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Abstract

Modeling and predicting biological dynamic systems and simultaneously estimating
the kinetic structural and functional parameters are extremely important in systems
and computational biology. This is key for understanding the complexity of the human
health, drug response, disease susceptibility and pathogenesis for systems medicine.
Temporal omics data used to measure the dynamic biological systems are essentials to
discover complex biological interactions and clinical mechanism and causations.
However, the delineation of the possible associations and causalities of genes,
proteins, metabolites, cells and other biological entities from high throughput time
course omics data is challenging for which conventional experimental techniques
are not suited in the big omics era. In this paper, we present various recently
developed dynamic trajectory and causal network approaches for temporal omics
data, which are extremely useful for those researchers who want to start working in
this challenging research area. Moreover, applications to various biological systems,
health conditions and disease status, and examples that summarize the state-of-the
art performances depending on different specific mining tasks are presented. We
critically discuss the merits, drawbacks and limitations of the approaches, and the
associated main challenges for the years ahead. The most recent computing tools
and software to analyze specific problem type, associated platform resources, and
other potentials for the dynamic trajectory and interaction methods are also presented
and discussed in detail.

Keywords: Temporal omics data, Dynamic approaches, Trajectory prediction, Causal
network, Systems medicine, Computational dynamic approaches for temporal omics
data with applications to systems medicine

Introduction
Recent advancement in the omics fields (i.e., genomics, transcriptomics, variomics,

proteomics, metabolomics, and interactomics) and the associated technologies (from

microarray. RNA sequencing, whole genome sequences (WGS), mass spectrometry

(MS)) have provided huge amount of information for delineating the roles of biological

entities (i.e., gene mutants, DNA methylations, metabolites) in complex diseases and

biological system states for the human organisms [1–7]. On the other hand, the

systems and precision medicine known as P4 medicine - Predictive, Preventive,

Personalized and Participatory, have been hot topics given the amount of big omics
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data and knowledge accumulated in the past decades from translational medicine and

human genomic/proteomic research [8–11]. In systems medicine, the human organism

is envisioned as a system of systems or network of networks, which is hierarchically

and biologically organized from genomic/proteomic to molecular, to cellular, to organ,

to individual human body, to social/environmental human systems. At each level/scale,

those are dynamically embedding each other (as opposed to being static) [8–11].

Despite considerable computational and statistical efforts over the decades with

thousands of computational tools, algorithms and models developed ranging from

single model to multi-level (such as meta-frame), the key computational challenges

of system medicine remains: how to best mine and learn the continuing arrival of

big omics data given thousands of interacting entities (e.g., genes or proteins) with

relatively weak or small accumulative effects over time on health conditions or diseases

[12–14]. The overwhelming number of confounded traits or highly correlated phenotypes

with the unavoidable measurement noises makes the integrations even harder, not just

metadata or models, but also the results. Moreover, the different topological characteristics

of the biological omics data require different sets of algorithms and models (i.e., supervised

versus unsupervised; generative or discriminative) for deriving meaningful interpretable

relationships. Nevertheless, omics data aggregations, linkage, curation, validation issues

from diverse platforms, software outputs, inconsistent data standardizations make clinical

implementations harder [15–17]. In addition, analyzing and processing too much combined

large data may cause over fitting issues, too complex unstable model, sacrificing predictive

accuracy.

From the clinical or biomedical perspective, the challenge issue is the reliability for

avoiding false discovery, and reproducibility across different patient cohorts and the

associated biological interpretability of the findings. These are all crucial in order to

extract fully confirmed actionable knowledge for systems medicine and P4 solutions.

But the evolving, heterogeneous and dynamic information with low intensity signals

with respect to noise from omics technologies make the key drivers led to complex

diseases difficult to characterize. Fig. 1 display the various omics data types and associ-

ated challenges. Time-course or temporal omics (i.e., genomic/proteomic/metabolites)

experiments are often used to measure and study dynamic biological and medical

systems. Knowing when or whether a biological entities including genes or proteins are

Fig. 1 Various Omics data types and challenges
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expressed or regulated, and how one interacts with others can provide a strong clue of

their biological roles and potential causality for disease conditions that may have thera-

peutic implication, i.e., not treated versus combination of treatments; recurring disease

patterns, disease subtypes, and key regulatory pathways of drug effects [18–22].

