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Abstract
Background: The Toxicological Priority Index (ToxPi) is a method for prioritization and
profiling of chemicals that integrates data from diverse sources. However, individual
data sources (“assays”), such as in vitro bioassays or in vivo study endpoints, often
feature sections of missing data, wherein subsets of chemicals have not been tested in
all assays. In order to investigate the effects of missing data and recommend solutions,
we designed simulation studies around high-throughput screening data generated by
the ToxCast and Tox21 programs on chemicals highlighted by the Agency for Toxic
Substances and Disease Registry’s (ATSDR) Substance Priority List (SPL), which helps
prioritize environmental research and remediation resources.

Results: Our simulations explored a wide range of scenarios concerning data (0-80%
assay data missing per chemical), modeling (ToxPi models containing from 160-700
different assays), and imputation method (k-Nearest-Neighbor, Max, Mean, Min,
Binomial, Local Least Squares, and Singular Value Decomposition). We find that most
imputation methods result in significant changes to ToxPi score, except for datasets
with a small number of assays. If we consider rank change conditional on these
significant changes to ToxPi score, we find that ranks of chemicals in the minimum
value imputation, SVD imputation, and kNN imputation sets are more sensitive to the
score changes.

Conclusions: We found that the choice of imputation strategy exerted significant
influence over both scores and associated ranks, and the most sensitive scenarios were
those involving fewer assays plus higher proportions of missing data. By characterizing
the effects of missing data and the relative benefit of imputation approaches across
real-world data scenarios, we can augment confidence in the robustness of decisions
regarding the health and ecological effects of environmental chemicals
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Background
Current estimates of the number of chemical entities in commerce and the environment
range from 7690 to 85000 [1, 2]. The enormous number presents challenges for a scien-
tific and regulatory community tasked with assessing human and ecological health risks
for each chemical. Given realistic limitations on time and resources for testing, methods
for prioritizing and profiling the risk-relevant activity (both observed and predicted) of
chemicals are needed for diverse application areas.
A prominent example of the need for resource prioritization is the Substance Prior-

ity List (SPL) generated in support of the U.S. EPA Superfund Program [3]. In 1980, the
United States Congress enacted the Comprehensive, Environmental Response, Compen-
sation and Liability Act (Superfund) in an effort to identify and clean hazardous waste
dump sites and prevent future exposures to the general public. The Agency for Toxic Sub-
stances and Disease Registry (ATSDR) was thus established to “effectuate and implement
the health related authorities” of the Superfund Act. The Superfund Amendments and
Reauthorization Act of 1986 requires that ATSDR release a list of chemicals commonly
found at Superfund sites listed on the National Priorities list, prioritized for further study.
The SPL is released every two years and prioritizes chemicals based on frequency

at Superfund sites, toxicity, and potential for human exposure. Toxicity is quantified
by drawing upon multiple, existing databases of hazardous substances. Provisions for
expanding the source data include calls for inclusion of data from the U.S. EPA Toxicity
Forecaster (ToxCast) and joint federal Tox21 programs [4]. The goal is to providemaximal
information for prioritization of chemicals in the SPL.
Together, these programs conduct high throughput screening assays of thousands of

chemicals. The first phase of ToxCast tested over 300 chemicals with extensive literature
regarding toxicity. The second phase of ToxCast tested over 2000 chemicals in over 700
high throughput assays covering expansive pathways and endpoints. Subsequent phases
are expanding into less well-studied chemical space. The data have been adopted to
improve the profiling and prioritization of chemicals as a part of the EPA Endocrine Dis-
ruptor Screening Program (EDSP) and assessments by the World Health Organization’s
International Agency for Cancer Research (IARC) [5–7].
However, even with the express goal of improving coverage, multisource data for

any one compound will commonly involve “missing” data. This missingness can arise
from inconclusive assay results, lack of testing in a particular assay, or incompatibil-
ity with a given assay system. In the aggregated matrix of all chemicals by all data
(i.e. assays), the resulting missing data patterns can be complex. Moreover, these pat-
terns may bias prioritization efforts, as chemicals having more complete information
will tend to have inflated priority, shifting less well-studied chemicals to artificially
lower ranks.
Data imputation procedures attempt to address missingness by using the structure of

