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Abstract

Background: The genetic architecture underlying central cornea thickness (CCT) is
far from understood. Most of the CCT-associated variants are located in the non-
coding regions, raising the difficulty of following functional characterizations. Thus,
integrative functional analyses on CCT-associated loci might benefit in overcoming
these issues by prioritizing the hub genes that are located in the center of CCT
genetic network.

Methods: Integrative analyses including functional annotations, enrichment analysis,
and protein-protein interaction analyses were performed on all reported CCT GWAS
lead SNPs, together with their proxy variants. Functional annotations were conducted
by CADD, GWAVA, and Eigen. Enrichment analyses for CCT-associated genes were
performed using ToppGene suite. Protein-protein interaction network and gene
co-expression analyses were performed by GeneMANIA.

Results: Functional annotations prioritized eight genes (ADAMSTS6, ARID5B, FOXO1,
AKAP13, COL4A3, COL8A2, TBL1XR1, and KCMB2) harboring SNPs with strong evidence of
regulatory potential. It was also shown that CCT-associated genes were significantly
enriched in collagen-related pathways and the phenotype of keratoconus, and some of
them were found to be involved in one interaction network.

Conclusion: This study revealed the hub genes that were located in the center of CCT
genetic network and provided a new insight into the genetic regulation underlying CCT
GWAS findings.
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Introduction
The cornea is a highly collagenous, transparent tissue through which light reaches the

interior structures of the eye. Corneal thickness is closely related to corneal refractive

power, which contributes to normal vision. Epidemiologic studies have shown that

central cornea thickness (CCT) values differ among ethnic groups, with Europeans

have higher CCT values than Africans, and Asians have a broad variation in CCT [1].

There have been growing evidences suggested that changes in CCT are closely related

to ocular abnormalities. For example, reduced CCT or extreme thinner CCT has been

observed in some rare ocular disorders, including brittle cornea syndrome, osteogen-

esis imperfect, and Ehlers-Danlos syndrome [2, 3]. Moreover, CCT has also been
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demonstrated as an important indicator for several ocular diseases with complex

etiology. A thinner CCT has been demonstrated as an important feature of keratoconus

and a risk factor for primary open-angle glaucoma (POAG) in patients with ocular

hypertension [4, 5]. However, the contributing factors that influence CCT values

remain elusive, and intensive exploration of such information may help in explaining

how CCT values are defined, and also benefit in revealing the relationship between

CCT and certain ocular diseases.

CCT has been shown as a highly heritable, normally distributed quantitative trait. A

line of evidences from familial and twin studies indicated a strong genetic component

underlying CCT, with heritability estimated as high as 95% [6, 7]. However, the genetic

determinants of CCT remained unclear until the wide application of genome wide as-

sociation studies (GWAS) in complex traits. With such approach, a number of

CCT-associated loci have been identified in Europeans and Asians, including ZNF469,

FOXO1, LRRK1, IBTK, and several collagen-related genes [8–14]. In a recently pub-

lished meta-analysis of CCT on over 20,000 individuals in Europeans and Asians [9],

16 novel loci were identified, and some of them conferred relatively high risks for kera-

toconus and POAG, highlighting the potential involvement of CCT-associated genes

underlying the pathogenesis of particular ocular diseases. However, quite few of these

findings showed benefits in translational medicine for early diagnosis and treatment

[15]. Moreover, it is also difficult to distinguish neutral CCT-associated variants from

the pathogenic ones that actively participate in causing ocular abnormalities [1]. One of

the underlying reasons is that most of the associated variants are located in the

non-coding regions, raising the difficulty of following functional characterizations.

However, it is possible that some variants might play critical regulatory roles yet to be

found [16]. It is also reasonable to speculate that some variants that located in genes belong-

ing to critical biological pathways are more likely to confer disease risk, rather than merely

determining normal CCT variation. Therefore, there is an urgent need to explore molecular

mechanisms through the identification of regulatory variants from the GWAS signals.

Recent genome-wide functional studies, such as ENCODE, FANTOM5, GTEx project,

and Roadmap Epigenomics have found enormous regulatory elements across many differ-

ent tissues or cell lines in the human genome. These findings provided an opportunity to

glean insights into how these non-coding variants potentially affect biological functions

[17]. Accordingly, algorithms that utilized such information could be applied to distin-

guish these putative functional variants from the GWAS loci. Several integrative algo-

rithms have also been developed to make the results from different annotations to be

comparable. For example, algorithms like Combined Annotation-Dependent Depletion

(CADD) [18], Genome Wide Annotation of Variants (GWAVA) [19], and Eigen [20],

which were based on machine learning approaches, could integrate many diverse annota-

tions into a single measure for detected variant. These algorithms showed better perform-

ance than any single individual annotation, and they could be applied to get a

comprehensive evaluation on the relative pathogenicity of each genetic variant.