To tackle those dynamic, interacting, hidden but valuable biomedical information,

various analytical tools ranging from single level to more sophisticated hybrid data

mining, machine learning tools, and advanced statistical models are needed, especially

the advanced approaches for causal network inferences and dynamic trajectory predic-

tions for drug and disease responses [5, 6, 8–11]. This paper focuses on the various

trajectory and interaction approaches for temporal omics data, ranging from single

level to multilevel network/cloud computing. These approaches can be either model

based (statistical, mathematical, neural network (NN)) or algorithm based (machine

learning or data mining) or hybrid ensemble approaches (i.e. with knowledge integra-

tion). The examples and recently developed computing tools/resources for comparing

various trajectory and interaction methods regarding the merits and drawbacks use the

same data sets or different data sets are presented. More applications to pathway, regu-

lations, function, and integrative meta-analysis for various human health, conditions,

and diseases are given special attention. Other potentials for future directions (intelli-

gent approaches with deep learning, automatic reasoning; consensus predictions with

boosts and bagging) are discussed.

Computational apparoches for temporal experiments

To process and model the temporal omics data, several layer/levels analyses could be

applied to meet the needs of the state-of-the-art omics data in order to overcome the

challenges. Fig. 2 provides an overview of various computational methods starting from

Fig. 2 Computational approaches for omics data from single level to multi-level, network/pathway and
clinical outcomes
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low-level fundamental analysis to immediate, then to advanced analysis. Fundamental

analyses include data acquisition, noise filtering, system effect detection, etc. to ensure

the quality of the data and outcomes. Immediate analyses include different data reduc-

tion techniques for high dimensionality issue, i.e., statistical variable selection/screen-

ing, machine-learning algorithm with feature extractions, and mathematical modeling

(i.e., optimization). For instance, using supervised learning with wrapper methods for

feature/gene selections, the significantly differentially expressed gene can be identified

out of thousands of genes.

One of the goals of modeling temporal omics data is to infer and predict the

biological networks and interactions and for further causal, pathway, function and

integrative analysis. The advanced level analysis is the focus of the paper, which in-

cludes dynamic trajectory, interactions, network/module based modeling, and

knowledge/data integrations with pathway, regulatory and function analysis. Figure 3

provides a Venn diagram of general dynamic computational framework for different

types of high dimensional time course omics data. All layers/levels of analyses are

critical steps when modeling the high dimensional omics data, especially when time

dimensions are added with various types of time course experiment data. As the

omics data continues to grow, the analytical scheme needs to be switched from

correlation or module, pattern based approaches towards to network, module based,

then causal, pathway, function integrative based (see Fig. 3: outside circle towards

to the center) for actionable P4 solution. Table 1 summarizes an overview of the

comparison of the various dynamic modeling approaches for temporal omics data

from computational perspective, which are presented in details next.

Mathematical modeling: discrete static versus continuous dynamic approaches

The synergistic system formalism is a static differential equation based deterministic

approach that has been applied to genetic, immune and biochemical network data [23–25].

Nonlinear discrete dynamical systems also have been developed and applied for temporal

Fig. 3 Venn Diagram of general computational framework for high dimensional time course Omics data for
System and precision medicine
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data analysis [25–28]. As an example, discrete Boolean networks are developed as

probabilistic models of gene regulatory interactions. The corresponding networks are

able to cope with uncertainty in order to discover the relative sensitivity of gene-gene

interactions [26, 27]. These systems are non-linear and many advanced computational

algorithms such as genetic algorithms and linear programming have been imple-

mented for time courses of gene expression. Such types of deterministic interaction

models can potentially provide valuable quantitative and mechanistic descriptions of

gene activities that may be mediated by drugs and pharmacological agents. However,

these traditional mathematical models have not incorporated the stochastic nature of

biological process; the time delay or order information and they often treat the bio-

logical parameters as fixed values and model them in deterministic ways involved in

the estimations.