the global dataset to make informed estimates of values to replace those deemed miss-
ing. Imputation procedures are common in fields such as genetics, where the use of
genotype imputation has been shown to increase the power of genome-wide associa-
tion study (GWAS) scans by using known genotyped data to impute unsequenced single
nucleotide polymorphisms (SNPs) for unrelated individuals [8]. In high-dimensional tox-
icological datasets, imputation may be used in a similar manner across collections of
assays and chemicals. However, imputation methods for integrated data face special
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challenges, such as non-common data unique to each study, minimal common data across
studies, or lack of common data [9]. In the context of the ToxCast data, this relates
to differing assay cell types, assay targets, and chemicals assessed. Other groups have
explored the effects of changes in integrated data on downstream analyses for multi-
omics data, highlighting the benefits of using the relationships within multi-omic data for
imputation [10].
Here, we explore the effects of complex missing data patterns on chemical prioritiza-

tion using the Toxicological Prioritization Index (ToxPi) [11]. We then implement several
data imputation methods and characterize their performance across a range of scenarios.
We develop and test our methods using simulated data motivated by high-throughput
screening (HTS) data generated on chemicals in the SPL. We use 7 imputation methods
on data generated using 1000 simulations each across 36 scenarios, then compare results
back to the original data. Our results show that, even in the absence of explicit choices to
impute missing data, ignoring missingness may still exert effects on prioritization conclu-
sions. Therefore, knowledge of the effects of missingness and imputation across scenarios
will be essential to providing robust prioritization and profiling decisions.

Methods
Data

ToxCast data were obtained from the October 2015 EPA high throughput screening
data release [12]. Chemicals featured on the 2011 ATSDR Substance Priority List were
obtained from the ATSDR website [3]. Chemicals from the ToxCast negative log trans-
formed AC50 value matrix were then compared to those chemicals on the Substance
Priority List, yielding 426 shared chemicals. Assays with 100% missing data resulting
from the removal of non-overlapping chemicals were removed from further analysis. This
yields a final working dataset of negative log transformed AC50 values for 426 chemicals
from 1092 assays. The 1092 assays were from different source technology platforms, the
details of which are available in the ToxCast Data Supporting Documents [12]. The range
of missing data for the 426 chemicals is (0%, 94.14%) and for the 1092 assays is (3.76%,
97.18%). Use of the negative log transformed AC50 values guarantees that the source of
missing data is a lack of testing from the assay source group as this data matrix accounts
for inactive hits numerically. For the purpose of the simulations, chemicals and assays
were given arbitrary identifiers.

Data simulation

Prior to removing the assay names, assay counts were recorded to determine parame-
ters for the data simulation. The working dataset features 12 unique assay sources, with a
range of (1420) assays per source. Within the ToxPi framework, each assay source repre-
sents ToxPi “Slices” and each assay would be included in scoring within the assay source.
For the simulation we used s = (5, 10, 15, 20) assay sources, deemed “Slices.” Within
each assay source, the simulation includes a = (1, 5, 10, 15, 20, 30, 50, 90, 125) assays.
Figure 1 illustrates a ToxPi model for s = 5 and a = 5, where the individual assays (sin-
gle columns within the data matrix) were recombined into summary source-wise scores
(slices). Assays were randomly sampled and assigned an assay source to yield simulated
datasets of size 426× (s*a). Each combination of s*a was repeated 1000 times, yielding
36,000 simulated datasets.
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Fig. 1 Conceptual overview of the simulation process and experimental design. Assays were randomly
sampled from the original data based on a desired number of assays and assay sources (slices) so that the
simulated datasets contained a subset of assays with arbitrarily assigned sources and all of 426 chemicals
present in the original dataset. Simulated datasets were imputed and ToxPi profiles were calculated, with an
overall summed ToxPi score given for analysis

