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Abstract

Background: Gene set analysis is a valuable tool to summarize high-dimensional
gene expression data in terms of biologically relevant sets. This is an active area of
research and numerous gene set analysis methods have been developed. Despite
this popularity, systematic comparative studies have been limited in scope.

Methods: In this study we present a semi-synthetic simulation study using real
datasets in order to test and compare commonly used methods.

Results: A software pipeline, Flexible Algorithm for Novel Gene set Simulation (FANGS)
develops simulated data based on a prostate cancer dataset where the KRAS and TGF-β
pathways were differentially expressed. The FANGS software is compatible with other
datasets and pathways. Comparisons of gene set analysis methods are presented for
Gene Set Enrichment Analysis (GSEA), Significance Analysis of Function and Expression
(SAFE), sigPathway, and Correlation Adjusted Mean RAnk (CAMERA) methods.
All gene set analysis methods are tested using gene sets from the MSigDB knowledge
base. The false positive rate and power are estimated and presented for comparison.
Recommendations are made for the utility of the default settings of methods and each
method’s sensitivity towards various effect sizes.

Conclusions: The results of this study provide empirical guidance to users of gene
set analysis methods. The FANGS software is available for researchers for continued
methods comparisons.
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Introduction
Gene expression data, especially at the whole genome level, is a powerful tool in

modern genomics. Microarray, and more recently, RNA-sequencing data have been

leveraged to interrogate a wide variety of biological problems. [12, 17, 36, 40] Gene

expression data has been collected for a wide variety of study designs, but most

commonly to compare gene expression patterns across groups/classes (such as cases

vs. controls or exposed vs. unexposed). Such group comparisons are performed with a

number of biological goals, broadly categorized as class comparison (for example, is

differential expression associated with case/control status), class prediction (for

example, can gene expression data be used to predict disease), or class identification

(for example, can gene expression data be used to diagnose a disease or disease

subtype). While the exact details of analysis will depend on the particulars of the data

and the goals, there are common workflows that have emerged.
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Data analysis workflows for gene expression analysis have evolved significantly over

the last 15 years, with a broad number of quality control, association tools and multiple

testing control approaches developed specifically for such data. The first step of a gene

expression study typically involves the evaluation of expression at the single gene level,

which produces a list of associated genes ranked by the magnitude of the statistical

association. While this is a crucial first step, investigators often conduct genome wide

expression analysis to obtain a more global view of expression changes, and the ability

to put these gene-level results into a broader biological context is highly desirable.

Gene-set analysis (GSA), also referred to as pathway analysis, is a commonly used

approach to address these goals. In GSA, genes are aggregated into gene sets on the

basis of shared biological or functional properties as defined by a reference knowledge

base. Knowledge bases are database collections of molecular knowledge which may in-

clude molecular interactions, regulation, molecular product(s) and even phenotype as-

sociations. The resultant gene sets are analyzed as a whole to determine which of these

properties are relevant to the phenotype of interest. Such an analysis typically strives to

generate hypotheses on the mechanistic processes for the phenotype of interest, which

should be further validated in replication studies or functionally interrogated in labora-

tory experiments. A number of GSA methods have been developed for gene expression

data, and have led to novel biological hypotheses about important clinical conditions.

These methods have also suggested new avenues for therapeutic intervention on the basis

of the unexpected involvement of biological functions and pathways in a variety of disease

processes. [13, 16, 17, 31, 34, 35, 41, 42, 44, 47].

While there has been well over a decade of development and application of gene set

analysis methods, there are few formal evaluations and comparisons of the commonly

used tools and algorithms. The few comparative papers published so far offer a mostly

theoretical evaluation of GSA methods and statistical evaluations are rare and limited

in scale. [21, 22, 30, 39, 45] Additionally, the vast majority of comparative studies have

used benchmark data, as opposed to simulated data for comparison. For example, Tarca

et al. (2013) compared sixteen methods (including methods from the over representa-

tion analysis and functional class scoring categories [30]) using 42 datasets retrieved

from the Gene Expression Omnibus (GEO) for different disease phenotypes. The au-

thors utilized the Kyoto Encyclopedia of Genes and Genomes (KEGG) [29] and Meta-

core® Disease Biomarker Networks (https://portal.genego.com) knowledge bases. The

authors find that the Gene Set Enrichment Analysis (GSEA) [49] and sigPathway [51]

methods have inflated false positive rates along with PLAGE (Pathway Level Analysis of

Gene Expression) (Tomfohr et al., 2005), GLOBALTEST (Goeman et al., 2004), PADOG

(Pathway Analysis with Downweighting of Overlapping Genes) (Tarca et al., 2012) and

MR-GSE (Mean-Rank Gene Set Enrichment) (Michaud et al., 2008) as the best overall

methods. Additional studies have proposed frameworks for conducting GSA based on

method evaluations from real gene expression datasets, as well as synthetic datasets,

where the signal and correlation structure have been simulated [2]. Varemo et al. [52]

performed a wide-ranging assessment of multiple approaches in GSA and identified im-

portant differences between commonly used methods. Although important differences

have been highlighted by all these studies, the use of real datasets without the alteration

of signal cannot provide an accurate estimation of statistical power or sensitivity, since it

is not known which gene sets are indeed enriched. Simulation experiments are a crucial
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component of methods evaluation and comparison, as bias, variance, and power proper-

ties can only be assessed in simulations with known parameters. However, the few simula-

tion experiments that have been performed have utilized artificially constructed gene sets

that may not be reflective of real biological mechanisms [2, 19, 39, 53]. For example, genes

are not independent and have complex correlation structures. The data correlation struc-

ture in these previously conducted studies was purely synthetic as opposed to incorporat-

ing correlations resulting from true biological mechanisms.