Singular value decomposition has also been developed for modeling the dynamics of

microarray experimental data through matrix decomposition and eigenvalue analysis

[29, 30]. The difficulties of these methods are the estimation of the dimensionality of

large matrix with ill-posed problems due to large p small n. Dynamic matrix-variate

graphical models have demonstrated promising results for dynamic genetic network

constructions, have applied for identification of age-related patterns in a public, pre-

frontal cortex gene expression dataset [31–35]. Topology network and graph based

multi-scale approaches decompose the network into subsystems (such as modules and

pathways) utilizing various metric measures [7], which could be further used for pre-

dicting the specific functions or phenotypes.

Stochastic paradigm treats the dynamic process of temporal change as a stochastic

process and describes it as a probability system in time with uncertainty [36–40]. Exam-

ples of stochastic processes are Gaussian process, Markov process, and point process. The

advantage of using a stochastic process is that it accounts for the temporal information in

the model. The drawback is that it makes some assumptions to model the process, which

may not be valid. Chen and colleagues (2005) combine the stochastic process with differ-

ential equation and developed a stochastic differential equation model for quantifying

transcriptional regulatory network in Saccharomyces cerevisiae [39].

State space model (dynamic linear models) and hidden Markov model are two im-

portant applications of statistical models combined with stochastic process techniques.

State space model combines the stochastic process with the observation data model

uniformly to model a continuous process for capturing the change of gene states [41].

Hidden Markov model can be used to model the gene activity systems in which the

gene states are unobservable, discrete, but can be represented by a state transition

structure determined by the state parameters and the state transition matrix while

processing the patterns over time [42].

State space models have greater flexibility in modeling non-stationary and nonlinear

short time course data and were implemented and applied to genomic studies [41]. How-

ever, some existing algorithms for these models were based on standard Kalman filter

methods, which rely on the linear state transitions and Gaussian errors. Perrin et al. used

a penalized likelihood maximization implemented through an extended version of EM

algorithm to learn the parameters of the model [43]. Rangel, et al. used classical cross-

validations and Bootstrap techniques and Beal et al. used variation approximations with

linear time invariant Gaussian setting for constructions of the regulatory network [41].

Liang and Kelemen BioData Mining  (2017) 10:20 Page 6 of 20



Statistical approaches: frequentist versus Bayesian methods

The choice of statistical modeling approaches for temporal omics data depends on the

features and types of the data (univariate (I), multivariate (II), cycling (III), phenotype

dependent (IV), Fig. 3). The statistical approaches also depend on the scale of the

observed outcomes (continuous, discrete: ordinal, binary) and the structure of the

balanced or unbalanced data (i.e., diseases type with much more sample than the com-

parison sample). The associated analysis can be 1) analysis of univariate time course (I)

in which each outcome/condition is analyzed separately; 2) Using a joint multivariate

modeling strategy for time course II and III for a) assessing the relation between some

covariate and all temporal outcomes simultaneously; b) studying how the association

between the various temporal outcomes evolves over time; c) investigating the associa-

tions among the evolutions of all temporal outcomes and correlated phenotypes, (e.g.,

periodical or cycling expression data, time course IV).

Moreover, they are also related to the way the association between and across outcomes

is modeled (i.e., with or without latent variables); or how the effects of the variables are

treated (random, fixed). So the related approaches can be categorized into classical

frequentist inferential approaches (fixed effects), Bayesian models (random effects), or

mixed of the classical inferential techniques and Bayesian model, which lead to mixed

models [44, 45] (see Fig. 3).

Frequentist approaches

Conventional time series techniques such as autoregressive or moving averaging

models and Fourier analysis require stationary conditions, linearity for lower order

autoregressive models, and uniformly spaced distributed time points, which are not

present in short time course omic experiments and therefore are not suitable for

unevenly spaced or distributed omic experiment [46, 47]. The repeated analyses of

variances (ANOVA), Generalized estimation equation (GEE) or generalized linear

mixed models have been applied to time course microarray data. They can model the

nonlinear relations between genes, deal with the unevenly time spaced data, and may

produce a good fit. But they do not fascinate prediction and may cause over-fitting

problems. In addition they do not include the time order information. Functional data

analysis methods have been applied to model the temporal data as linear combinations

of basis functions (spines) [48, 49].