Data imputation

Data were imputed using assay values to maintain the assay screening patterns across
chemicals.Mean imputation imputes the individual assay means.Minimum value impu-
tation imputes the minimum assay readout, which assumes that chemicals with missing
data within an assay were at most, minimally active.Maximum value imputation imputes
the maximum assay readout, which assumes that the chemicals with missing values were
the most active within each assay. kNN imputation uses the assay means from the k most
highly correlated chemical for each individual missing data point. The value of k is calcu-
lated as the ceiling of

√
number of assays, as recommended by Duda, Hart, and Stork [13].

In instances where there were fewer than k correlated assays, chemicals were considered
inactive and imputed with 0. Correlation between chemicals was calculated using Pear-
son’s Correlation Coefficient on pairwise complete observations in the working dataset.
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Binomial imputation converts the continuous AC50 values to a dichotomous response
rate where inactive reads remain 0 and any reads greater than 0 are converted to 1. The
proportion response rate is calculated andmissing values are imputed as inactive or active
(0 or 1, respectively) using a binomial probability with the calculated proportion response
rate. Local Least Squares imputation (LLS) selects the k most highly correlated assays
and performs a local least squares minimization to predict missing assay values. A single
value, k = 2 was chosen to demonstrate the effects of LLS on chemical ranking and scores.
The k most similar assays were selected by Pearson Correlation Coefficient. LLS was ini-
tiated by imputing assay means and iterating the local least squares calculation until the
difference in iterated datasets, as calculated by mean square error, is below the thresh-
old value 0.001. Singular Value Decomposition imputation (SVD) predicts assay values
by performing matrix decomposition on the original dataset and recombines the results
into a solution. SVD imputation is initiated by imputing 0 and iterates through singular
value decompositions of the updated datasets until convergence. Imputation on the orig-
inal working dataset used the ToxPi default of ignoring missing data by imputing 0 for all
missing data. In the chemical ranking scheme, this default procedure essentially assumes
inactivity where there exists missing data. All seven imputation methods were imple-
mented on the 36,000 simulated datasets, yielding 252,000 simulated complete datasets
for 252 unique assay-slice-method combinations.

ToxPi calculation

Chemicals within each simulated dataset were scored and ranked using the standard
ToxPi formula, wherein half maximal active concentrations (AC50) for assays with com-
mon targets are summed for each individual chemical. Total summations for each
chemical are normalized to the interval (0, 1) [14]. Each assay and slice was weighted
equally for all combinations of assay- and slice-numbers simulated. Higher ToxPi scores
are given to those chemicals deemed more active (slices extending farther from the ori-
gin in Fig. 1), and lower ToxPi scores are given to those chemicals deemed least active
(slices not extending far from the origin in Fig. 1) or inactive (slices having zero radius, in
Fig. 1). ToxPi Scores are sorted and ranked so that the chemical with the highest ToxPi
score has rank 1. ToxPi was also run on the imputed working dataset to serve as a baseline
for evaluating imputation effects on ToxPi results.

ToxPi score and rank evaluation

Root mean square error (RMSE) was used to compare ToxPi scores of the imputed
simulated datasets with ToxPi scores of the imputed working dataset. Higher RMSE
indicates larger differences between datasets imputed with the test methods versus the
standard ToxPi imputation method. A narrower range of RMSE values for each slice-
assay-imputation combination indicates more stability in imputation method. Likewise,
a wider range of RMSE values for each combination indicates less stability and therefore
reliability in imputation method.