In the current study, we performed the first integrative analyses on CCT-associated

loci, including functional annotations, enrichment analyses, and protein-protein inter-

action analyses. Our study demonstrated the potential of data integration to identify

regulatory variants in CCT GWAS findings, and also highlighted the collagen and

extracellular matrix pathways in the regulation of CCT.
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Materials and methods
Study design

First, CCT-associated 34 lead SNPs from Lu et al. report [9] were treated as the main

dataset in the current study, and other CCT-associated variants were extracted from

the following electronic databases: PubMed, GWAS catalog, HuGE GWAS integrator,

and PheGenl database (accessed July 28, 2017). The reports that included in the current

study were shown in Additional file 1: Table S1. After removing duplicated records, a

total of 44 CCT-associated variants were selected for further analysis, and four of them

showed association signals in Asian cohort only. Proxy variants that in high (LD

(r2≥0.8) with the four Asian-specific lead SNPs were obtained from HaploReg v4 web

server (accessed July 29, 2017), using reference data from ASN population of 1000

genome project, while reference data from EUR population of 1000 genome project

was applied for other lead SNPs. Secondly, integrative functional annotations of the

lead SNPs and their proxy variants were conducted via three algorithms, including

CADD, GWAVA and Eigen score software. Variants that predicted to be functional by

all the three algorithms were considered as prioritized putative regulatory SNPs, and

the corresponding genes of variants that fulfilled either one of the methods were sub-

jected to following analyses. Finally, Gene Ontology (GO) enrichment analysis together

with gene co-expression network and protein-protein interaction analysis were con-

ducted for the filtered gene set, using ToppGene Suite and GeneMANIA (a Cytoscape

3.3.0 plugin), respectively. The flowchart of the study design was illustrated in Fig. 1.

Integrative functional annotations

Three different algorithms were used for integrative functional annotations of lead

SNPs and their proxy variants.

CADD is a tool for scoring the deleteriousness of single nucleotide variants as well as

insertion/deletions variants in the human genome. It integrates diverse genome annota-

tions using conservation matrices and protein based matrices (~ 63 different tools) into

a single measure (C-score) for each variant. CADD utilizes support vector machine

(SVM), a supervised learning approach to contrast the annotations of fixed alleles in

humans with those of simulated variants. We determined the threshold of pathogenesis

as having a C-score exceeding 10, which indicated the top 10% deleterious state among

possible substitutions.

GWAVA is a machine-learning algorithm (random forest) trained by the annotations

from ENCODE, GECODE, and other sources to evaluate the effect of regulatory vari-

ants in noncoding regions of the genome. A normalized score of 0 to 1 is provided to

reflect pathogenicity of variants, where higher scores indicate variants more likely to be

functional. The TSS score of GWAVA, which incorporates various regulatory annota-

tions, was adopted in the current study with a cutoff of 0.4.

Eigen is an unsupervised spectral approach for scoring variants without making use

of labeled training data. It performs well as compared to existing methods in both

coding and noncoding regions. The Eigen-PC score, which represents the first principle

component of the covariance matrix, shows better performance in the prediction of

noncoding variants. Variants with higher Eigen-PC scores are more likely to be func-

tional, and a cutoff of 0 was adopted in this study.
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Gene list enrichment analysis

GO enrichment analysis, pathway analysis, and cross-disorder analysis have been per-

formed using the ToppGene Suite, which is a one-stop portal for gene list enrichment

analysis and candidate gene prioritization based on functional annotations and

protein-protein interactions network. The list of CCT-associated genes was used as the

input seed. Enrichment P-values were calculated using probability density function, and

the Benjamini-Hochberg procedure was used for multiple testing corrections.

Protein-protein interaction (PPI) and co-expression network analysis

PPI network was constructed from GeneMANIA, which searches many large, publicly

available biological datasets to find related genes. GeneMANIA contains several

Fig. 1 Study design of the current integrative analyses
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network categories, including co-expression, physical interactions genetic interactions,

shared protein domains, co-localization, pathway, and predicted functional relation-

ships between genes. The constructed composite network was a weighted sum of indi-

vidual data sources. The list of CCT-associated genes was set as the input seed.