Bayesian methods

The probability and confidence measures play important roles in omic temporal data

not only due to the variations, high noise levels and experimental errors resident in the

experiments but also the stochastic nature involved in the biological process. The

Bayesian paradigm is very well suited for examining these features and other properties

in the temporal data, such as highly correlated inputs (genes, time points) and pheno-

types, missing data, and small sample size [50–56]. In Bayesian models, the parameters

are assumed to be random variables and they are associated with some probability

distribution, and the posterior probability of these parameters can be expressed as

marginal distribution of those remaining parameters.

Moreover, Bayesian approaches can account for the variability induced by the collection

of models and construct credible intervals accounting for model uncertainty through

investigating the impact of the choice of priors on model space. Then they can construct

new search algorithms that take advantage of parallel processing with Markov Chain

Liang and Kelemen BioData Mining  (2017) 10:20 Page 7 of 20



Monte Carlo (MCMC) algorithm. Bayesian approaches can be used in the case when

there are more covariates than observations. Bayesian method is a hybrid generative-

discriminative model that can add prior knowledge (such as distributions of the input) or

encode the domain knowledge to improve the learning or training phases. Bayesian

approaches can well capture linear, non-linear, combinatorial, and stochastic types of

relationships among variables across multiple levels of biological organization and have

been extensively applied for the time course gene expression study with various

hierarchical settings [41, 42, 47–57].

Computer sciences approaches

Machine learning: unsupervised learning versus supervised classifications

Clustering analyses or unsupervised learning without class labels are the most commonly

used methods for time course genomic experiments. These approaches are based on

similarity or correlation or distance measures for identification of groups of genes

with ‘similar’ temporal patterns of expression, which is a critical step in the analysis of

kinetic data given the large number of genes involved [58–66]. Hierarchical clustering

with heat map, principal component analysis with scatter plots, or dynamic Bayesian

clustering (DBC) approaches are a few popular examples [26–28]. DBC can uncover

the underlying temporal structure and enable cluster memberships to change for better

understanding the development of complex biological organisms and systems [29].

Supervised clustering or classification approaches incorporate known disease status

or the prior known genomic knowledge (e.g., functional annotation tools or publications)

as class labels for classifying the genomic temporal patterns and disease/health outcomes

[66–70]. Support vector machines (SVM), generalized linear model, discriminant analysis,

decision tree, random forest, or neural network are popular examples, which were applied

to time course genomic experiments. Semi-supervised learning considers the problem of

classification when only a small subset of the observations has corresponding class

labels. Vibrational approximations or stochastic variational inference algorithm for

semi-supervised learning have also been explored with the omics data and have

shown an improved predictive accuracy for the disease/clinical outcomes [71, 72].

Discriminative compared with generative approaches

Classification or supervised clustering approaches can be also distinguished as either

generative versus discriminative models. Generative approaches learn the joint probability

of inputs x (e.g., genes) and output class label y (e.g., normal versus disease status), then

make prediction based on the conditional probability obtained through Bayes rules. Naïve

Bayesian classifier is a simple example of generative approaches [73] while Bayesian or

Gaussian mixture models are more sophisticated [55]; while discriminative approaches

directly estimate the conditional probability and learn the direct mapping between the

input x to class label y, which is preferred due to many compelling reasons, and a popular

example is logistic regression model.

Neural network (feed forward NN, convolutional NN, Bayesian NN) is popular

computational approach for prediction problems, which can either apply discriminative

or generative strategies [70, 71, 74]. Both unsupervised (i.e., self-organized map) and

supervised NN (hierarchical Bayesian NN) have been applied to temporal genomic data

for pattern/disease subtype discovery/identifications, or disease classifications/predictions.
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Neural network with traditional incremental learning and gradient descent algorithms

have good classification performance, but such algorithms could be trapped by local mini-

mum solutions when one optimizes a performance/score function, i.e., optimizing the

expected reward or minimizing loss functions. In order to find the global optimal solution,

recent developed deep learning approach on convolutional NN uses higher order deriva-

tive of score functions to obtain the higher order of moments for global optimizations that

can handle the convex and local trap issues that may cause misclassifications [75].

Advanced network and module based approaches

The computational or statistical approaches for network construction include various

levels such as transcriptional regulation network, metabolic network, protein-protein,

and disease-drug-genes network [76–88]. Networks and module-based approaches re-

veal hidden patterns in the original unstructured data by transforming raw temporal

data into logically structured, clustered, and interconnected graphs [89–95]. These graphs

can be visualized with nodes representing genes, proteins and metabolites, and with edges

indicating interactions, the potential causal relationships between biological entities (i.e.,

genes/proteins) or clusters that share similar molecular functions [96–103].