RMSE =
√∑m

i=1 (yi − y0)2

m
,

where m = number of chemicals

yij = ToxPi Score of Chemical i using imputation method j ,
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yi0 = ToxPi Score of Chemical i using imputed working dataset

Additionally, ToxPi scores of the imputed simulated datasets were compared with ToxPi
scores of the imputed working dataset using the Wilcoxon Signed-Ranks Test for paired
observations, which considers the distribution of differences in paired ToxPi scores. Mean
ToxPi Scores were calculated for each unique assay-score-method combination group of
1,000 simulated datasets for each of 426 chemicals, yielding 252 ToxPi score means. P-
values from theWilcoxon Signed-Ranks test were evaulated against Bonferroni corrected
significance levels such that α = 0.001/252. P-values less than α indicate that the paired
ToxPi Scores from the imputed simulated datasets and from the imputed working dataset
are significantly different.
The variance of ToxPi scores was calculated for each individual chemical among

datasets with the same slice number, assay number, and imputation methods so that each
scenario resulted in 426 different variance values. Larger variation indicates less score
stability as a result of the combination of parameters.
Overall ToxPi score variance across all chemicals for each scenario was tested against

the variance of ToxPi scores from the raw imputed data using Bartlett’s test for equal
variances. Resulting p-values were tested against the Bonferroni corrected significance
level α = 0.001/252, 000.
ToxPi ranks for the imputed simulated datasets were compared with ranks from the

original ToxPi results. Larger values in rank change indicate greater differences in rank.
Likewise, smaller values indicate smaller to no difference in rank from the choice of
imputation method.

Mean Rank Change = (rij − ri0)/1000

where rij = Rank of Chemical i using imputation scenario j;

ri0 = Rank of Chemical i from imputed working dataset

Statistical software

Scripts for generating simulated datasets, data imputation, running ToxPi and statistical
analyses were used, written and run using R Statistical Software [15]. Graphs were made
using the ggplot2 package in R.

Results
Missing data

In the original dataset, the range for missing data amongst chemicals is (0%, 94.14%).
Across assays, the range for missing data is (3.756%, 97.18%).

Wilcoxon signed-rank tests showmost imputation methods result in significant changes to

score

The Wilcoxon Signed-Rank test was significant at the Bonferroni corrected
α = 0.001/252 for all tests except in cases with smaller simulated datasets. Minimum
value imputation scores appear to be more sensitive in cases were there are a fewer
number of assays (i.e. when number of assays per slice = 1), whereas mean and kNN
imputation only showed nonsignificance in the smallest dataset (5 slices, 1 assay per
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slice). However, the remaining methods showed no such pattern, and the results of the
Wilcoxon Signed-Rank test indicate much greater sensitivity to the randomness of the
simulation.

Minimum value imputation serves as a baseline for comparison

In the original dataset, each assay has the same minimum value of 0. Therefore, the
ToxPi default and minimum value imputation are identical when using the same dataset.
Because simulated datasets are generated from a diverse number of randomly sampled
assays from the original dataset, variability is expected between chemical ToxPi scores
from the minimium value imputed simulated datasets and scores from the standardly
imputed original dataset. Besides scenarios where the number of assays per slice is 1,
every other result shows scores significantly different than those from the ToxPi default
(p < 0.001/252). The results from the minimum value imputation can thus be used as a
baseline for comparing methods.
Minimum value imputation shows relatively small effects on chemical scores (Fig. 3a),

with low variability in RMSE across imputations (Fig. 3b). However, these small shifts in
scores have a highly variable effect on chemical ranks (Fig. 2).

kNN causes unstable shifts in chemical ranks

RMSE between ToxPi scores from kNN imputed datasets and the original dataset pre-
sented the smallest values compared to all other imputation methods (Fig. 3a). Despite
these low changes in score, kNN imputation overall has the most drastic effect on rank
change for each chemical (Fig. 2), highlighting the instability of this method for the
purposes of ranking.