Although comparing GSA methods using real gene expression datasets ensures that

the comparisons are being performed on biologically relevant data, it is impossible to

know what the true underlying signal really is. This limitation prevents an in depth

comparison of the results from each method, as no true assessment of the sensitivity or

specificity can be used to determine which method performs best. On the other hand,

purely synthetic datasets provide the advantage of tuning a variety of conditions for

systematic methods comparisons. However, biological systems are highly complex and

we cannot be sure that purely synthetic datasets provide accurate representations of

the biology these methods will encounter in practice. For these reasons, a better ap-

proach is to maintain the underlying correlation structure within genes, while varying

the amount of signal for a given gene set. This also provides the advantage of being

able to assess each GSA method for detecting off-target gene sets. Without sufficient

understanding of the statistical properties of GSA, we risk drawing erroneous conclu-

sions (either false positives or false negatives), which may subsequently lead to un-

necessary investments in functional follow-up studies and/or missed oppurtunities.

In this study, we evaluate and compare the statistical properties of some of the most

commonly used GSA methods and corresponding software packages, including Gene Set

Enrichment Analysis (GSEA) [49], Significance Analysis of Function and Expression

(SAFE) [6], sigPathway [51], and Correlation Adjusted MEan RAnk (CAMERA) [53]. Not

only do these methods represent many of the commonly used GSA approaches, but they

each take a unique approach to performing GSA, providing a diverse set of conditions to

test the proposed simulation framework. We take an “end-user” focused approach to the

comparison, beginning with default/author recommended parameter settings for each of

the methods. We generate a wide range of simulated datasets, using real data from Gene

Expression Omnibus (GEO) [3] to provide realistic genome-wide expression profiles for

the simulations. We then simulate a range of effect sizes for a gene set chosen from a

commonly used knowledge base, varying a number of parameters in the experiment. Our

results clearly demonstrate the overall and relative performance of the methods. For sev-

eral methods, the results highlight concerns with the default parameter settings, therefore

alternative implementations were performed and the results compared. These results

mark the first benchmark of GSA approaches using data simulated based on real gene ex-

pression data along with signal relevant to known gene sets. The results are intended to

provide important guidance to end-users of GSA approaches.

Methods
Key elements of GSA include the knowledge base (known gene sets that will be tested

against), the type of hypothesis being tested, the statistical method used, and the

method of controlling false positive error rates. A detailed review of the broad classes

of methods, and discussions of their statistical properties be found in Khatri et al. [30].
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GSA methods can be classified into three loosely defined generations: over-

representation analysis (ORA), functional class scoring (FCS) and pathway-topology

(PT) methods. ORA methods typically test whether elements in the datasets are over-

represented in a given pathway from a knowledge base. FCS methods commonly strive

to detect changes to elements in the dataset that cause alterations in the given pathway

from the knowledge base. PT methods incorporate known or estimated structures of

the biological network to account for correlations among genes.

A number of knowledge base resources have been established by government, academic

and private entities. These include gene ontology (GO) [1], Kyoto Encyclopedia of Genes

and Genomes (KEGG) [29], MetaCyc [11], Metacore® Disease Biomarker Networks

(https://portal.genego.com), Ingenuity Pathway Analysis (IPA®, QIAGEN Redwood City,

https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis/) and Molecu-

lar Signatures Database (MSigDB) [49]. MSigDB (version 5.0) is used here since it in-

cludes information from the other databases (total of 10,295 gene sets) and is widely used.

By using biologically defined sets, the simulation results parallel the procedure undertaken

by typical end-users. MSigDB contains eight different categories of gene sets: positional

(c1, 326 sets), literature curated (c2, 4726 sets), motif (c3, 836 sets), computation (c4, 858

sets), GO (c5, 1454 sets), oncogenic (c6, 189 sets), immunologic (c7, 4872 sets), and

hallmark (h, 50 sets). A more detailed description of the MSigDB database can be found

in Subramanian et al. [49].

Each GSA method evaluated here relies on gene sets from MSigDB, and then tests for

whether the gene sets are significantly associated with the disease or trait of interest. Each

method takes a slightly different approach to statistical testing, corresponding to different

null hypotheses. Two common null hypotheses across the GSA methods are self-contained

and competitive. [21, 22] A self-contained null hypothesis states that genes in the gene set

are not more differently expressed than what is expected to randomly occur. A competitive

null hypothesis states that the genes in a given gene set are not more differently expressed

than the other genes in the dataset. The competitive null hypothesis answers questions re-

garding the pathways compared to each other, while the self-contained hypothesis answers

more general questions regarding the activities of genes within each specific pathway. Typ-

ically, competitive tests are more conservative compared to self-contained and both tests

are sensitive to the number of gene sets tested and the number of genes in the dataset [30].