For instance, weighted correlation network analyses identify modules/clusters of

highly correlated transcripts, genes, proteins, metabolites [104, 105]. Bayesian network

approaches utilize and integrate prior biological domain knowledge (e.g., biochemical

pathways, biological processes) with omics data to estimate probabilistic interactions

for pathway and biochemical ontology-based integration [106–112]. Friedman and co-

workers have used static Bayesian networks, which are graph based models of joint

multivariate probability distributions that assess conditional independence between

variables. The network obtains simpler sub-models to describe gene interactions from

micorarray data [113]. Kimm et al. developed an algorithm to identify interaction

network and coupled it with non-parametric regression methods [64].

Dynamic Bayesian networks (DBN) have been popular for learning and inferring the

gene regulatory networks, which have been compared with Granger causality and probabil-

istic Boolean network [43, 106–109, 114–116]. DBN was also combined with other tech-

niques such as Bayesian regularization in order to handle the non-homogeneous, non-

stationary and gradually time-varying structure of time course omics data [106, 116].

For examining the potential causal relationships and network structure, autoregressive

models for gene regulatory network inference using time course data for sparsity, stability

and causality were investigated [117]. Granger causality approach have been developed for

genetic network constructions, and applied for measuring the predictive causality of tem-

poral data [57, 114, 118–122]. Furqan and Siyal proposed the LASSO-based Elastic-Net Cop-

ula Granger causality for biological network modeling [118]. Their proposed method shows

the merits of overcoming high dimensionality issues of ordinary least-squares methods and

linear constraints. Marinazzo et al. (2015) propose a kernel Granger causality method for dy-

namical networks. They address both the nonlinearity (choosing the kernel function) and

false causalities issues (selection strategy of the eigenvectors of a reduced Gram matrix). The

results showed that the proposed method is a better choice than using L1 minimization

methods [57]. However, Granger causality does not account for latent confounding effects

and may not be able to capture instantaneous causal relationships [118, 119].
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To investigate the dynamic aspects of gene regulatory networks measured through

system variables at multiple time points, Acerbi et al. (2014) proposed continuous time

Bayesian networks for network reconstruction. They compared two state-of-the-art

methods: dynamic Bayesian networks and Granger causality analysis [123]. Results

showed that continuous time Bayesian networks were effective on networks of both

small and large size, and were particularly feasible when the measurements were not

evenly distributed over time. They applied to the reconstruction of the murine Th17

cell differentiation network, and revealed several autocrine loops, suggesting that Th17

cells may be auto regulating their own differentiation process.

Pathway and function integrative approaches

Two general categories for data integrations are either through meta-analysis (e.g.,

Venn diagram), which performs analysis for each individual dataset first, then combines

the results; or mega-analysis, which combines the data first then conducts the analysis.

No matter which strategy, for better interpretations and visualization purposes, pathway

and functional analysis need be conducted. The pathway based analysis move to next level

of analysis (complementary to the DAVID and KEGG) to define how the selected

individually regulated genes, transcripts, or metabolites interact as parts of complex

pathways, such as signaling, metabolic pathways based on known knowledge and

published literature [124–126].

For instance, using Ingenuity Pathway Analysis software (http://www.ingenuity.com/)

that computes a score for each network according to the fit of the network, one can

select a cut-off score of 3 for identifying gene networks significantly affected by the

specific gene or genotypes. This score indicates that there is a 1/1000 chance that the

genes are in a network due to random chance and therefore, scores of 3 or higher

have a 99.9% confidence of not being generated by random chance alone. Then one

may compare the selected pathways and networks between DEG lists obtained from

individual comparisons (allele carrier vs. not) to find the common and unique

pathways between each compartment. These comparisons will indicate the difference

of specific genes at the pathway level in addition to our biological process and

molecular function analyses, pinpointing the relationship among potential candidate

driver genes, chromosomal abnormalities, and pathways.