Fig. 2 Comparison of Imputation Methods Using ToxPi priority ranks. Mean ToxPi Rank Change between
Imputed Simulated Data and Imputed Raw Data. Rank change was calculated by using the magnitude of
difference between individual chemical ranks in the imputed raw data and the chemical ranks from each
simulated dataset. Binomial, LLS, Maximum, and Mean show small magnitudes of change in rank. kNN shows
a wider variation in rank change and therefore represents less stability in the method. Minimum value
imputation andSVDpresentwider ranges in rank change, although themagnitude of change is smaller than kNN
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Fig. 3 Comparison of Imputation Methods by Toxpi Score. a Root Mean Square Error between Imputed
Simulated Data ToxPi Scores and Imputed Raw Data Chemical Scores. After imputation and ToxPi calculation,
scores were compared to the ToxPi scores using the standard “0” method. RMSE density distributions are
separated by imputation method. The distribution of kNN is centered at the lowest RMSE compared to the
other methods. Binomial, LLS, and Mean imputation are heavily overlapped. SVD is centered similarly, but
shows a wider spread. Maximum imputation has the largest RMSE. b ToxPi Score Variance of Imputed
Simulated Data ToxPi Scores. Amongst 1000 replicate simulations, the variance for each of 426 chemicals was
calculated. Compared to SVD, all other methods present relatively low variability from chemical to chemical.
SVD has an extremely wide range of ToxPi Score variability

Maximum value imputation causes uniform shifts in score and no shift in rank

Scores derived with maximum value imputed data differ largely with smaller number
of assays per slice (Table 1). Overall, maximum value imputation demonstrates large
differences from the original ToxPi imputed data (Fig. 3a), however the variance of these
scores remains comparable to the most of the remaining methods. Although the differ-
ence between ToxPi scores is significant (p < 0.001/252), changes in rank are lower in
magnitude and more stable than minimum value imputation (Fig. 2). This indicates a
uniform change in scores across chemicals, resulting in little changes in rank.

Mean, binomial, and LLS imputation show similar effects

The RMSE distributions for Mean, Binomial, and LLS imputation show highly overlap-
ping distributions (Fig. 3a). Similar to maximum value imputation, Mean, Binomial, and
LLS imputation have relatively stable effects on ToxPi score (Fig. 3b), with overall sig-
nificant differences from the original ToxPi imputed dataset (p < 0.001/252). Similar
to maximum value imputation, these changes in ToxPi score had only small effects on
average chemical rank change (Fig. 2).

Variance of scores is stable in all methods except SVD

Variance of individual chemical ToxPi scores across datasets and imputation methods are
plotted in Fig. 3b. Overall, the variance of ToxPi scores is low for all imputation methods
(<0.02), however, the results from SVD appear highly variable. The center of the distri-
bution for the RMSE of SVD imputed datasets is similar to that of Mean, Binomial, and
LLS (Fig. 3a), however, the spread of this distribution is much wider (Fig. 3b). The wide
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range of RMSE may indicate instability in this method. Because SVD imputation begins
with mean imputation, there may be effects of the data structure that alter factorization
of data matrices from dataset to dataset. Further, the average chemical rank change has
higher variability than other imputation methods (Fig. 2).

Overall ToxPi score variance differs significantly

Results from Bartlett’s Test showed that all datasets from Binomial, Maximum, and
Minimum imputation have significantly different variances amongst ToxPi scores when
compared to the original raw data results. LLS, Mean, and SVD each had >90% of datasets
with significantly different variances amongst ToxPi scores. KNN Imputation had 85% of
datasets with significantly different variances. These results show that there are observed
variance differences between the ToxPi scores from the imputed datasets compared to
the default ToxPi imputation method.

Discussion
Improvements to the handling of missing data in chemical prioritization cases will
improve the selection of chemicals for further study and ultimately decrease the time and
resources needed to characterize these chemicals on a case-by-case basis. The optimal
imputation method will feature score stability across all possible datasets, low sensitiv-
ity to smaller adjustments as a result of the imputation, and an ability to yield accurate
ranking of chemicals. Because this simulation seeks to improve chemical ranks that will
lead to further testing of chemicals deemed highest priority, we are unable to definitively
determine if the resulting rankings are accurate. However, by improving the imputation
method based on the first two criteria, we can begin to extract information that is avail-
able in the non-missing toxicity measurements that will improve the scoring and relative
rankings.
With this original dataset, minimum value imputation behaves identically to the ToxPi