Given their comparative nature, care should also be taken in interpreting the results from

competitive tests. Therefore, controlling the false positive error rates is a challenging task

in either context, and this is further complicated due to the high level of overlap of genes

contained in different gene sets. To control the false positive error rate resulting from test-

ing multiple hypotheses, family-wise error rate control, using, e.g. Bonferroni correction

[14, 15], False Discovery Rate (FDR) control [7] and resampling [24] or permutation-based

methods [18, 23] are used. As mentioned above, we chose the most commonly used GSA

methods for our comparison, and used the authors corresponding software packages.

Gene set enrichment analysis (GSEA)

GSEA ranks all of the genes in the dataset based on differential expression. To test the

gene set significance, an enrichment score is defined as the maximum distance from the

middle of the ranked list. Thus, the enrichment score indicates whether the genes con-

tained in a gene set are clustered towards the beginning or the end of the ranked list. Both
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self-contained and competitive hypothesis tests can be conducted with GSEA by altering

how randomization is completed for hypothesis testing. For a self-contained hypothesis

the phenotype labels are permuted while the genes are permuted for a competitive

hypothesis. A total of 1000 permutations are performed to estimate the empirical p-values

for the gene sets. Details of GSEA can be found in Subramanian et al. [49].

Significance analysis in function and expression (SAFE)

SAFE is a two-stage method which includes calculating both local and global statistics.

This two-stage procedure allows the analysis of a set of genes as opposed to single gene

association. The local statistic describes the significance of association with the response

for each gene in the dataset. The local statistics implemented by the SAFE Bioconductor

package [5], include Student’s t-test, Welch’s t-test, paired t-test, F-statistic from ANOVA,

and t-statistic from a linear model. In results reported here, the Student’s t-test is utilized

as the local statistic since it is the default setting in the software. The global statistic

describes the significance of a competitive hypothesis test for each gene set or pathway.

The implemented global statistics includes Wilcoxon rank sum, Fisher’s Exact Test,

Pearson’s Chi-squared type statistic and a t-statistic for average difference and are all

reported in the results for comparison. Permutation of the class labels was conducted to

control for false positive error rate. Details of the SAFE method can be found in Barry et

al. [6], while details about the package can be found in Barry et al. [5].

sigPathway

sigPathway offers both a competitive hypothesis test and a variation of a self-contained

test, although only the competitive hypothesis was used here since it is the most

commonly used. First, a gene-level statistic for the association of each gene with the

phenotype of interest is calculated. Second, a statistic is calculated for each gene set by

conducting a weighted sum of the gene-level statistics, normalizing this gene set statistic

to account for the size and correlation structure of the gene set, ranking the normalized

gene set statistics and determining the significance of the gene set statistics by resampling.

The default settings use a t-statistic for the gene-level and the Wilcoxon Rank Sum for

the gene set level statistics. Details of the sigPathway methodology can be found in Tian

et al. [51], and details about the package can be found in Lai et al. [33].

Correlation adjusted MEan RAnk (CAMERA)

As with SAFE, CAMERA is a two-stage procedure, with gene level and gene set level

statistics. The gene level statistic is based on linear regression, testing whether the

coefficient of the gene is zero, which is the same as a t-test but more flexible. The gene

level statistic includes the least squares estimate of the fold change, t-statistic,

moderated t-statistic (using an empirical Bayes posterior estimate of the variance) and

a normalized moderated t-statistic. CAMERA adjusts the gene set test statistic for

inter-gene correlations. The inter-gene correlation is estimated by the variance inflation

factor (VIF) and incorporated into the parametric or rank-based hypothesis test. The

VIF is calculated using the correlation structure of the dataset, which can be efficiently

estimated by the QR-decomposition of the design matrix (that of the linear model

corresponding to the gene set) and the independent residuals from this linear model. A
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number of gene set tests, including Wilcoxon rank sum, are implemented in the soft-

ware, and include extensions of a t-test between two gene sets group, each containing

the gene wise statistics of the genes that they contain and their inter-gene correlation.

More details about the methodology of CAMERA can be found in Wu & Smyth [53],

with implementation details in Ritchie et al. [46].

Flexible algorithm for novel gene set simulation (FANGS)

FANGS is a semi-synthetic simulation tool, which simulates data based on a user-

specified dataset to maintain realistic patterns of variation and correlation. We chose

three different datasets to base our simulations on. The first is a prostate cancer dataset

from the Gene Expression Omnibus (GEO) database [3] (GSE62872). The dataset

contains a total of 424 samples (264 prostate cancer and 160 non-matched normal tissue

samples [43]. The other two were samples for a study on ischemic stroke, with 40

samples, (GSE22255; [32]) and 41 samples from normal brain tissue (GSE53890; [37]).

Gene expression data for all datasets were collected on the Affymetrix GeneChip Human

Gene 1.0 ST Microarray (33,297 probes). All probes that mapped to multiple gene

products (as defined by Affymetrix annotation) were removed from the dataset. For the

prostate cancer dataset, this resulted in 30,202 probes in the final dataset, of which 19,276

mapped to known genes. For the stroke data, this resulted in 43,494 probes, 36,800 of

which mapped to known genes. For the normal tissue dataset, this resulted in 32,866

probes, 20,514 of which mapped to known genes. The simulation process is summarized

in Fig. 1. Multiple datasets were chosen to evaluate the consistency of the results across

dataset with varying correlation structures, study designs, etc.