However, biological pathways are inherently complex and dynamic, pathway annotations

in different pathway databases vary significantly in pathway models and in a number of

other aspects. For instance, specific protein forms, dynamic complex formation, subcellular

locations, and pathway cross talks. Interpretation of pathway mapping results from the fact

that pathway annotations currently take little consideration of tissue/urine/serum specific-

ities of genes or proteins in the pathway, thus, specific steps of a pathway may not be

actually active in tissues/cells from which the data may be generated which is a limitation.

Further function over-representation analysis through the Database for Annotation,

Visualization and Integrated Discovery (DAVID; https://david.ncifcrf.gov) identify modules

and entities that are enriched and statistically significant over-representation of particular

functional categories and major gene/metabolites groups/families [83, 84, 127–129]. Com-

bining with other enrichment and function analysis can facilitate biological interpretation to

interrogate complex biological systems for more accurate P4 outcomes [85, 130].
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Applications, software, resources
DREAM (The Dialogue for Reverse Engineering Assessment and Methods project

(http://www.the-dream-project.org/) provided excellent examples for temporal omics

data sets that involve various most updated biomedical challenge questions (e.g. regulatory

network inference, causal inferences, dynamic trajectory predictions) through multiple team

competitions [16, 17, 86, 118, 119, 131, 132]. For instance, in DREAM 8 (breast cancer net-

work inference challenge), four breast cancer cell lines were stimulated (under inhibitor per-

turbations) with eight ligands, which comprised of protein abundance time-courses (from

0 min, to, 5, 15, 30, 60, 120, 240 min) for inferring causal signaling networks and predicting

trajectory of protein phosphorylation dynamics in cancer [131]. Inferring a causal network

is extremely challenging, which significantly differs from association or correlation network.

Constructing the dynamical models that can predict trajectories under specific biological

perturbations lead to different signaling responses in different backgrounds is also nontrivial

task. Results suggest that learning causal relationships may be feasible in complex settings,

such as disease states and incorporating known biology was generally advantageous. For

drug prediction challenge, the hybrid, Bayesian multitask approaches, which combines non-

linear regression, multiview learning, multitask learning and Bayesian inference (using prior

biological knowledge) has showed best performance for predicting drug response based on

a cohort of genomic, epigenomic and proteomic profiling data sets measured in human

breast cancer cell lines [132].

Furqan and Siyal (2016) utilized silico temporal gene expression data sets from

DREAM4 for inferring network structures and predicting the response of the networks

to novel perturbations in an optional “bonus round” [118]. They proposed bi-

directional Random Forest Granger causality using the random forest regularization to-

gether with the idea of reusing the time series data by reversing the time stamp to ex-

tract more causal information. The ensembing approach was applied to HeLa cell

dataset to map gene network involved in cancer [119]. From another study, Marinazzo

et al. applied Kernel Granger causality using the same data set with 94 genes and 48

time points. Results showed evidence of 19 causal relationships, all involving genes re-

lated to tumor development [57].

Eren et al. (2015) developed an advanced automated and human-guided characterization

and visualization platform for microbial genomes in metagenomic assemblies. The platform

has interactive interfaces that can link omics data from multiple sources into a single, intui-

tive display [87]. The software includes multi-levels from data preprocessing (i.e., merging,

profiling), to unsupervised and supervised learning, hidden Markov model for metage-

nomics shot read RNA-seq data. They analyzed time course infant gut metagenomes data

set (at days 15–19 and 22–24 after birth), and explored temporal genomic changes within

naturally occurring microbial populations through de novo characterization of single

nucleotide variations. They also linked those with cultivar and single-cell genomes with

metagenomic and metatranscriptomic data. They identified systematic emergence of

nucleotide variation in an abundant draft genome bin in an infant’s gut. Other applications

to different common disease and health conditions by integrations of temporal omics data

ranged from single cell analysis to multiple tissues/organs and have been extended by lever-

aging to social environmental interactions [88, 133–147].

The most popular software packages for conducting computations are omics data are

the Bioconductor from R, toolboxes from Matlab, Genomics from SAS/JMP. In
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addition, C++, Visual Basic, Python, Java, and JavaScript, WinBugs are often used

programming languages for developing various types of analytic, visualization tools, pipe-

lines [148–155]. For instance, Bioconductor and R include more than 1290 packages ex-

tending the basic functionality of R or connect R to other software, which conduct

various types of omics data analysis discussed in section II. More importantly, those pack-

ages can incorporate the correlation analysis with other types of relationships such as bio-

chemical reactions and molecular structural and mass spectral similarity (MetaMapR).