default. However, this is not a guarantee for all datasets, where the minimum value
may differ across assays. In this simulation, the variance of scores from minimum
value imputation is low (Fig. 3b). Likewise, the RMSE is low, indicating small differ-
ences between ToxPi scores from simulated datsets and scores from the original dataset
(Fig. 3a). However, the Wilcoxon Signed Rank Test for paired observations indicates sig-
nificant difference between scores, except for cases with 1 assay per slice. Rank changes
from minimum value imputation show greater variation than all other imputation
methods (Fig. 2), indicating that minimum value imputation is sensitive to small changes
in score.
The kNN imputation method resulted in the smallest changes in ToxPi score, albeit

a wider ranger in score variability compared to Binomial, LLS, Maximum, Mean, and
Minimum. kNN imputation also had the highest magnitude of rank changes despite the
minimal changes to ToxPi score, indicating unwanted sensitivity to small changes in score.
This may be due to the method’s dependence on correlations, which cannot be measured
on assays with no variation and therefore the possibility of excluding important data is
present. In this simulation, we tested a single value for k (k = 10). It is possible that
larger values of k may extract more information from the data for imputation, however
the missingness structure of the original data limits the selection of a greater number of
neighbors.
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Maximum value imputation showed low variance among scores, large changes in
scores, but almost no change in ranks. This indicates that the uniform changes in score
cause a global increase in ToxPi scores leading to little or no effect on rank. Therefore,
this method can not be recommended over the current ToxPi default.
Binomial, LLS, and Mean imputation performed similarly to maximum value impu-

tation, showing lower variance among scores, stable changes in scores, and almost no
change in ranks to the current method. Additionally, compared to minimum value impu-
tation, binomial, LLS, and mean imputation have higher RMSEs overall and slightly wider
ranges of RMSE. The lower RMSE and narrower range of RMSE for minimum value
imputation indicates that there is no new information being extracted via minimum
imputation. The greater RMSEs and wider ranges of RMSEs can be considered reason-
ably different, relative to the results of the remaining imputation methods. That is, the
differences achieved using these methods justify recommendations for improvements to
the ToxPi default imputation method.
SVD imputation showed unique results, with higher variance in individual chemical

ToxPi scores across scenarios. Despite this higher variability, we see a narrower range
of rank changes compared to minimum value imputation indicating that SVD imputa-
tion results in highly variable score distributions with moderate sensitivity to chemical
ranks. Because SVD decomposes the data, it is possible that this imputation method is
able to extract additional data that yields these unique results. Further exploration into
the accuracy of SVD imputation for the purposes of ToxPi chemical scoring and ranking
is needed.
Based on the results of this simulation, recommendations for binomial imputation ver-

sus LLS imputation or mean imputation are arbitrary because of the similar RMSEs and
minimal changes in rank. Results from kNN imputation demonstrate that the imputed
values were selected from the same k = 10 nearest neighbors for each chemical, resulting
in ties for many chemicals that would explain the larger magnitude of rank change. Future
work may explore different values of k for more stable adjustments in rank. Similarly,
we chose to explore a single value of k for LLS. Higher values for k have been shown to
produce different results [16], and may differentiate LLS results from Mean or Binomial
imputation.

Conclusions
In conclusion, we recommend that in cases where chemical rank is of greatest concern,
mean imputation be used in place of the current ToxPi standard of ignoring missing data.
Mean imputation shifts each chemical’s ToxPi score centrally, allowing for the more strin-
gent assumption of some constant activity. Currently, imputing “0” for all missing data
relies on the assumption that a chemical is always in its minimally active state, which may
be too lenient when considering human and environmental health with risk assessment.
It is shown that mean imputation, LLS imputation, and binomial imputation behave sim-
ilarly in regards to score, however the effects on rank are dependent on the number of
slices and assays. Therefore, binomial imputation is a comparable alternative to mean
imputation when chemical ranking is not to be considered. Future studies might explore
external chemicalmeta-data to impute results frommore structurally similar chemicals or
look to more model-based Bayesian approaches to utilize distributional knowledge from
particular assay sets.
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