search. In this scenario, the practitioner
would not have the prior knowledge needed to define the best objective function to reach
the global optimum. Yet another scenario where this might occur is in noisy problems
where themaximally achievable prediction accuracy is not known a priori. SinceML algo-
rithms are almost always driven to optimize model training accuracy, they are bound to
overfit the data (at least to some degree) in noisy problems. In situations like this, the
global optimum may be a model with a lower accuracy.
The conflation problem is distinct from the topic of dynamic fitness, wherein the prob-

lem itself (along with the global optimum and/or the fitness landscape) changes during
run-time [5]. The prediction of weather patterns is in line with this challenge. Fur-
ther, multi-objective optimization, where there is more than one objective to optimize
at a time, is also distinct [6]. However, both of these challenges are vulnerable to this
conflation of objective and objective function.
Lehman and Stanley [2] responded to this objective-function conundrum through what

they called novelty search, which ignores the objective and searches for behavioral novelty
(using a novelty metric that requires careful consideration). However, fundamental nov-
elty search lacks an underlying incentive to identify the global optimum efficiently, or at
all. Thus, while it can be an effective approach to avoiding local optima and discovering
new candidate solutions, it does not solve the conflation problem discussed herein.
Perhaps the problem lies with our ignorance of the right objective function. To that end,

Urbanowicz et al. [7] proposed an adaptive fitness landscape for genetic algorithms that
updated the underlying objective function over the course of model training. While this
was successful in reducing overfitting, this approach was still limited by the fact that a
single value of fitness, determined by the objective function, was tasked both with iden-
tifying the optimal solution, as well as finding the building blocks to reach that optimal
solution.
We propose a different strategy to overcome the conflation problem: Rather than seek

out novel behavior or rely on a single fitness metric (evolvable or not) to evaluate both the
“journey” and the “destination”, might it be more effective to separate the optimization of
the solution from the optimization of the (fitness) function that will lead to a global opti-
mum? Returning to the robot example, just because the robot’s objective is to reach the
goal does not necessarily imply that the fitness function is distance-to-goal. Perchance
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evolvability deserves its own objective function? This putative function might, e.g., com-
bine the distance to the goal, the distance from the start position, the distances to the
various walls, the number of times the robot hits walls, and so forth. Thus we are now left
with the task of finding this better objective function, either manually or—perhaps more
intriguingly—through some automated means; after all, if we are searching for a good
objective function, why not employ a search algorithm?
We conclude with a final speculation that co-evolution [8] might offer the key to

simultaneously explore solution optimality and objective-function optimality.
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