In addition, they provide a dynamic interface (Grinn) to integrate gene, protein, and

metabolite data using more advanced biological-network-based approaches such as

Gaussian graphical models, partial correlation and Bayesian networks for omics data

integration (glasso, qpgraph). For instance, time-vaRying enriCHment integrOmics

Subpathway aNalysis tOol (CHRONOS) is an R package built to extract regulatory sub-

pathways along with their miRNA regulators at each time point based on KEGG

pathway maps and user-defined time series mRNA and microRNA (if available) expres-

sion profiles for microarray experiments [156, 157]. It can assist significantly in com-

plex disease analysis by enabling the experimentalists to shift from the dynamic to the

more realistic time-varying view of the involved perturbed mechanisms. NSPEcT is

based on differential equation that describes the process of synthesis and processing of

pre-mRNA and the degradation of mature mRNA. It’s a package used for estimation of

total mRNA levels, pre-mRNA levels, and degradation rates over time for each gene

(from time course RNA-seq) [158]. Furthermore, NSPEcT can test different models of

transcriptional regulation to identify the most likely combination of rates explaining

the observed changes in gene expression.

Some popular interaction and network analysis resources and databases for biological

systems resulted from literatures including IntAct, BioGRID, and MINT. Other

network construction software could be useful such as Genetic Network Analyzer

(GNA), which is a computer tool for modeling and simulation of gene regulatory

networks. GNA allows the dynamics of a gene regulatory network to be analyzed

without quantitative information on parameter values, analyzing its dynamical behavior

in a qualitative way [159]. For efficient and fast learning the network, Dojer et al. and

Wilczyński designed faster Bayesian network learning algorithms and software [160, 161].

Ingenuity Pathway Analysis demonstrates that a module and network based analysis leads

to more significant functional enrichment results than a standard analysis based on differen-

tial analysis. Table 2 provides some popular platform, software and database links for vari-

ous types of temporal omics data ranged from fundamental data preprocessing, to

immediate analysis to advanced network and pathway and integration analysis.

Discussion
Learning and integrating dynamic omics temporal data and gene-protein-disease-drug/

treatment correlation, interdependence and causal networks between hybrid systems

may improve our understanding of system-wide dynamics and errors of pharmacological

and biomedical agents and their genetic and environmental modifiers. Most available

dynamic approaches and existing applications focus on the genomic time course data, but

the same techniques or methodologies can be extended and employed to various types of

omics data (such as metagenomics) with the applications to other biological networks and

pathways. For instance, RNA-Seq data has revealed far more about the transcriptome than
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microarrays, primarily because analysis is not limited to known genes. This opens possibly

for splicing analysis, analyzing differential allele expression, variant detection, alternative

start/stop, gene fusion detection, RNA editing and eQTL mapping.

Either from computational complexity or clinical reproducibility point of view, one

cost effective resolutions and future directions would be develop more intelligent AI

based data integrations, learning and automations with hierarchical ensemble

approaches, not just connectivity. With efficient multi-task learning algorithms (with

automatic reasoning and consensus predictions with boosts and bagging) embedded

into multilayer computational automated ensemble model systems with pipelines, the

latent component of correlated biological entities can be divided and the key compo-

nents/pathway or elements can be captured through utilizing continuously arriving,

evolving, temporal omics data. Investigating the causality rather than the association

among various biological entities ranging from RNA, microRNA, DNA, gene, protein,

disease, and drug in an integrative perspective would be important, to which relative a

few integrative efforts have been dedicated so far.

To overcome other bottleneck issues for omics data that may partially arisen from

the biomedical systems’ complexity, that encompasses biological/genetic, behavioral,

psychosocial, societal, environmental, systems-related, ethical and other intertwined

factors. Further incorporations of electronic health records linked to behavioral,

psychosocial, societal, environmental, and clinical lab measures with temporal omics

data in hierarchical ensemble automated system will provide us more interpretable and

reproducible scientific results and practical clinical decision making for P4 patient

outcomes.
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