The dataset preprocessing included background correction by the RMA algorithm

[26, 27] quantile normalization and centering of each probe’s expression at zero to

remove the existing signal [20]. RMA adjusts for sources of noise from the microarray

including between and within arrays. (Silver et al., 2009; [8, 10, 26, 27]) While there are

Fig. 1 FANGS Flow Chart. A specific dataset is selected as baseline. The raw data is preprocessed as described
in the Methods section, which includes RMA and quantile normalization along with centering the data for each
gene to have mean zero, to remove the existing signal. Next, a gene set is selected for simulation, and a range
of association signals are introduced, with a range of effect sizes, and proportions of the genes in the gene set
that are associated with disease status. One hundred bootstrapped data sets are generated for each set of
simulation parameters. The simulated data is tested on each method and power to detect the differentially
expressed gene set is calculated
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a number of approaches for normalization, quantile normalization is commonly used

because it is robust and the resulting signal is independent of expression technology.

The “rma” function within the oligo package [10] in the R programming language was

used for background correction. The “normalize.quantiles” function within the “prepro-

cessCore” package [9] in the R programming language was used for the quantile

normalization. Centering removes any original signal in the dataset, while preserving

the inherent correlation structure amongst genes. Additional file 1: Figure S1 shows a

heat map of the correlation structure (calculated by the Pearson correlation coefficient)

of the prostate cancer dataset after preprocessing and normalization.

Next, the simulated signal was added to genes in a specific gene set, as defined by the

MSigDB database. There are three important parameters in this simulation experiment:

1) gene set selection, 2) proportion of genes within the set that are differentially

expressed, and 3) differential expression effect size. For each expression dataset, we

selected two gene sets. For the prostate cancer dataset we selected two gene sets that

were previously found to be associated with prostate and other cancers [25] (the KRAS

down regulated pathway – ‘KRAS.PROSTATE_UP.V1_DN’ in MSigDB and the TGF-β

signaling pathway – ‘TGF_BETA_SIGNALING’). The KRAS pathway contains a total

of 144 genes, 127 of which are included in the prostate cancer dataset. The TGF-β

signaling pathway contains a total of 54 genes, all of which are included in the prostate

cancer dataset.

For the ischemic stroke and normal brain tissue datasets two random pathways were

selected. A complete list of gene sets in each category in MSigDB was generated, and a

random number generator was used to pick the pathway for simulation. The ischemic

stroke data targeted the “MORF_ANP32B” from c4 (genes in the neighborhood of

ANP32B) and the “MARTORIATI_MDM4_TARGETS_NEUROEPITHELIUM_UP”

from c2 (genes which are up-regulated in apoptotic tissues after MDM4 has been

knocked out) pathways. The MORF_ANP32B and MARTORIATI_MDM4_TARGETS_

NEUROEPITHELIUM_UP pathways contain 197 and 176 genes, 192 and 159 of which

are contained in the ischemic stroke dataset, respectively.

The normal dataset targeted “GCM_FANCC” from c4 (genes in the neighborhood of

FANCC) and “RAMASWAMY_METASTASIS_DN” from the c2 (genes which are

down-regulated in metastatic as opposed to primary solid tumors) pathways. The

GCM_FANCC and RAMASWAMY_METASTASIS_DN pathways contains 124 and 61

genes, 119 and 59 of which are included in the normal brain tissue dataset.

By selecting gene sets of different sizes, the impact of the number of genes in a gene set

can be evaluated. We also chose gene sets from different categories of the knowledge base

to evaluate if the result patterns are consistent across gene set categories. The proportion

of genes differentially expressed (π) in the simulations defines the proportion of the genes

randomly selected in the gene set to be differentially expressed (as it would not be

expected that all the genes in a gene set would be differentially expressed). This propor-

tion ranged from 0.05 to 1.0 in this experiment. A range of signal was then introduced

into the data, by shifting the gene expression in the case group according to a range of

values (τ). The magnitude (or effect size) (τ) of differential expression given by τ ∗ sd(expr),
defines the magnitude of alteration of the expression of each probe.

To assess the power of each of the gene set analysis methods, 100 bootstrapped

samples from the differentially expressed datasets are created, keeping the case-control
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balance from the original study in the case of the prostate cancer data or a balanced

design in the other datasets (264, 20, and 21 cases along with 160, 20, and 20 controls

in the prostate cancer, ischemic stroke, and normal brain datasets, respectively). Power

in all simulations was calculated as the proportion of bootstrapped datasets where the

differentially expressed gene set displays a significant (at a threshold of 0.05) gene set

level statistic.

Three null simulations were conducted to assess the false positive rate for each of the

GSA methods tested here: 1) We simulated a null condition by permuting the class

labels without changing the expression level (τ), breaking the association between the

expression profile and the response. 2) We sampled the expression for each probe from

an independent identically distributed (iid) standard normal distribution and randomly

assigned sample labels, breaking the association between the expression profile and the

response, as well as breaking the correlation structure between the genes. 3) We

normalized and centered the data with τ = 0, thus adding no signal to the data. The

power under the null conditions was calculated as the proportion of pathways in the

null simulations with a p-value below 0.05.