URLs

GWAS catalog: https://www.ebi.ac.uk/gwas/;

HuGENavigator: https://phgkb.cdc.gov/PHGKB/hNHome.action;

PheGenI: http://www.ncbi.nlm.nih.gov/gap/phegeni;

HaploReg v4.1: http://www.broadinstitute.org/mammals/haploreg/haploreg.php;

CADD: http://cadd.gs.washington.edu/;

GWAVA: https://www.sanger.ac.uk/sanger/StatGen_Gwava;

ToppGene Suite: https://toppgene.cchmc.org/;

GENECODE: http://www.gencodegenes.org/;

GTEx Portal: http://www.gtexportal.org/home/.

Results
Integrative functional annotations of lead SNPs and proxy variants

Figure 1 outlined our study strategy. After an initial search, a total of 44 CCT-associated

lead SNPs were selected for further analysis. The proxy variants that in high LD (r2≥0.8)
with these lead SNPs were identified, including 686 SNPs, 15 insertions and 32 deletions

(Additional file 2: Table S2). Then, all the lead SNPs and the proxy variants were performed

for integrative functional annotations, using three algorithms, CADD, GWAVA, and Eigen.

Among the 617 variants that had C-scores based on CADD annotation, forty-four of

them had C-scores exceeding 10. The distribution of C-scores for the 617 variants with

available C-scores were shown in Fig. 2a, ranging from 0 to 19.6. The top five ranked

variants were rs9510275, rs5814193, rs160826, rs57817160, and rs1875097, with a

C-score of 19.61, 19.49, 18.13, 16.96 and 16.32, respectively. The lead SNPs had slightly

higher C-scores than their corresponding proxy variants, although the P-value did not

reach the significant level (Fig. 3a).

A total of 690 variants had TSS scores based on GWAVA annotation, and eighty-five

of them had TSS scores larger than 0.4. The distribution of TSS-scores for these 690

Fig. 2 Distribution of (a) CADD, (b) GWAVA, and (c) Eigen scores. Histograms are drawn based on CADD,
GWAVA, and Eigen scores of all the variants (both lead GWAS SNPs and LD variants) after removing the
missing values
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variants was presented in Fig. 2b. The top five ranked variants were rs9409901,

rs57817160, rs7170235, rs4718428 and rs9630, showing a TSS score of 0.69, 0.69, 0.68,

0.67, and 0.66, respectively. Interestingly, a significant difference in the distribution of

TSS scores was found between lead SNPs and their proxy variants (P-value = 0.009041,

two-sided Wilcoxon rank sum test, Fig. 3b).

There were 144 out of 681 variants showed positive Eigen-PC scores. The distribution

of the Eigen-PC scores was shown in Fig. 2c. SNP rs2393729, rs2393730, rs2307121,

rs6769466, and rs6443477 represented the top five ranked variants, with an Eigen-PC

score of 2.05, 1.82, 1.76, 1.72, and 1.70, respectively. In agreement with the results from

GWAVA annotation, we also observed a significant difference of the distribution of

Eigen-PC scores between lead SNPs and their proxy variants (P-value = 0.02153,

two-sided Wilcoxon rank sum test, Fig. 3b).

Enrichment analysis

In order to reduce potential false positives, a threshold for each algorithm was adopted

here (CADD≥10, GWAVA≥0.4, and Eigen-PC≥0) [21]. It was found that 10 SNPs from

8 loci showed consistent results in all three algorithms (Table 1), which were consid-

ered as prioritized putative regulatory SNPs, the corresponding genes were

ADAMSTS6, ARID5B, FOXO1, AKAP13, COL4A3, COL8A2, TBL1XR1, and KCMB2.

Meanwhile, we found a total of 203 variants that fulfilled either one of the three cutoff

scores, and the corresponding genes of these variants were retrieved from GENECODE

database. Finally, a total of 38 non-overlapped genes were subjected to the following

enrichment analyses.

In order to investigate the potential biological implication underlying this list of

genes, the Gene Ontology (GO) enrichment analyses for the 38 CCT-associated genes

were performed using ToppGene suite [22]. For GO term Molecular Function (MF),

five terms had a false discovery rate (FDR) with B&H correction less than 0.05. The top

significant terms were “transcription factor activity, protein binding” and “extracellular

matrix structural constituent”. For GO term Biological Process (BP), a total of 59 terms

showed FDR B&H value less than 0.05, and the most significant term was involved in

Fig. 3 Comparison of functional annotation scores of CCT-associated GWAS SNPs versus LD variants. a
CADD scores for GWAS SNPs (n = 34) versus LD variants (n = 587); b GWAVA scores for GWAS SNPs (n = 41)
versus LD variants (n = 654); c Eigen scores for GWAS SNPs (n = 43) versus LD variants (n = 645). In the
boxplots, centerlines indicated the medians of the values and box limits showed the 25th &75th percentiles
(as determined by R package). Whiskers extended to 5th and 95th percentiles and outliers were shown by
open circle dots. The notches were defined as ±1.58 × IQR (interquartile range)/square root of n and indicated
the 95% confidence interval for each median. P-values were calculated using two-sided Wilcoxon rank sum test
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connective tissue development. For GO term Cellular Component (CC), we got 10

terms having an FDR B&H < 0.05, with the top significant terms including basement

membrane, extracellular matrix component, and collagen trimer. The top five GO

terms were shown in Table 2, and the full list of enrichment results was shown in

Additional file 3: Table S3.

