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Editorial
Artificial intelligence (AI), a broad field that deals with the ongoing pursuit to render
machines capable of performing intelligent tasks, has taken the academic and industrial
worlds by storm in a breathtakingly short time span. These days, when you engage in the
daily surf of your favorite news website, somemention of AI will probably ensue. Machine
learning, currently the most prominent subfield of AI, focuses on algorithms that learn
from data, with deep learning—employing artificial neural networks with several hidden
layers—being the jewel in the crown.
From playing Go to processing radiological images, machine learning’s success and

breadth of scope is undeniable. Yet wemustn’t forget that the parent field of AI has birthed
many other offspring. In particular, we wish to shine a light on the field of evolutionary
computation (EC), which we believe is poised to be “The Next Big Thing”.
In EC, core concepts from evolutionary biology—inheritance, random variation, and

selection—are harnessed in algorithms that are applied to complex computational prob-
lems. The field of EC, whose origins can be traced back to the 1950s and 60s, has come
into its own over the past decade. EC techniques have been shown to solve numerous dif-
ficult problems fromwidely diverse domains, in particular producing human-competitive
machine intelligence [1]. As argued by the authors of this latter paper, “Surpassing humans
in the ability to solve complex problems is a grand challenge, with potentially far-reaching,
transformative implications.”
EC is applicable over a wide range of problem categories, including classification,

regression, clustering, design, optimization, planning, and generating computer pro-
grams. Moreover, the range of applications for which EC has worked well is staggering,
including such disparate domains as antenna design [2], generating winning game strate-
gies [3], automated program improvement [4], and bioinformatics [5].
EC presents many important benefits over popular deep learning methods:

• EC relies to a far lesser extent on the existence of a known or discoverable gradient
within the search space.

• EC thrives when applied to design problems, where the objective is to design new
entities from scratch (e.g., antennas [2] and game strategies [3]).

• EC algorithms require fewer a priori assumptions regarding the problem being
investigated.
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• However, EC seamlessly lends itself to the integration of human expert knowledge as
needed (e.g, [3]).

• EC can solve problems with no known solutions, where human expertise is limited or
absent altogether [6].

• EC has proven to work well in combination with many other AI techniques,
including artificial neural networks [7] and other machine learning algorithms [8].

• EC algorithms are inherently distributed, and are ripe for running in parallel on
multi-core or distributed cloud-computing systems [9].

• EC algorithms are anytime algorithms, meaning that they can provide a reasonable
solution to a problem even when prematurely interrupted.

• The representation of solutions in EC algorithms can be quite flexible, which lends
itself to highly interpretable models if interpretable solution representations are used.

• EC algorithms require little to no data to solve a problem; they can provide a solution
based on any criteria in the fitness function.

• Several EC algorithms can beautifully handle multiple objectives [10].
• EC is conceptually simple and easy for non-experts to learn and apply.

Fogel [11] discusses additional benefits of EC, while [12] cogently presents EC’s advan-
tages from an industrial perspective.
For these reasons we believe that EC is poised to rise to prominence in the near future,

with evolutionary algorithms put to use far more than they are today. This development
will come as no surprise to seasoned EC practitioners, who have been aware of the mer-
its of evolution for a very long time. After all, since evolution by natural selection has
given rise to human intelligence, surely artificial intelligence will greatly benefit from this
process.
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