Implementation

The software to create simulated datasets was implemented in the R statistical

programming language (https://www.r-project.org/) version 3.2.2. Version 1.0 of FANGS

is available open-sourced online at https://github.com/rmathur87/FANGS. The algorithm

is flexible to incorporate user defined data along with other knowledge base configurations.

The parameters of the simulation can be easily altered to test different values, for example

sample size or different sampling schemes.

In all simulations presented here, one hundred bootstrapped replicates were generated

using each combination of τ, and π for the two selected gene sets. The τ values tested

included 0.25, 0.5, 1, 2, and 10. The π values tested included 0.05, 0.1, 0.25, 0.5, and 1.

The GSA methods were tested using the implementations provided by the original

authors with the recommended default parameters (Table 1), and alternate parameters as

appropriate (Table 2). SAFE [5], sigPathway [33] and CAMERA [46] were run using

Bioconductor. GSEA (Java) was downloaded from (http://software.broadinstitute.org/gsea/).

The alternative parameters were utilized with SAFE as suggested in Barry et al. [4]. All

computation times were estimated on Dell’s PowerEdge R620 rack servers which includes

two Intel Xeon processors for a total of 16 cores and 128 GB of RAM.

To explore whether 100 bootstrap samples is enough to accurately estimate power, a

subset of simulations were repeated using 1000 bootstraps, and the results were compared

to those run using 100 bootstraps. There were no significant differences in the power

estimate (α > 0.05) for any of the GSA methods (results not shown).

Results
A complete reporting of results for all three datasets is included in Additional file 1,

but because the trends are extremely similar and the overall conclusions identical, for

simplicity we focus on the prostate cancer data results here in the main text.

To fairly evaluate power, first the overall Type I error rate of each method needs to

be assessed. Figure 2 displays the results for the three different null simulations across
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each of the methods (all tests implemented SAFE global statistics with default settings,

alternative settings are shown in Additional file 1: Figure S2). The median power across

all 100 replicates from all gene sets within MSigDB is displayed (along with first and

third quantiles). All methods except for the FET global statistic in SAFE have median

power around 0.05 (raw values shown in Additional file 1: Table S1), demonstrating

that generally false positive rates are well controlled. This is in opposition to the

findings of Tarca et al. (2013) who found that sigPathway and GSEA had inflated false

positive rates.

Power results across the range of simulations using the default parameter settings are

shown in Fig. 3 for the prostate cancer dataset. The results for the other two dataset

are shown in Additional file 1: Figures S3 through S5. The raw values for the prostate

cancer dataset are shown in Additional file 1: Tables S2 and S3 and are available upon

request for the other datasets. Results for the KRAS pathway simulations are shown in

Panel (a) and for the TGF-β signaling pathway in Panel (b). Overall, trends are as

expected. Power is higher for the KRAS pathway than the TGF-β pathway. This is

Table 1 List of default parameters

Method Default Parameters

GSEA Data File: Inputted txt file
Response File: Inputted txt file
Knowledge base: mSigDB gmx file
Num. Permutations: 1000
Permutation Type: Gene or Phenotype
Scoring Scheme: Weighted
Ranking Metric: Signal To Noise

SAFE Data Matrix (X.mat): Inputted rda file
Response Vector (y.vec): Inputted rda file
Gene Category Assignments (C.mat): Created from gmt file
Method: Permutation
Min Category Size: 2
Max Category Size: Inf
by.gene: FALSE
Local Statistic: Student T-Test (“t.Student”)
Global Statistic: Wilcoxon Rank Sum (“Wilcoxon”)
Args.global: list(one.sided = F)
Num. of Permutations (‘Pi.mat’): 1000
Multiple Testing Correction (‘error’): FDR.BH

sigPathway Data File: Inputted rda file
Knowledge base: mSigDB gmx file
Min gene set size: 1
Max gene set size: 10,000
allPathways: TRUE
Number of Pathways: length(mSigDB gmx file)

CAMERA Data File: Inputted rda file
Response Inputted rda file
Knowledge base: mSigDB gmx file

Table 2 List of alternative parameters

Method Alternative Parameters

GSEA Calculating the FDR q-values based on the reported p-values as opposed to the q-values reported,
which are based on the median.

SAFE Method: Bootstrap (‘Bootstrap.q’)
Global Statistic: aveDiff, FET, Pearson
Num. of Permutations (Pi.Mat): 10,000

sigPathway Not applicable

CAMERA Not applicable

Mathur et al. BioData Mining  (2018) 11:8 Page 9 of 19



expected given its larger size, and the fact that a fixed proportion of genes in each path-

way is set to be differentially expressed in our simulations. Also, as the proportion of

differentially expressed genes in the gene set increases, power for each of the methods

increased. Generally, as the effect size increases, power increases (though an exception

is discussed below). These same trends are observed from the MORG_ANP32B,

MDM4, GCM_FANCC, and METASTASIS pathways in Additional file 1: Figures S3

through S6.

The relative performance of the methods is also evident, with a few notable trends.