Pathway analysis of the 38 CCT-associated genes showed that these genes were signifi-

cantly enriched in 6 pathways (FDR B&H < 0.05). The top ranked pathways were mainly

related to collagen and formation of extracellular matrix structure, as curated by KEGG,

REACTOME and BioCarta database (Table 2 and Additional file 3: Table S3).

Cross-disorder analysis showed the most significant enrichment of these

CCT-associated genes with the phenotype of keratoconus (adjusted enrichment P-value

= 8.68E-08, Table 2 and Additional file 3: Table S3). We then evaluated our

prioritization scheme by comparing the enrichment scores between each individual

prediction tool and the combined approach. We found that all the enrichment scores

for keratoconus were statistically significant with any single prediction tool, while there

was a substantial increase in the enrichment scores when the combined approach was

applied (Table 3).

Interaction network

Protein-protein interaction network and gene co-expression analyses were performed to

investigate the potential relationship among the 38 CCT-associated genes. As shown in

Fig. 4, these genes were involved in one interaction network. RXRA and TBL1XR1, LPAR1

and AKAP13 were found to be involved in the same pathways, while FOXO1 and SMAD3

showed direct interaction with each other. For the eight genes that have been prioritized

by three integrative functional annotations, different patterns of interaction have been

found between them and several other CCT-associated genes or potentially linked genes.

Discussion
In this study, by performing integrative analyses of publically available datasets, we have

intensively explored the possible functional relevance of CCT-associated loci. A

Table 1 List of prioritized putative regulatory SNPs

Variant Chr Position LD (r2) Lead SNP Ref Alt CADD GWAVA Eigen-PC Genes

rs2307121 5 65,329,685 1 rs2307121 C T 15.53 0.57 1.76 ADAMTS6

rs2393729 10 62,077,257 0.98 rs7090871 C T 13.08 0.41 2.05 ARID5B

rs2721051 13 40,536,747 1 rs2721051 C T 11.62 0.58 0.65 FOXO1

rs4843047 15 85,316,545 0.83 rs6496932 G A 10.22 0.43 0.67 AKAP13

rs57817160 2 227,314,522 0.92 rs7606754 G A 16.96 0.69 0.91 COL4A3

rs59257065 2 227,314,612 0.91 rs7606754 C T 15.72 0.64 0.91 COL4A3

rs6443477 3 177,590,145 0.99 rs7620503 A C 14.6 0.57 1.70 TBL1XR1,
KCMB2

rs6693322 1 36,099,761 0.8 rs96067 T C 10.78 0.49 1.26 COL8A2

rs6769466 3 177,590,226 0.99 rs7620503 G A 15.53 0.55 1.72 TBL1XR1,
KCMB2

rs6862857 5 65,334,310 1 rs2307121 G C 13.57 0.58 1.54 ADAMTS6

Position (hg19). Ref: Reference allele. Alt: Alternative allele. Cutoff: CADD≥10, GWAVA ≥0.4 and Eigen-PC≥ 0
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number of hub genes were found to be in the center of CCT genetic network. This

study provided a new insight into the genetic regulation underlying CCT GWAS find-

ings, and also indicated that integrative analysis might be an important supplementary

method for exploring functional mechanisms underlying CCT GWAS findings.

Based on the combined functional annotations, most of the CCT-associated genes

were significantly involved in the metabolic activities associated with collagen and

Table 3 Summary of the enrichment scores for genes prioritized for keratoconus (KC) using a
combination of CADD, GWAVA, and Eigen prediction tool

Prediction tool Fold Enrichment FDR B&H

CADD 32.2 9.54E-03

GWAVA 23.9 8.17E-03

Eigen-PC 20.1 2.14E-02

CADD+GWAVA+Eigen-PC 77.9 8.68E-08

Fold-enrichment was calculated as ((m/n)/(M/N), where m is the number of prioritized genes (with a tool or a combination of
tools) belong to KC, n is the total number of genes prioritized using a tool (or a combination of tools), M is the total number
of genes associated with KC, and N is the human genome background (around 20,000 genes). Enrichment P-values
were calculated using probability density function, and the Benjamini-Hochberg procedure was used for multiple
testing corrections

Fig. 4 Protein-protein interaction (PPI), co-expression network analyses using GeneMANIA. Genes were
shown as nodes and edges indicated different types of interaction among genes. Black circles were the
query genes and the colors coding on edges indicated different types of interaction. The eight prioritized
genes were labeled with red circles
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extracellular matrix, which was consistent with previous studies. In addition, we

prioritized eight genes (ADAMSTS6, ARID5B, FOXO1, AKAP13, COL4A3, COL8A2,

TBL1XR1, and KCMB2) harboring SNPs with strong evidence of regulatory potential.

Most notably, rs4843047 in AKAP13, rs57817160 and rs59257065 in COL4A3, and

rs6693322 in COL8A2 have also been confirmed as eQTLs by the GTEx Portal, imply-

ing their potentially direct roles in affecting expression of the corresponding genes.

These prioritized genes might be potential candidates to investigate the genetic predis-

position to some particular ocular abnormalities like keratoconus or POAG that medi-

ated through the genes underlying CCT. Indeed, the contribution of variant near

FOXO1 to keratoconus susceptibility has already been identified by Lu’s study [9].

However, the role of other genes has not been validated yet. The underlying reasons

may include the limited sample size in the original studies; the incomplete LD between

these prioritized putative regulatory SNPs and the interrogated SNPs in the original

studies; or the potential heterogeneity across different populations. Therefore, further

investigations on these putative regulatory SNPs might also be valuable when studying

the genetics of CCT-associated diseases.

Cross-phenotype analysis did not yield unexpected predictions, while these

CCT-associated genes were significant enriched in phenotype of keratoconus and

corneal thinning. Interestingly, direct interaction between SMAD3 and FOXO1 was

found by PPI analysis. FOXO1 is a well-established susceptibility gene for keratoconus,

while the association of SMAD3 with keratoconus susceptibility remains unclear.

Although a SNP in SMAD3 only showed nominal significance in association with kera-

toconus in the same study [9], it is possible that other SNPs might confer the risk, and

further fine mapping approach is required to get the whole picture of this region.

The study conducted by Lu [9] included 13 GWAS on CCT, totaling over 20,000

individuals with European or Asian ancestry. Their observations showed that most of

the CCT-associated loci identified from populations of European were shared in Asian

populations, suggesting that the underlying genetic effects were largely shared between

the two ancestry groups. However, some potential heterogeneity still existed within par-

ticular locus. For example, except for the consistent association of SNP rs1536482 in

the RXRA-COL5A1 locus between Europeans and Asians, another independent SNP in

the same locus, rs1536478 was found to be associated with CCT only in Asians. The

same scenario was also observed in the LRRK1 and AKAP13 loci, as SNP rs4963359,

rs1828481, and rs7172789 showed significant signals only in Asians as well.

For variant annotation, a combined approach containing three different algorithms

was applied in this study. CADD and GWAVA were two supervised machine-learning

algorithms, which were based on SVM and random forest method, respectively. They

have shown excellent performance in estimating the relative pathogenicity of human

genetic variants, and have been successfully applied in identifying the regulatory vari-

ants that conferring risks for inflammatory bowel disease [21] and several psychiatric

diseases [23]. Eigen was an unsupervised machine learning method. This algorithm did

not rely on any labeled training data, so it could reduce the dependence on existing da-

tabases of observed variants, previously characterized elements, and existing models of

mutation, a scenario that usually encountered when limited information about the

disease/trait was available [20]. We also evaluated the performance between the

combined approach and each individual annotation by calculating the disease
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enrichment scores of different strategies. Our analysis showed that a combined ap-

proach could be very effective to annotate and prioritize putative functional non-

coding variants from GWAS loci.

In summary, through comprehensive integrative analyses, the current study revealed

the hub genes that were located in the center of CCT genetic network, and provided a

new insight into the genetic regulation underlying CCT GWAS findings. However, sev-

eral limitations existed in this study. Although some variants with probable regulatory

functions were identified from the established GWAS loci, we could not be conclusive

for their association since none of these prediction algorithms were disease specific. In

addition, conclusions revealed by our integrative analyses were heavily dependent on

limited number of reported CCT-associated genes, for other immune-related diseases

like systemic lupus erythematous, type 1 diabetes and inflammatory bowel disease, with

much more susceptible variants have been identified, integrative analyses showed better

performance in revealing their functional relevance for the diseases [21, 24, 25]. There-

fore, the overall profile revealed by this study requires further validation with larger

sample size in the future.
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