The Wilcoxon global statistic for SAFE discovers no signal at any tested levels of τ,

supporting previous reports that SAFE is a conservative approach [30]. CAMERA has

power to detect larger effect sizes (τ = 1,2,10) although its power diminishes for smaller

effect sizes. sigPathway displays high power to detect a wide range of signal strengths.

Generally, this is also true for GSEA, though this trend reversed for very strong signals

(π = 1; τ = 2,10).

Simulation with the default settings for SAFE produced extremely low power (Fig. 4),

prompting the exploration into other parameter settings, including increasing the

number of permutations (increased p-value resolution), conducting other global statistical

tests to assess sensitivity and determine if bootstrap sampling improves power for large

signals. [4] The results with alternative and default parameters using SAFE for the KRAS

down regulated and TGF-β signaling pathways are shown in Fig. 4. For large effect sizes

the bootstrap sampling proves to have higher power compared to permutation testing

Fig. 2 Power under null simulation. Statistical power as detected by null simulation data for all GSA methods
tested. The mean power (for 100 bootstrap datasets) for the three different null simulations is plotted along
with its 95% confidence interval for the mean of each method
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(even with a larger number of permutations), which supports previous work with

bootstrap sampling [4]. The power does decrease significantly for lower signals (π = 0.5),

therefore the signal must be relatively strong for SAFE to detect it.

Further examination of the results from GSEA highlighted an unusual property of

the false discovery rate (FDR) q-value as calculated by GSEA. GSEA reports q-values

based on the median of the p-value distribution, as opposed to the standard approach

of using the extreme values [7]. To evaluate whether the unexpected results were due

to this method of q-value calculation, we repeated the GSEA analysis with a traditional

q-value implementation. [7] We calculated FDR q-values based on the reported

permutation-based p-values via the stats package (“p.adjust” function) in the R pro-

gramming language. Differences in the powers between the two implementations of

FDR are shown in Fig. 5, and demonstrate that the unusual behavior is corrected with

the more commonly used FDR implementation.

Genes are not always unique to a given gene set or pathway, and are often included

in multiple gene sets, posing a challenge to assessing GSA methods. To examine how

secondary gene sets not targeted in the simulation are impacted, the powers for gene

sets overlapping with target gene sets are shown in Fig. 6 for the most powerful

methods: sigPathway, GSEA and CAMERA for large (π = 1) and small (π = 0.1) propor-

tion of differentially expressed genes. The sensitivity of these methods to detect these

secondary gene sets is not surprising since some of these gene sets contain differentially

Fig. 3 Power for Default Settings. Statistical power for all GSA methods tested under the default settings.
All power values are shown at a significance value of 0.05. a The KRAS.PROSTATE_UP.V1_DN pathway has
been differentially expressed. b The TGF-β SIGNALING pathway has been differentially expressed
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expressed genes. The competitive GSEA is the most sensitive to these secondary gene

sets, while sigPathway and self-contained GSEA detect signal only for very large effect

sizes. Lastly, CAMERA has the lowest relative power to detect these secondary gene

sets.

In addition to statistical considerations, computational run-times can be an important

consideration for end-users. Table 3 lists the computational times for each of the

software packages assessed here.

Discussion
GSA has become an important tool in gene expression analysis, and GSA approaches

tied to knowledge bases such as MSigDB, are some of the most popular approaches

[30, 45]. While there have been a number of theoretical discussions of the differences

amongst the methods, and benchmark datasets have been used to demonstrate the

relative performance of methods, there have been few simulation experiments that

compare these popular methods. Simulation experiments provide important guidance

in choosing methods, and choosing parameter settings for such methods.

In the current study we took a very practical approach to the methods comparison.

We used the implementations and recommended parameter setting for several of the

Fig. 4 Power for SAFE alternative settings. Statistical power for results with alternative settings alongside
default settings for SAFE. The alternative settings tested include 10,000 permutations (‘-10 k’ labels) and
bootstrap sampling (‘-boot’ labels). The default setting is with 1000 permutations (‘-1 k’ labels). All power
values are shown as a significance value of 0.05. a The KRAS.PROSTATE_UP.V1_DN pathway has been
differentially expressed. b The TGF-β SIGNALING pathway has been differentially expressed
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most commonly used GSA methods, and used real data for semi-synthetic simulations.

This is an advantageous strategy compared to the use of benchmark datasets since false

positive rates and power can be accurately estimated, providing a more rigorous

approach to comparing methods. There are also advantages to the semi-synthetic

simulations implemented in our FANGS approach compared to the purely synthetic

simulations that have been performed before. The use of real data in semi-synthetic

simulations preserves the correlation structure of genes across the genome as well as

other complexities of the data (relative distributions, real levels of noise, technical

biases, etc).

The default parameters for SAFE failed to detect any of the effect sizes tested (Fig. 3),

although the bootstrap sampling improved performance for larger effect sizes (Fig. 4).

The default parameters of GSEA (both self-contained and competitive) produced

surprisingly low power for very large effect sizes, although its relatively high power was

observed at lower effect sizes (Fig. 3). This result seems to be due to the calculation of

q-value based on the median in the distributed software, as opposed to the more com-

monly used approach of basing the calculations on the extreme values of the p-values. [7]

Implementing GSEA with the FDR q-value, as developed by Benjaminini and Hochberg,

resulted in more predictable power behavior and overall improved power (Fig. 5). We

believe the improvement occurs because the median p-value used in the q-value

Fig. 5 Power for GSEA alternative settings. Statistical power for results with alternative settings alongside
default settings for GSEA. The alternative setting consists of calculating the FDR q-values based on the
extremes as opposed to the median reported in GSEA. All power values are shown as a significance value
of 0.05. a The KRAS.PROSTATE_UP.V1_DN pathway has been differentially expressed. b The TGF-β SIGNALING
pathway has been differentially expressed

Mathur et al. BioData Mining  (2018) 11:8 Page 13 of 19



calculation by GSEA is insensitive to changes in p-values at the extreme of the distribution

(i.e. smaller p-values). Subsequently, the increased signal is dampened as more significant

p-values are observed. Assessing the p-values at the extremes of the distribution, as is

performed in the FDR approach developed by Benjamini and Hochberg, is more sensitive

to detecting changes where increasing significant p-values occur at the extreme of the dis-

tribution. CAMERA performed well with larger effect sizes, but demonstrated relatively

poor performance with small to intermediate effect sizes (Fig. 3). sigPathway had the

Fig. 6 Power of Overlap Pathways. Statistical power for results with recommended methods (CAMERA, GSEA
with user defined FDR q-value and sigPathway) for those pathways with genes overlapping the targeted pathway
and denoted by the overlap proportion. Only proportion of differential expression parameter (π) values of 0.1 and
1 are shown here, while the others are displayed in Additional file 1: Figures S7 and S8. All power values are
shown as a significance value of 0.05. a The KRAS.PROSTATE_UP.V1_DN pathway has been differentially expressed.
b The TGF-β SIGNALING pathway has been differentially expressed
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highest power of all the methods across the full range of tested effect sizes (Fig. 3). The

competitive GSEA and sigPathway methods were more sensitive than other methods, and

also detected signal in other gene sets with genes that overlapped with the target gene set

(Fig. 6). Differences were observed across all methods in their power to detect the TGF-β

Signaling pathway and the KRAS pathway due to the different pathway sizes. Importantly,

all the methods except for the SAFE-FET implementation controlled the Type I error in

our experiments.

Based on these results, we can now form practical recommendations for end users.

Overall, the most powerful method was sigPathway; however, GSEA with the user-

calculated q-values has very similar performance and detects secondary signals from

different gene sets. Therefore, GSEA displays better performance for identifying the

specific signal along with other correlated and related gene sets, which can be desirable

for those seeking hypothesis generation. However, this can also complicate the inter-

pretation of “enriched” pathways identified using GSEA, as it is unclear whether the

enrichment is due to signal in the pathway, or secondary enrichment due to correlation

or overlap. On the other hand, sigPathway is more powerful in detecting smaller effect

sizes in the dataset. Furthermore, sigPathway has a relatively shorter computational

runtime of about five minutes compared to about forty-five minutes for GSEA, about

fifteen minutes for 1000 permutations and over two hours for 10,000 permutations or

bootstrap sampling for SAFE (Table 3). CAMERA is the most efficient algorithm with a

run time of 16 s for a single dataset. Based on the comparison of the two different q-value

implementations within the GSEA method and using the classical FDR controlling

approaches, we recommend that users implement their own FDR correction, and not use

the q-values calculated within the software package.

While we tried to simulate a reasonable range of simulation parameters, there are a

number of factors that were not included in the current study. Future studies should

focus on the effect of sample size on the resulting statistical power. Additionally, other

real datasets should be used as the basis of the simulations to evaluate the impact of

various correlation structures, different sample sizes, missing data, preprocessing

choices (e.g. normalization), limits of detection, and class misspecification should also

be considered. The results were remarkably similar across the three datasets used here,

but this is still a limited set of datasets. Importantly, future studies should extend the

types of data simulated and analyzed. For instance, while microarrays have the longest

history of GSA, RNA-Seq data has different structures and variance properties that

Table 3 Average run time for each GSA method

Method Ave Run Time

SAFE Default Global Statistics
• aveDiff: 18 mins
• Pearson: 16 mins
• FET: 17 mins
• Wilcoxon: 17 mins
10,000 Permutations: 149 mins
10,000 Bootstraps: 134 mins

sigPathway 4:08 mins

GSEA Competitive: 39:58 mins
Self-Contained: 34:28 mins

CAMERA 00:15 mins
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have prompted the development of different GSA methods [48]. This necessitates the

evaluation of RNA-sequencing data, and other platforms, such as proteomics and

metabolomics, to be assessed in a similar framework.

There are also limitations to the semi-synthetic approach we implemented in general,

especially compared to previous purely synthetic experiments. In our implementation,

while the correlation structure across the genome is preserved, the differentially

expressed genes in the simulated gene sets are not correlated. Previous simulations

have demonstrated the correlation amongst genes in the gene set to be evaluated is an

important factor in the power of each methods, with general and very consistent trends

that as correlation increases, the power of both self contained and competitive methods

decreases [39]. This is a general trend across all methods, and typically does not change

the relative performance. Incorporating additional simulation options like this will be

an important future direction for the continued development of FANGS. We simulated

a limited set of simulations in for the TGF-β signaling pathway data with (π = 1; τ = 5)

adding correlation to the gene expression values in the gene set (r = .2 and .4) and the

results followed the expected trend, where power decreased as correlation increased,

but the relative performance of the methods was the same (results not shown).

Additionally, while we tried to implement some of the most commonly used GSA

methods, this is an active area of development. Additional methods could be considered

for comparison as permitted. In particular, a systematic evaluation of pathway topology

methods [30], such as DEgraph [28], NetGSA [38], SPIA [50] would be informative. There

are also a number of commercial software packages that are available, including Ingenuity

Pathway Analysis (IPA®, QIAGEN Redwood City, https://www.qiagenbioinformatics.

com/products/ingenuity-pathway-analysis/) that are popular, but licensing agreements

prevent benchmarking studies from being conducted.

Finally, we have only used a single knowledge base for the methods comparison –

MSigDB. We used the literature curated (c2), motif (c3), computation (c4), GO terms

(c5), oncogenic (c6), immunologic (c7), and hallmark (h) categories within MSigDB.

There are a range of possible knowledgebases available, many specifically geared for

new technologies (e.g. metabolomics) or for specific genetic systems (e.g. plants). Com-

paring the performance of the different approaches with a range of knowledge bases,

and with limited categories within the knowledge bases will be an important next step.

There is one other opportunity with the semi-synthetic simulations that should be

noted. The FANGS code could also be used to perform power calculations based on

pilot data. As any real data can be uploaded, simulated signal could be added in

conjunction with resampling to perform simulation-based power calculations for study

design. Adding this option to FANGS will be another important future direction.

Conclusions
We have developed software to create semi-synthetic simulations based on real data to

compare the performance of some of the most popular pathway analysis methods. The

most powerful methods are sigPathway and GSEA, who have similar performance and

detect secondary signals based on pathway overlap. By taking an applied approach to

methods comparison, valuable information is gained about the power of each GSA

method. With such information more confidence is carried into any functional follow-

up studies.
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Additional file

Additional file 1: Figure S1. Correlation Structure of Prostate Cancer Dataset. Each row and column refers to
genes in the dataset, and the value plotted in the heat map is the Pearson correlation coefficient between the
expressions of those genes. The density of correlation values is shown in the top left corner. Figure S2. Power of
SAFE GSA Method on Negative Controls. Statistical power as detected by negative control data for the alternative
parameters for the SAFE GSA method. The mean power (for 100 bootstrap datasets) of the three negative controls
is plotted along with its 95% confidence interval for the mean for each method. Figure S3. Power for Default
Settings from Ischemic Stroke Dataset with the MDM4 pathway targeted. Statistical power for all GSA methods
tested under the default settings (including computed GSEA FDR values) from the ischemic stroke dataset with the
MARTORIATI_MDM4_TARGETS_NEUROEPITHELIUM_UP pathway targeted for differential expression. All power
values are shown as a significance value of 0.05. Figure S4. Power for Default Settings from Ischemic Stroke
Dataset with the MORF_ANP32B pathway targeted. Statistical power for all GSA methods tested under the default
settings (including computed GSEA FDR values) from the ischemic stroke dataset with the MORF_ANP32B pathway
targeted for differential expression. All power values are shown as a significance value of 0.05. Figure S5. Power
for Default Settings from Normal Brain Tissue Dataset with the GCM_FANCC pathway targeted. Statistical power for
all GSA methods tested under the default settings (including computed GSEA FDR values) from the normal brain
tissue dataset with the GCM_FANCC pathway targeted for differential expression. All power values are shown as a
significance value of 0.05. Figure S6. Power for Default Settings from Normal Brain Tissue Dataset with the
metastasis pathway targeted. Statistical power for all GSA methods tested under the default settings (including
computed GSEA FDR values) from the normal brain tissue dataset with the RAMASWANY_METASTASIS_DN
pathway targeted for differential expression. All power values are shown as a significance value of 0.05. Table S1.
Statistical false positive rates for the three controls, negative, double negative and no signal (tau 0). All values are
shown at a significance value of 0.05. Table S2. Statistical power values for simulation results (for both pathways
and all pairs of π and τ tested) for all methods along with GSEA alternative settings. All power values are shown at
a significance value of 0.05. Table S3. Statistical power values for simulation results (for both pathways and all pairs
of π and τ tested) with alternative settings for SAFE. All power values are shown at a significance value of 0.05.
Figure S7. Power of Overlap Pathways for all effect sizes for KRAS Pathway. Statistical power for results with
recommended methods for overlap pathways for experiments with the KRAS pathway differentially expressed. The
recommended methods include CAMERA, GSEA with user defined FDR q-value and sigPathway. The x-axis denotes
the proportion of the pathway that overlaps with the KRAS pathway. Each point in the graph represents one of
these overlapping pathways. All power values are shown as a significance value of 0.05. Figure S8. Power of
Overlap Pathways for all effect sizes for TGF-β Pathway. Statistical power for results with recommended methods
for overlap pathways for experiments with the TGF-β pathway differentially expressed. The recommended methods
include CAMERA, GSEA with user defined FDR q-value and sigPathway. The x-axis denotes the proportion of the
pathway that overlaps with the TGF-β pathway. Each point in the graph represents one of these overlapping
pathways. All power values are shown at a significance value of 0.05. (DOCX 892 kb)
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